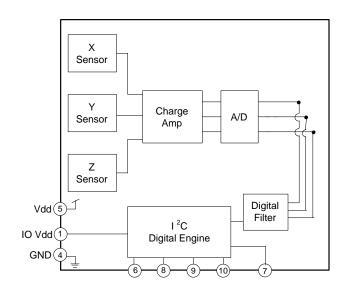


PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

Product Description

The KXTJ9 is a tri-axis +/-2g, +/-4g or +/-8g silicon micromachined accelerometer. The sense element is fabricated using Kionix's proprietary plasma micromachining process technology. Acceleration sensing is based on the principle of a differential capacitance arising from acceleration-induced motion of the sense element, which further utilizes common mode cancellation to decrease errors from process variation, temperature, and environmental stress. The sense element is hermetically sealed at the wafer level by bonding a second silicon lid wafer to the device using a glass frit. A separate ASIC device packaged with the sense element provides signal conditioning and digital communications. The accelerometer is delivered in a 3 x 3 x 0.9 mm LGA plastic package operating from a 1.8 -3.6V DC supply. Voltage regulators are used to maintain constant internal operating voltages over the range of


input supply voltages. This results in stable operating characteristics over the range of input supply voltages and virtually undetectable ratiometric error. The I²C digital protocol is used to communicate with the chip to configure the part and monitor outputs.

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

Functional Diagram

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

Product Specifications

Table 1. Mechanical

(specifications are for operation at 2.6V and T = 25C unless stated otherwise)

F	Parameters	Units	Min	Typical	Max
Operating Temperatu	ıre Range	°C	-40	-	85
Zero-g Offset		mg	·	±25	±200
Zero-g Offset Variation	on from RT over Temp.	mg/ºC		0.7 (xy) 0.4 (z)	
Sensitivity (12-bit) ¹	GSEL1=0, GSEL0=0 (± 2g)		922	1024	1126
	GSEL1=0, GSEL0=1 (± 4g)	counts/g	461	512	563
	GSEL1=1, GSEL0=0 (± 8g)		230	256	282
	GSEL1=0, GSEL0=0 (± 2g)		57	64	71
Sensitivity (8-bit) ¹	GSEL1=0, GSEL0=1 (± 4g)	counts/g	28	32	36
	GSEL1=1, GSEL0=0 (± 8g)		14	16	18
Sensitivity Variation f	from PT over Temp	%/ºC		0.01 (xy)	
Sensitivity variation i	Tom Ki over remp.	767 C		0.03 (z)	
Mechanical Resonar	200 (2dP) ²	Hz		3500 (xy)	
Medianical Resonal	ice (-3ub)	112		1800 (z)	
Non-Linearity		% of FS		1	
Cross Axis Sensitivity	y	%		2	•

Notes:

- 1. Resolution and acceleration ranges are user selectable via I²C.
- 2. Resonance as defined by the dampened mechanical sensor.

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

Table 2. Electrical

(specifications are for operation at 2.6V and T = 25C unless stated otherwise)

Pa	rameters	Units	Min	Typical	Max
Supply Voltage (V _{dd})	Operating	V	1.71	2.6	3.6
I/O Pads Supply Volt	age (V _{IO})	V	1.7		V_{dd}
	High resolution (RES = 1)			325	
Current Consumption	Low resolution (RES = 0, ODR ≤ 25Hz)	μΑ		100	
	Standby			10	
Output Low Voltage ($(V_{io} < 2V)^1$	V	-	-	0.2 * V _{io}
Output Low Voltage ($(V_{io} > 2V)^1$	V	-	-	0.4
Output High Voltage		V	0.8 * V _{io}	-	-
Input Low Voltage		V	-	-	0.2 * V _{io}
Input High Voltage		V	0.8 * V _{io}	-	-
Input Pull-down Curre	ent	μΑ		0	
	RES = 0			0.050	
	RES = 1, ODR = 12.5Hz			81	
	RES = 1, ODR = 25 Hz			41	
Start Up Time ²	RES = 1, ODR = 50Hz	ms		21	
Start Op Time	RES = 1, ODR = 100Hz	1115		11	
	RES = 1, ODR = 200Hz			6	
	RES = 1, ODR = 400Hz			4	
	RES = 1, ODR = 800Hz			2.5	
Power Up Time ³		ms		10	
I ² C Communication F	Rate	kHz			400
Output Data Rate (O	DR) ⁴	Hz	12.5	50	800
	RES = 0	kHz		1.59	
Bandwidth (-3dB) ⁵	RES = 1	Hz		ODR/2	

Notes:

- 1. For I^2C communication, this assumes a minimum 1.5k Ω pull-up resistor on SCL and SDA pins.
- 2. Start up time is from PC1 set to valid outputs.
- 3. Power up time is from Vdd valid to device boot completion.
- 4. User selectable through I²C.
- 5. User selectable and dependant on ODR and RES.

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

Table 3. Environmental

Paran	neters	Units	Min	Typical	Max
Supply Voltage (V _{dd})	Absolute Limits	V	-0.5	-	3.63
Operating Temperatur	e Range	°C	-40	-	85
Storage Temperature	Range	°C	-55	-	150
Mech. Shock (powered	g	-		5000 for 0.5ms 10000 for 0.2ms	
ESD	HBM	V	-	-	2000

Caution: ESD Sensitive and Mechanical Shock Sensitive Component, improper handling can cause permanent damage to the device.

This product conforms to Directive 2002/95/EC of the European Parliament and of the Council of the European Union (RoHS). Specifically, this product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), or polybrominated diphenyl ethers (PBDE) above the maximum concentration values (MCV) by weight in any of its homogenous materials. Homogenous materials are "of uniform

composition throughout."

This product is halogen-free per IEC 61249-2-21. Specifically, the materials used in this product contain a maximum total halogen content of 1500 ppm with less than 900-ppm bromine and less than 900-ppm chlorine.

Soldering

Soldering recommendations are available upon request or from www.kionix.com.

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

Application Schematic

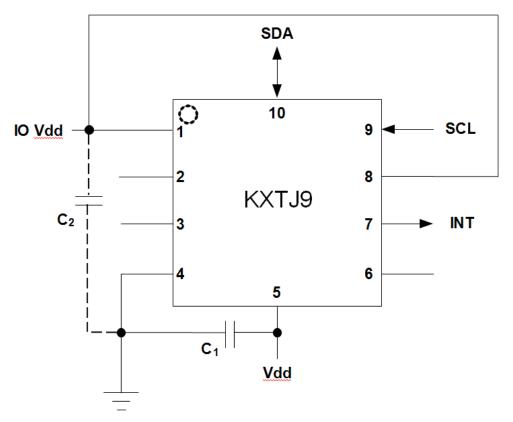


Table 4. KXTJ9 Pin Descriptions

Pin	Name	Description
1	IO Vdd	The power supply input for the digital communication bus. Optionally decouple this pin to ground with a 0.1uF ceramic capacitor.
2	DNC	Reserved – Do Not Connect
3	DNC	Reserved – Do Not Connect
4	GND	Ground
5	Vdd	The power supply input. Decouple this pin to ground with a 0.1uF ceramic capacitor.
6	RES	Reserved – Connect to Vdd, IO Vdd, or GND
7	INT	Physical Interrupt
8	RES	Reserved – Connect to IO Vdd
9	SCL	I ² C Serial Clock
10	SDA	I ² C Serial Data

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

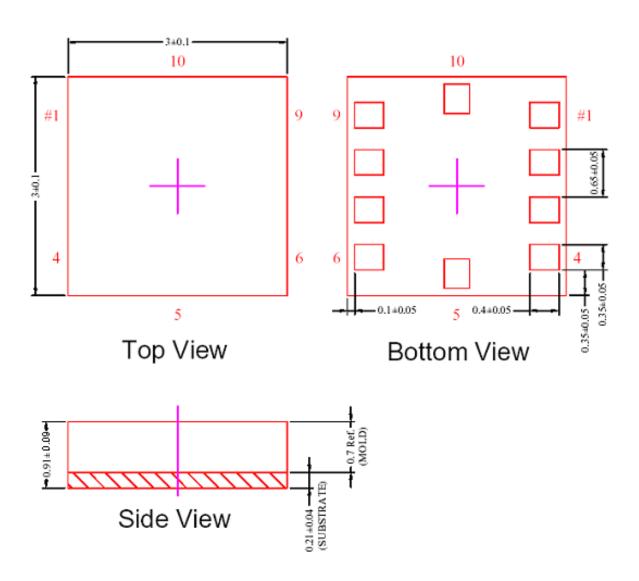
Test Specifications

Special Characteristics:

These characteristics have been identified as being critical to the customer. Every part is tested to verify its conformance to specification prior to shipment.

Table 5. Test Specifications

Parameter	Specification	Test Conditions			
Zero-g Offset @ RT	0 +/- 205 counts	25C, Vdd = 2.6 V			
Sensitivity @ RT	1024 +/- 102 counts/g	25C, Vdd = 2.6 V			

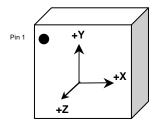


PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

Package Dimensions and Orientation

3 x 3 x 0.9 mm LGA


All dimensions and tolerances conform to ASME Y14.5M-1994

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

Orientation

When device is accelerated in +X, +Y or +Z direction, the corresponding output will increase.

Static X/Y/Z Output Response versus Orientation to Earth's surface (1g): GSEL1=0, GSEL0=0 (± 2g)

Position	1		2		3		4		5		6		
Diagram									Top Bottom		Bottom		
Resolution (bits)	12	8	12	8	12	8	12	8	12	8	12	8	
X (counts)	0	0 0		64	0	0	-1024	-64	0	0	0	0	
Y (counts)	1024	64	0	0	-1024	-64	0	0	0	0	0	0	
Z (counts)	0	0	0	0	0	0	0	0	1024	64	-1024	-64	
X-Polarity	0		+		0		-		0		0		
Y-Polarity	+		0		-	-			0		0		
Z-Polarity	0		0	0		0		0		+		-	

Earth's Surface

(1g)

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

Static X/Y/Z Output Response versus Orientation to Earth's surface (1g):

GSEL1=0, GSEL0=1 (± 4g)

Position	1		2		3		4	ı	5		6	
Diagram									Top Bottom		Bottom Top	
Resolution	12	8	12	8	12	8	12	8	12	8	12	8
X (counts)	0	0	512	32	0	0	-512	-32	0	0	0	0
Y (counts)	512	32	0	0	-512	-32	0	0	0	0	0	0
Z (counts)	0	0	0	0	0	0	0	0	512	32	-512	-32
(-Polarity	0		+		0		-		0			0
'-Polarity	+		0		-		0	0		0		0
-Polarity	0		0		0		0		+		-	

(1g)

Earth's Surface

Static X/Y/Z Output Response versus Orientation to Earth's surface (1g):

GSEL1=1, GSEL0=0 (± 8g)

Position	1		2		3		4	i	5		6	
Diagram									Top Bottom		Bottom Top	
Resolution (bits)	12	8	12	8	12	8	12	8	12	8	12	8
X (counts)	0	0	256	16	0	0	-256	-16	0	0	0	0
Y (counts)	256	16	0	0	-256	-16	0	0	0	0	0	0
Z (counts)	0	0	0	0	0	0	0	0	256	16	-256	-16
X-Polarity	0		+		0		-		0		0	
Y-Polarity	+		0		-		0		0		0	
Z-Polarity	plarity 0		0		0		0		+		-	
	•											

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

KXTJ9 Digital Interface

The Kionix KXTJ9 digital accelerometer has the ability to communicate on the I²C digital serial interface bus. This allows for easy system integration by eliminating analog-to-digital converter requirements and by providing direct communication with system micro-controllers.

The serial interface terms and descriptions as indicated in Table 6 below will be observed throughout this document.

Term	Description
Transmitter	The device that transmits data to the bus.
Receiver	The device that receives data from the bus.
Master	The device that initiates a transfer, generates clock signals, and terminates a transfer.
Slave	The device addressed by the Master.

Table 6. Serial Interface Terminologies

I²C Serial Interface

As previously mentioned, the KXTJ9 has the ability to communicate on an I^2C bus. I^2C is primarily used for synchronous serial communication between a Master device and one or more Slave devices. The Master, typically a micro controller, provides the serial clock signal and addresses Slave devices on the bus. The KXTJ9 always operates as a Slave device during standard Master-Slave I^2C operation.

I²C is a two-wire serial interface that contains a Serial Clock (SCL) line and a Serial Data (SDA) line. SCL is a serial clock that is provided by the Master, but can be held low by any Slave device, putting the Master into a wait condition. SDA is a bi-directional line used to transmit and receive data to and from the interface. Data is transmitted MSB (Most Significant Bit) first in 8-bit per byte format, and the number of bytes transmitted per transfer is unlimited. The I²C bus is considered free when both lines are high.

I²C Operation

Transactions on the I²C bus begin after the Master transmits a start condition (S), which is defined as a high-to-low transition on the data line while the SCL line is held high. The bus is considered busy after this condition. The next byte of data transmitted after the start condition contains the Slave Address (SAD) in the seven MSBs (Most Significant Bits), and the LSB (Least Significant Bit) tells whether the Master will be receiving data '1' from the Slave or transmitting data '0' to the Slave. When a Slave Address is sent, each device on the bus compares the seven MSBs with its internally stored address. If they match, the device considers itself addressed by the Master. The KXTJ9's Slave Address is 0001111.

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

It is mandatory that receiving devices acknowledge (ACK) each transaction. Therefore, the transmitter must release the SDA line during this ACK pulse. The receiver then pulls the data line low so that it remains stable low during the high period of the ACK clock pulse. A receiver that has been addressed, whether it is Master or Slave, is obliged to generate an ACK after each byte of data has been received. To conclude a transaction, the Master must transmit a stop condition (P) by transitioning the SDA line from low to high while SCL is high. The I²C bus is now free.

Writing to a KXTJ9 8-bit Register

Upon power up, the Master must write to the KXTJ9's control registers to set its operational mode. Therefore, when writing to a control register on the I²C bus, as shown Sequence 1 on the following page, the following protocol must be observed: After a start condition, SAD+W transmission, and the KXTJ9 ACK has been returned, an 8-bit Register Address (RA) command is transmitted by the Master. This command is telling the KXTJ9 to which 8-bit register the Master will be writing the data. Since this is I²C mode, the MSB of the RA command should always be zero (0). The KXTJ9 acknowledges the RA and the Master transmits the data to be stored in the 8-bit register. The KXTJ9 acknowledges that it has received the data and the Master transmits a stop condition (P) to end the data transfer. The data sent to the KXTJ9 is now stored in the appropriate register. The KXTJ9 automatically increments the received RA commands and, therefore, multiple bytes of data can be written to sequential registers after each Slave ACK as shown in Sequence 2 on the following page.

Reading from a KXTJ9 8-bit Register

When reading data from a KXTJ9 8-bit register on the I²C bus, as shown in Sequence 3 on the next page, the following protocol must be observed: The Master first transmits a start condition (S) and the appropriate Slave Address (SAD) with the LSB set at '0' to write. The KXTJ9 acknowledges and the Master transmits the 8-bit RA of the register it wants to read. The KXTJ9 again acknowledges, and the Master transmits a repeated start condition (Sr). After the repeated start condition, the Master addresses the KXTJ9 with a '1' in the LSB (SAD+R) to read from the previously selected register. The Slave then acknowledges and transmits the data from the requested register. The Master does not acknowledge (NACK) it received the transmitted data, but transmits a stop condition to end the data transfer. Note that the KXTJ9 automatically increments through its sequential registers, allowing data to be read from multiple registers following a single SAD+R command as shown below in Sequence 4 on the following page.

If a receiver cannot transmit or receive another complete byte of data until it has performed some other function, it can hold SCL low to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases SCL.

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

Data Transfer Sequences

The following information clearly illustrates the variety of data transfers that can occur on the I²C bus and how the Master and Slave interact during these transfers. Table 7 defines the I²C terms used during the data transfers.

Term	Definition
S	Start Condition
Sr	Repeated Start Condition
SAD	Slave Address
W	Write Bit
R	Read Bit
ACK	Acknowledge
NACK	Not Acknowledge
RA	Register Address
Data	Transmitted/Received Data
Р	Stop Condition

Table 7. I²C Terms

Sequence 1. The Master is writing one byte to the Slave.

Master	S	SAD + W		RA		DATA		Р
Slave			ACK		ACK		ACK	

Sequence 2. The Master is writing multiple bytes to the Slave.

Master	S	SAD + W		RA		DATA		DATA		Р
Slave			ACK		ACK		ACK		ACK	

Sequence 3. The Master is receiving one byte of data from the Slave.

Master	S	SAD + W		RA		Sr	SAD + R			NACK	Р
Slave			ACK		ACK			ACK	DATA		

Sequence 4. The Master is receiving multiple bytes of data from the Slave.

Master	S	SAD + W		RA		Sr	SAD + R			ACK		NACK	Р
Slave			ACK		ACK			ACK	DATA		DATA		

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

KXTJ9 Embedded Registers

The KXTJ9 has 25 embedded 8-bit registers that are accessible by the user. This section contains the addresses for all embedded registers and also describes bit functions of each register. Table 8 below provides a listing of the accessible 8-bit registers and their addresses.

	Туре	I2C Address		
Register Name	Read/Write	Hex	Binary	
Kionix Reserved	-	0x00 - 0x05	-	
XOUT_L	R	0x06	0000 0110	
XOUT_H	R	0x07	0000 0111	
YOUT_L	R	80x0	0000 1000	
YOUT_H	R	0x09	0000 1001	
ZOUT_L	R	0x0A	0000 1010	
ZOUT_H	R	0x0B	0000 1011	
DCST_RESP	R	0x0C	0000 1100	
WHO_AM_I	R	0x0F	0000 1111	
Kionix Reserved	-	0x10 - 0x17	-	
STATUS_REG	R	0x18	0001 1000	
INT_REL	R	0x1A	0001 1010	
CTRL_REG1*	R/W	0x1B	0001 1011	
Kionix Reserved	-	0x1C	0001 1100	
CTRL_REG2*	R/W	0x1D	0001 1101	
INT_CTRL_REG1*	R/W	0x1E	0001 1110	
Kionix Reserved	-	0x1F	0001 1111	
Kionix Reserved	-	0x20	0010 0000	
DATA_CTRL_REG*	R/W	0x21	0010 0001	
Kionix Reserved	-	0x22 - 0x39	-	

^{*} Note: When changing the contents of these registers, the PC1 bit in CTRL_REG1 must first be set to "0".

Table 8. KXTJ9 Register Map

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

KXTJ9 Register Descriptions

Accelerometer Outputs

These registers contain up to 12-bits of valid acceleration data for each axis depending on the setting of the RES bit in CTRL_REG1, where the acceleration outputs are represented in 12-bit valid data when RES = '1' and 8-bit valid data when RES = '0'. The data is updated every user-defined ODR period, is protected from overwrite during each read, and can be converted from digital counts to acceleration (g) per Figure 2 below. The register acceleration output binary data is represented in 2's complement format. For example, if N = 12 bits, then the Counts range is from -2048 to 2047, and if N = 8 bits, then the Counts range is from -128 to 127.

12-bit Register Data	Equivalent			
(2's complement)	Counts in decimal	Range = +/-2g	Range = +/-4g	Range = +/-8g
0111 1111 1111	2047	+1.999g	+3.998g	+7.996g
0111 1111 1110	2046	+1.998g	+3.996g	+7.992g
0000 0000 0001	1	+0.001g	+0.002g	+0.004g
0000 0000 0000	0	0.000g	0.000g	0.000g
1111 1111 1111	-1	-0.001g	-0.002g	-0.004g
1000 0000 0001	-2047	-1.999g	-3.998g	-7.996g
1000 0000 0000	-2048	-2.000g	-4.000g	-8.000g
8-bit				
8-bit Register Data	Equivalent			
	Counts in decimal	Range = +/-2g	Range = +/-4g	Range = +/-8g
Register Data (2's complement) 0111 1111	Counts in decimal 127	Range = +/-2g +1.984g	Range = +/-4g +3.968g	Range = +/-8g +7.936g
Register Data (2's complement)	Counts in decimal	•	•	
Register Data (2's complement) 0111 1111 0111 1110	Counts in decimal 127 126	+1.984g	+3.968g	+7.936g
Register Data (2's complement) 0111 1111	Counts in decimal 127 126	+1.984g +1.968g	+3.968g +3.936g	+7.936g +7.872g
Register Data (2's complement) 0111 1111 0111 1110	Counts in decimal 127 126	+1.984g +1.968g 	+3.968g +3.936g 	+7.936g +7.872g
Register Data (2's complement) 0111 1111 0111 1110 0000 0001	Counts in decimal 127 126 1	+1.984g +1.968g +0.016g	+3.968g +3.936g +0.032g	+7.936g +7.872g +0.064g
Register Data (2's complement) 0111 1111 0111 1110 0000 0001 0000 0000 1111 1111	Counts in decimal 127 126 1 0 -1	+1.984g +1.968g +0.016g 0.000g	+3.968g +3.936g +0.032g 0.000g	+7.936g +7.872g +0.064g 0.000g
Register Data (2's complement) 0111 1111 0111 1110 0000 0001 0000 0000 1111 1111	Counts in decimal 127 126 1 0 -1	+1.984g +1.968g +0.016g 0.000g -0.016g	+3.968g +3.936g +0.032g 0.000g -0.032g	+7.936g +7.872g +0.064g 0.000g -0.064g
Register Data (2's complement) 0111 1111 0111 1110 0000 0001 0000 0000 1111 1111	Counts in decimal 127 126 1 0 -1	+1.984g +1.968g +0.016g 0.000g -0.016g 	+3.968g +3.936g +0.032g 0.000g -0.032g 	+7.936g +7.872g +0.064g 0.000g -0.064g

Figure 2. Acceleration (g) Calculation

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

XOUT_L

X-axis accelerometer output least significant byte

R	R	R	R	R	R	R	R
XOUTD3	XOUTD2	XOUTD1	XOUTD0	Χ	Χ	Χ	Χ
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					l ²	C Address:	0x06h

XOUT H

X-axis accelerometer output most significant byte

R	R	R	R	R	R	R	R
XOUTD11	XOUTD10	XOUTD9	XOUTD8	XOUTD7	XOUTD6	XOUTD5	XOUTD4
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					l ²	C Address:	0x07h

YOUT L

Y-axis accelerometer output least significant byte

R	R	R	R	R	R	R	R
YOUTD3	YOUTD2	YOUTD1	YOUTD0	Χ	Χ	Χ	Χ
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					l ²	C Address:	0x08h

YOUT H

Y-axis accelerometer output most significant byte

R	R	R	R	R	R	R	R
YOUTD11	YOUTD10	YOUTD9	YOUTD8	YOUTD7	YOUTD6	YOUTD5	YOUTD4
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					²	C Address:	0x09h

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

ZOUT_L

Z-axis accelerometer output least significant byte

R	R	R	R	R	R	R	R
ZOUTD3	ZOUTD2	ZOUTD1	ZOUTD0	Χ	Χ	Χ	Χ
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					l ²	C Address:	0x0Ah

ZOUT_H

Z-axis accelerometer output most significant byte

R	R	R	R	R	R	R	R
ZOUTD11	ZOUTD10	ZOUTD9	ZOUTD8	ZOUTD7	ZOUTD6	ZOUTD5	ZOUTD4
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					l ²	C Address:	0x0Bh

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

DCST RESP

This register can be used to verify proper integrated circuit functionality. It always has a byte value of 0x55h unless the DCST bit in CTRL_REG3 is set. At that point this value is set to 0xAAh. The byte value is returned to 0x55h after reading this register.

R	R	R	R	R	R	R	R	
DCSTR7	DCSTR6	DCSTR5	DCSTR4	DCSTR3	DCSTR2	DCSTR1	DCSTR0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	01010101
					l ²	C Address:	0x0Ch	

WHO_AM_I

This register can be used for supplier recognition, as it can be factory written to a known byte value. The default value is 0x07h.

R	R	R	R	R	R	R	R	
WIA7	WIA6	WIA5	WIA4	WIA3	WIA2	WIA1	WIA0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	00000111
					l ²	² C Address:	0x0Fh	

STATUS REG

This register reports the status of the interrupt.

R	R	R	R	R	R	R	R
0	0	0	INT	0	0	0	0
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
				² C Address:	0x18h		

INT reports that new acceleration data is available (DRDY) when DRDYE =1 in CNTL_REG1.
This bit is cleared when acceleration data is read or the interrupt release register (1Ah) is read.

INT = 0 – new acceleration data not available

INT = 1 - new acceleration data available

INT REL

The status register and the physical interrupt pin (7) are cleared when reading this register.

R	R	R	R	R	R	R	R
Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			l ²	² C Address:	0x1Ah		

36 Thornwood Dr. – Ithaca, NY 14850 tel: 607-257-1080 – fax:607-257-1146 www.kionix.com - info@kionix.com

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

CTRL REG1

Read/write control register that controls the main feature set.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PC1	RES	DRDYE	GSEL1	GSEL0	0	0	0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	00000000
					I ² C Address: 0x1Bh			

PC1 controls the operating mode of the KXTJ9.

PC1 = 0 - stand-by mode

PC1 = 1 - operating mode

RES determines the performance mode of the KXTJ9. Note that to change the value of this bit, the PC1 bit must first be set to "0".

RES = 0 - low current, 8-bit valid

RES = 1- high current, 12-bit valid

DRDYE enables the reporting of the availability of new acceleration data on the interrupt. Note that to change the value of this bit, the PC1 bit must first be set to "0".

DRDYE = 0 – availability of new acceleration data not reflected on interrupt pin (7) DRDYE = 1- availability of new acceleration data reflected on interrupt pin (7)

GSEL1, GSEL0 selects the acceleration range of the accelerometer outputs per Table 9. Note that to change the value of this bit, the PC1 bit must first be set to "0".

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

GSEL1	GSEL0	Range
0	0	+/-2g
0	1	+/-4g
1	0	+/-8g
1	1	NA

Table 9. Selected Acceleration Range

CTRL_REG2

Read/write control register that provides more feature set control. Note that to properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to "0".

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
SRST	reserved	reserved	DCST	reserved	reserved	reserved	reserved	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	0XX0XXXX
				l ²	C Address:	0x1Dh		

SRST initiates software reset, which performs the RAM reboot routine. This bit will remain 1 until the RAM reboot routine is finished.

SRST = 0 - no action

SRST = 1 - start RAM reboot routine

DCST initiates the digital communication self-test function.

DCST = 0 - no action

 $DCST = 1 - sets ST_RESP$ register to 0xAAh and when ST_RESP is read, sets this bit to 0 and sets ST_RESP to 0x55h

Bits 0, 1, 2, 3, 5 and 6 are reserved. Their value should be preserved when writing to this register.

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

INT CTRL REG1

This register controls the settings for the physical interrupt pin (7). Note that to properly change the value of this register, the PC1 bit in CTRL REG1 must first be set to "0".

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	IEN	IEA	IEL	0	0	0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	00010000
					I ² C Address: 0x1Eh			

IEN enables/disables the physical interrupt pin (7)

IEN = 0 – physical interrupt pin (7) is disabled

IEN = 1 - physical interrupt pin (7) is enabled

IEA sets the polarity of the physical interrupt pin (7)

IEA = 0 – polarity of the physical interrupt pin (7) is active low

IEA = 1 - polarity of the physical interrupt pin (7) is active high

IEL sets the response of the physical interrupt pin (7)

IEL = 0 - the physical interrupt pin (7) latches until it is cleared by reading INT REL

IEL = 1 -the physical interrupt pin (7) will transmit one pulse with a period of 0.03 -

0.05ms

DATA_CTRL_REG

Read/write control register that configures the acceleration outputs. Note that to properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to "0".

R/W	/	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0		0	0	0	0	OSAA	OSAB	OSAC	Reset Value
Bit7	7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	0000010
	I ² C Address: 0				0x21h				

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

OSAA, OSAB, OSAC sets the output data rate (ODR) for the low-pass filtered acceleration outputs per Table 10.

OSAA	OSAB	OSAC	Output Data Rate	LPF Roll-Off
0	0	0	12.5Hz	6.25Hz
0	0	1	25Hz	12.5Hz
0	1	0	50Hz	25Hz
0	1	1	100Hz	50Hz
1	0	0	200Hz	100Hz
1	0	1	400Hz	200Hz
1	1	0	800Hz	400Hz
1	1	1	Does Not Exist	Does Not Exist

Table 10. LPF Acceleration Output Data Rate (ODR)

PART NUMBER:

KXTJ9-1005 Rev. 4 Sep-2011

Revision History

REVISION	DESCRIPTION	DATE
1	Initial Product Release	19-Jul-2011
2	Corrected Pin 6 Description. It should not Float. Must be connected to Vdd, IOVdd or GND.	26-Jul-2011
3	Correct low resolution current consumption in Table 2	02-Sep-2011
4	Removed reference to High Pass Filtered Outputs on Page 16	20-Sep-2011

"Kionix" is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. No license is granted by implication or otherwise under any patent or other rights of Kionix. The information contained herein is believed to be accurate and reliable but is not guaranteed. Kionix does not assume responsibility for its use or distribution. Kionix also reserves the right to change product specifications or discontinue this product at any time without prior notice. This publication supersedes and replaces all information previously supplied.