

KSZ9031MNX

Gigabit Ethernet Transceiver with GMII / MII Support

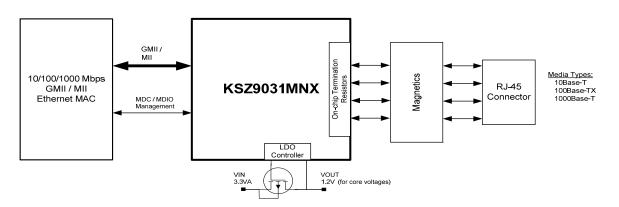
Data Sheet Rev. 0.13

General Description

The KSZ9031MNX is a completely integrated triple speed (10Base-T/100Base-TX/1000Base-T) Ethernet Physical Layer Transceiver for transmission and reception of data on standard CAT-5 unshielded twisted pair (UTP) cable.

The KSZ9031MNX offers the industry standard GMII/MII (Gigabit Media Independent Interface / Media Independent Interface) for connection to GMII/MII MACs in Gigabit Ethernet Processors and Switches for data transfer at 1000 Mbps or 10/100 Mbps speed.

The KSZ9031MNX reduces board cost and simplifies board layout by using on-chip termination resistors for the four differential pairs and by integrating an LDO controller to drive a low cost MOSFET to supply the 1.2V core.


The KSZ9031MNX offers diagnostic features to facilitate system bring-up and debugging in production testing and in product deployment. Parametric NAND tree support enables fault detection between KSZ9031MNX I/Os and board. LinkMD[®] TDR-based cable diagnostic provides identification of faulty copper cabling. Remote and local loopback functions provide verification of analog and digital data paths.

The KSZ9031MNX is available in a 64-pin, lead-free QFN package (See Ordering Information).

Features

- Single-chip 10/100/1000 Mbps IEEE 802.3 compliant Ethernet Transceiver
- GMII / MII standard interface with 3.3V/2.5V/1.8V tolerant I/Os
- Auto-Negotiation to automatically select the highest link up speed (10/100/100 Mbps) and duplex (half/full)
- On-chip termination resistors for the differential pairs
- On-chip LDO controller to support single 3.3V supply operation requires only external FET to generate 1.2V for the core
- Jumbo frame support up to 16KB
- 125 MHz Reference Clock Output
- Energy Detect Power Down Mode for reduced power consumption when cable not attached
- Energy Efficient Ethernet (EEE) support with Low Power Idle (LPI) mode and clock stoppage for 100Base-TX/1000Base-T and transmit amplitude reduction with 10Base-Te option
- Wake On LAN (WOL) support with robust custom packet detection

Functional Diagram

LinkMD is a registered trademark of Micrel, Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

More Features

- Programmable LED outputs for link, activity and speed
- Baseline Wander Correction
- LinkMD[®] TDR-based cable diagnostic for identification of faulty copper cabling
- Parametric NAND Tree support for fault detection between chip I/Os and board.
- Loopback modes for diagnostics
- Automatic MDI/MDI-X crossover for detection and correction of pair swap at all speeds of operation
- Automatic detection and correction of pair swaps, pair skew and pair polarity
- MDC/MDIO Management Interface for PHY register configuration
- Interrupt pin option
- Power down and power saving modes
- Operating Voltages

Core (DVDDL, AVDDL, AVDDL_PLL): 1.2V (external FET or regulator) VDD I/O (DVDDH): 3.3V, 2.5V, or 1.8V Transceiver (AVDDH):

3.3V, or 2.5V (commercial temp)

• Available in 64-pin QFN (8mm x 8mm) package

Applications

- Laser/Network Printer
- Network Attached Storage (NAS)
- Network Server
- Broadband Gateway
- Gigabit SOHO/SMB Router
- IPTV
- IP Set-top Box
- Game Console
- IP Camera
- Triple-play (data, voice, video) Media Center
- Media Converter

Part Number	Temperature Range	Package	Lead Finish	Wire Bonding	Description
KSZ9031MNXCA	0°C to 70°C	64-Pin QFN Pb-Free		Gold	GMII / MII, Commercial Temperature, Gold Wire Bonding
KSZ9031MNXIA ⁽¹⁾	–40°C to 85°C	64-Pin QFN	Pb-Free	Gold	GMII / MII, Industrial Temperature, Gold Wire Bonding
KSZ9031MNX-EVAL	0°C to 70°C	64-Pin QFN Pb-Fre			KSZ9031MNX Evaluation Board (Mounted with KSZ9031MNX device in commercial temperature)

Note:

1. Contact factory for lead time.

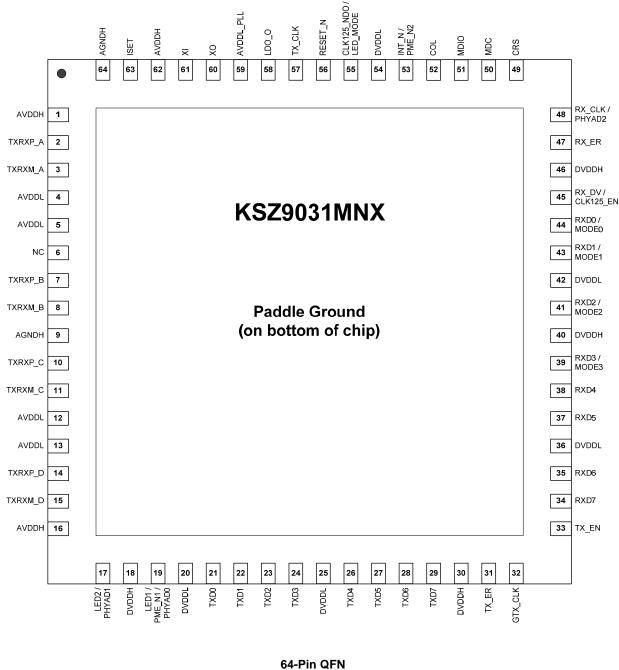
Ordering Information

Revision	Date	Summary of Changes
0.1	11/21/10	Preliminary Data sheet created
		Note for Energy Efficient Ethernet(EEE) registers to be added
		PHY registers 2h and 3h are TBD(will be added when values are determined
		Included 2.5V VDDIO parameters to Electrical Table
		New Boiler Plate
0.2	1/11/11	Removed core voltage TBD.
0.3	6/3/11	Cleaned up pin descriptions. Added new revised Register Descriptions.
		Added section on EEE and WoL. Cleaned up text in document Changed references in pictures from 9021 to 9031 Updated Pinout picture
0.4	6/6/11	Fixed up MMD Access Register Descriptions
0.5	6/7/11	Deleted many registers, strapping pin changes, misc edits, figure/table numbering Regenerated TOC, TOT, TOF
0.6	8/8/11	Misc clean up edits
0.7	6/9/11	Cleaned up registers, tables, and re-indexed TOC, TOT, TOF.
0.8	6/14/11	Made edits from items found while doing the RN part data sheet.
0.9	6/16/11	Deleted some register bits per design review on 6/15/11. Made other changes that resulted from that.
0.10	6/17/11	Made reserved; Device ID = 28h, Reg. 0h, bits [14:12]. Regenerated TOC, TOT, TOF
0.11	7/05/11	Added EDPD feature Added WOL Customized Packet[1:0] Received CRC Registers Added WOL Status Registers
0.12	5/23/12	Re-formatted and cleaned up data sheet.
		Corrected ISET resistor value.
		Added power-up requirements.
		Updated Reference Circuits – LED Strap-in Pins section.
		Added current / power consumption section.
		Changed part number from KSZ9031GN to KSZ9031MNX through data sheet.
		Updated Ordering Information.
0.13	8/17/12	Updated 2.5V AVDDH support to commercial temp only.
		Corrected V _{SET} voltage for R(I _{SET}) resistor in Electrical Characteristic table.
		Updated MODE[3:0] pin strapping definition.
		Updated Wake-on-LAN section.
		Updated current / power consumption values.
		Added LinkMD [®] Cable Diagnostic section and register description.
		Added 10Base-Te option.
		Re-formatted and cleaned up Register Map.
		Added power-up timing requirements.
		Updated EEE section.
		Added Recommended Land Pattern.
		Updated Absolute Maximum Ratings and Electrical Characteristics.
		Added drive range for LDO_O output pin.
		Added internal pull-up values for MDC, MDIO and RESET_N pins.

Revision	Date	Summary of Changes
		Updated description for PHY address 0h as unique PHY address only.
		Added typical gigabit magnetic interface circuit and description.
		Updated and expanded compatible magnetic list.
		Updated values for thermal resistances.
		Added loopback mode descriptions.

Contents

List of Tables8Pin Configuration9Pin Description10Strapping Options16Functional Overview17Functional Description:10Base-TX Transceiver18100Base-TX Transmit100Base-TX Receive18Scrambler/De-Scrambler (100Base-TX only)1810Base-T Receive18Strapping Options19Analog Echo Cancellation Circuit19Analog Choverter (ADC)19Timing Recovery Circuit20Adaptive Equalizer20Trellis Encoder and Decoder20Functional Description:200Auto MDI/MDI-X20Auto MDI/MDI-X20Auto MDI/MDI-X20Auto MDI/MDI-X20Auto MDI/MDI-X20Auto MDI/MDI-X20Auto Negation21Wave Shaping, Slew Rate Control and Partial Response21Mil Signal Definition24GMII Signal Definition24MII Signal Definition26MII Signal Definition26MII Signal Definition26MII Mangement (MIIM) Interface27MII Mangement (MIIM) Interface27MII Signal Definition26MII Mangement (MIIM) Interface27MII Signal Definition26MII Mangement (MIIM) Interface27MII Signal Definition26MII Signal Definition26MII Signal Definition26MII Signal Definition26 <th>General Description</th> <th>1</th>	General Description	1
Applications 2 Ordering Information 2 Revision History 3 Contents 5 List of Figures 7 List of Tables 8 Pin Configuration 9 Fin Description 10 Strapping Options 16 Functional Description: 17 Functional Description: 18 100Base-TX Transmit. 18 100Base-TX Receive 18 100Base-TX Receive 18 100Base-TX Receive 18 100Base-T Transmit. 18 10Base-T Transmit. 18 10Base-T Receive 18 Functional Description: 100Base-TX only) 18 10Base-T Transmit. 18 10Base-T Transmit. 18 10Base-T Receive 18 Functional Description: 100Base-TX only) 18 10Base-T Transceiver 19 Analog Echo Cancellation Circuit. 19 Analog Echo Cancellation Circuit. 20 Adaptive Equalizer 20 Thuting Recovery C	Features	1
Ordering Information 2 Revision History 3 Contents 5 List of Figures 7 List of Tables 7 Pin Configuration 9 Pin Description 10 Strapping Options 16 Functional Overview 17 Functional Overview 17 Functional Overview 17 Functional Overview 18 100Base-TX Transmit 18 10Base-TX Transmit 18 10Base-TX Transmit 18 10Base-T Receive 19 Antomatic Gain Control (AGC) 19 Analog-to-Digital Converter (ADC) 19 Analog-to-Digital Converter (ADC) 19 Trelits Encoder and Decoder 20 Adative Equalizer 20 Quart Moli/MDI-X 20 Purctional Description: Additional 10/100/1000 PHY Features 20 Put- Swaping, Slew Rate Control and Partial	More Features	2
Revision History 3 Contents 5 List of Figures 7 List of Tables 8 Pin Configuration 9 Pin Description 10 Strapping Options 16 Functional Description: 10Base-TX transmit 100Base-TX Receive 18 100Base-TX Receive 18 10Base-T Transmit 19 Anatog Echo Cancellation Circuit 19 Anatoget-oDigital Converter (ADC) 19 Trelis Encoder and Decoder 20 Functional Description: Additional 10/100/1000 PHY Features 20 Pair-Swap, Alignment, and Polarity Check 21 Wave Shaping, Siew	Applications	2
Contents5List of Figures7List of Tables8Pin Configuration9Pin Description10Strapping Options16Functional Description: 10Base-TX Transceiver17Functional Description: 10Base-TX Iransceiver18100Base-TX Receive18Scrambler/De-Scrambler (100Base-TX only)1810Base-T Receive1810Base-T Receive1810Base-T Receive1810Base-T Receive1810Base-T Receive19Analog Echo Cancellation Circuit19Analog Echo Cancellation Circuit19Analog Echo Cancellation Circuit20Trelits Encoder and Decoder20Functional Description: Additional 10/100/1000 PHY Features20Auto MDI/MDI-X20Auto MDI/MDI-X20Auto Negotiation21Wave Shaping, Silew Rate Control and Partial Response21PLL Clock Synthesizer21Mult Interface23GMII Signal Definition24Mill Interface26Mil Signal Definition26Mil Signal Definition26Mil Signal Definition26Mil Signal Definition26Mil Signal Diagram24Mil Signal Definition26Mil Signal Diagram26Mil Signal Diagram26Mil Signal Diagram26Mil Signal Diagram26Mil Signal Definition26Mil Signal Definition </td <td>Ordering Information</td> <td>2</td>	Ordering Information	2
List of Figures	Revision History	3
List of Tables 8 Pin Configuration 9 Pin Description 10 Strapping Options 16 Functional Description: 10Base-TX Transmit 100Base-TX rensmit 18 100Base-TX rensmit 18 10Base-TX rensmit 18 10Base-TX receive 18 10Base-T Receive 18 10Base-T Receive 18 10Base-T Receive 18 Functional Description: 100Base-T rensmit 10Base-T Receive 18 Functional Description: 100Base-T rensmit 10Base-T Receive 18 Functional Description: 19 Analog-to-Digital Converter (ADC) 19 Analog-to-Digital Converter (ADC) 19 Trellis Encoder and Decoder 20 Auto MDI/MDI-X 20 Auto MDI/MDI-X 20 Auto MDI/MDI-X 20 PLL Clock Synthesizer 20 Mull Interface 21 PLL Clock Synthesizer 21 PLL Clock Synthesizer 21 MII Signal Definition </td <td>Contents</td> <td>5</td>	Contents	5
Pin Configuration 9 Pin Description 10 Strapping Options 16 Functional Overview 17 Functional Description: 10Base-TX transmit. 100Base-TX Receive 18 100Base-TX Receive 18 Scrambler/De-Scrambler (100Base-TX only) 18 10Base-T Receive 18 10Base-T ransmit 18 10Base-T Receive 18 Punctional Description: 100Base-TX ransmit 10Base-T Cancellation Circuit 19 Analog Echo Cancellation Circuit 19 Automatic Gain Control (AGC) 19 Analog-to-Digital Converter (ADC) 19 Timing Recovery Circuit. 20 Adaptive Equalizer 20 Auto MDI/MDI-X 20 Pair Swap, Alignment, and Polarity Check. 21 PL Clock Synthesizer 21 MII Interface. 23 GMII Signal Definition 24 GMII Signal Definition 24 MII Interface. 25 MII Signal Definition 26 MII Signal Definition <t< td=""><td>List of Figures</td><td>7</td></t<>	List of Figures	7
Pin Description 10 Strapping Options 16 Functional Description: 10Base-TX Transceiver 18 100Base-TX Receive 18 100Base-TX Receive 18 Scrambler/De-Scrambler (100Base-TX only) 18 10Base-T Transmit 19 Analog Echo Cancellation Circuit 19 Analog Echo Cancellation Circuit 19 Analog Echo Cancellation Circuit 20 Adaptive Equalizer 20 Trelis Encoder and Decoder 20 Functional Description: Additional 10/100/1000 PHY Features 20 Pair- Swap, Alignment, and Polarity Check. 21 Wave Shaping, Slew Rate Control and Partial Response. 21 PLL Clock Synthesizer 21 Mult Interface 22 Mill Signal Definiti	List of Tables	8
Strapping Options 16 Functional Overview 17 Functional Description: 10Base-T/100Base-TX Transceiver 18 100Base-TX Transmit 18 100Base-TX Transmit 18 100Base-TX receive 18 Scrambler/De-Scrambler (100Base-TX only) 18 10Base-T Receive 18 10Base-T Receive 18 10Base-T Receive 18 Punctional Description: 1000Base-T Transceiver 19 Analog Echo Cancellation Circuit 19 Analog-to-Digital Converter (ADC) 19 Timing Recovery Circuit. 20 Adaptive Equalizer 20 Trellis Encoder and Decoder 20 Pair-Swap, Alignment, and Polarity Check. 21 Pul Clock Synthesizer 21 PL Clock Synthesizer 21 MUNMDI-X 20 Pair-Swap, Alignment, and Polarity Check. 21 PL Clock Synthesizer 21 MU Nol-X 20 Mul Interface 23 GMII Signal Definition 24	Pin Configuration	9
Functional Overview 17 Functional Description: 10Base-T/100Base-TX Transceiver 18 100Base-TX Transmit 18 100Base-TX Receive 18 Scrambler/De-Scrambler (100Base-TX only) 18 10Base-T Receive 18 Strambler/De-Scrambler (100Base-TX only) 18 10Base-T Receive 18 Functional Description: 1000Base-T Transceiver 19 Analog Echo Cancellation Circuit 19 Analog Echo Cancellation Circuit 19 Analog-to-Digital Converter (ADC) 19 Timing Recovery Circuit 20 Adaptive Equalizer. 20 Trellis Encoder and Decoder 20 Functional Description: Additional 10/100/1000 PHY Features 20 Auto-Negotiation 21 Wave Shaping, Slew Rate Control and Partial Response 21 PLL Clock Synthesizer 21 GMII Signal Definition 24 GMII Signal Definition 24 MII Management (MIIM) Interface 27 Interface 27 Interface 26	Pin Description	10
Functional Description: 10Base-TX Transceiver 18 100Base-TX Receive 18 10Base-TX Receive 18 Scrambler/De-Scrambler (100Base-TX only) 18 10Base-T Receive 18 10Base-T Receive 18 Functional Description: 1000Base-T Transceiver 19 Analog Echo Cancellation Circuit 19 Analog-to-Digital Converter (ADC) 19 Analog-to-Digital Converter (ADC) 19 Andarg-to-Digital Converter (ADC) 19 Andag-to-Digital Converter (ADC) 19 Adaptive Equalizer 200 Trellis Encoder and Decoder 200 Functional Description: Additional 10/100/1000 PHY Features 200 Pair-Swap, Alignment, and Polarity Check 21 Wave Shaping, Slew Rate Control and Partial Response. 21 Vuato-Negotiation 21 GMII Signal Definition 24 MII Interface 25 MII Signal Definition 26	Strapping Options	16
100Base-TX Transmit. 18 100Dase-TX Receive 18 Scrambler/De-Scrambler (100Base-TX only) 18 10Base-T Transmit 18 10Base-T Receive 18 10Base-T Receive 18 10Base-T Receive 18 10Base-T Receive 19 Analog Echo Cancellation Circuit 19 Analog-to-Digital Converter (ADC) 19 Analog-to-Digital Converter (ADC) 19 Timing Recovery Circuit 20 Adaptive Equalizer 20 Trellis Encoder and Decoder 20 Functional Description: Additional 10/100/1000 PHY Features 20 Auto MDI/MDI-X 20 Pair- Swap, Alignment, and Polarity Check 21 PLL Clock Synthesizer 21 PLL Clock Synthesizer 21 MII Signal Definition 24 GMII Signal Definition 26 MII Signal Definition 26 MII Signal Definition 26 MII Management (MIIM) Interface 27 Iter D Mode 28 Single LED Mode 28 Locol (Digital		
100Base-TX Receive 18 Scrambler/De-Scrambler (100Base-TX only) 18 10Base-T Transmit 18 10Base-T Receive 18 Functional Description: 100Base-T Transceiver 19 Analog Echo Cancellation Circuit 19 Analog t-o Digital Converter (ADC) 19 Timing Recovery Circuit. 20 Adaptive Equalizer 20 Trellis Encoder and Decoder 20 Functional Description: Adultional 10/100/1000 PHY Features 20 Auto MDI/MDI-X 20 Pair Swap, Alignment, and Polarity Check 21 PLL Clock Synthesizer 21 PLL Clock Synthesizer 21 GMII Signal Definition 24 GMII Signal Definition 26 MII Mignal Definition 26 MII Signal Definition 26 MII Management (MIIM) Interface 26 MII Signal Definition 26 MII Signal Definition 26 MII Management (MIIM) Interface 28 Single LED Mode 28 Tri-color Dual LED Mode 28 Local		
Scrambler/De-Scrambler (100Base-TX only) 18 10Base-T Transmit 18 10Base-T Receive 18 10Base-T Receive 18 10Base-T Receive 18 10Base-T Receive 19 Analog Echo Cancellation Circuit 19 Analog Echo Cancellation Circuit 19 Analog-to-Digital Converter (ADC) 19 Triming Recovery Circuit 20 Adaptive Equalizer 20 Trellis Encoder and Decoder 20 Auto MDI/MDI-X 20 Pair: Swap, Alignment, and Polarity Check 21 Wave Shaping, Slew Rate Control and Partial Response 21 PLL Clock Synthesizer 21 Auto-Negotiation 21 GMII Signal Definition 24 GMII Signal Definition 26 MII Signal Definition 26 MII Interface 25 MII Signal Definition 26 MII Interface 25 MII Signal Definition 26 MII Signal Definition 26 MII Managemen		
10Base-T Transmit 18 10Base-T Receive 18 Functional Description: 1000Base-T Transceiver 19 Analog Echo Cancellation Circuit 19 Analog to Concellation Circuit 19 Analog-to-Digital Converter (ADC) 19 Timing Recovery Circuit 20 Adaptive Equalizer 20 Trellis Encoder and Decoder 20 Functional Description: Additional 10/100/1000 PHY Features 20 Auto MDI/MDI-X 20 PlL Clock Synthesizer 21 Wave Shaping, Slew Rate Control and Partial Response 21 PLL Clock Synthesizer 21 GMII Signal Definition 24 GMII Signal Definition 26 MII Interface 25 MII Signal Definition 26 MII Signal Definition 26 MII Signal Definition 26 MII Signal Diagram 26 MII Signal Diagram 28 Single LED Mode<		
10Base-T Receive 18 Functional Description: 1000Base-T Transceiver 19 Analog Echo Cancellation Circuit 19 Automatic Gain Control (AGC) 19 Analog-to-Digital Converter (ADC) 19 Timing Recovery Circuit 20 Adaptive Equalizer 20 Trellis Encoder and Decoder 20 Functional Description: Additional 10/100/1000 PHY Features 20 Auto MDI/MDI-X 20 Auto MDI/MDI-X 20 Auto MDI/MDI-X 20 Pair- Swap, Alignment, and Polarity Check. 21 Wave Shaping, Slew Rate Control and Partial Response. 21 PLL Clock Synthesizer 21 GMII Signal Definition 21 GMII Signal Definition 24 GMII Signal Definition 24 MII Interface 25 MII Signal Definition 26		
Functional Description: 1000Base-T Transceiver 19 Analog Echo Cancellation Circuit 19 Automatic Gain Control (AGC) 19 Analog-to-Digital Converter (ADC) 19 Timing Recovery Circuit. 20 Adaptive Equalizer 20 Trellis Encoder and Decoder 20 Functional Description: Additional 10/100/1000 PHY Features 20 Pair- Swap, Alignment, and Polarity Check. 21 PLL Clock Synthesizer 21 PLL Clock Synthesizer 21 GMII Interface 23 GMII Signal Definition 24 MII Signal Diagram 24 MII Management (MIIM) Interface 27 LED Mode 28 Single LED Mode 28 Single LED Mode 28 Single LED Mode 28 Remote (Analog) Loopback 29 Remote (Analog) Loopback 30		
Analog Echo Cancellation Circuit 19 Automatic Gain Control (AGC) 19 Analog-to-Digital Converter (ADC) 19 Timing Recovery Circuit. 20 Adaptive Equalizer 20 Trellis Encoder and Decoder 20 Functional Description: Additional 10/100/1000 PHY Features 20 Auto MDI/MDI-X 20 Pair- Swap, Alignment, and Polarity Check. 21 Wave Shaping, Slew Rate Control and Partial Response. 21 PLL Clock Synthesizer 21 Auto-Negotiation 21 GMII Interface 23 GMII Signal Definition 24 MII Interface 25 MII Signal Definition 26 MII Signal Definition 26 MII Signal Definition 26 MII Signal Definition 26 MII Management (MIIM) Interface 27 LED Mode 28 Single LED Mode 28 Tri-color Dual LED Mode 28 Local (Digital) Loopback 29 Local (Digital) Loopback 29		
Automatic Gain Control (AGC) 19 Analog-to-Digital Converter (ADC) 19 Timing Recovery Circuit 20 Adaptive Equalizer 20 Trellis Encoder and Decoder 20 Functional Description: Additional 10/100/1000 PHY Features 20 Auto MDI/MDI-X 20 Pair- Swap, Alignment, and Polarity Check 21 Wave Shaping, Slew Rate Control and Partial Response 21 PLL Clock Synthesizer 21 Auto-Negotiation 21 GMII Interface 23 GMII Signal Definition 24 GMII Signal Definition 26 MII Signal Definition 26 MII Signal Diagram 26 MII Maragement (MIIM) Interface 27 Interrupt (INT_N) 27 LED Mode 28 Single LED Mode 28 Single LED Mode 28 Virgle LED Mode 28 Single LED Mode 28 Market (Digital) Loopback 29 Remote (Analog) Loopback 30	•	
Analog-to-Digital Converter (ADC) 19 Timing Recovery Circuit 20 Adaptive Equalizer 20 Trellis Encoder and Decoder 20 Functional Description: Additional 10/100/1000 PHY Features 20 Auto MDI/MDI-X 20 Pair- Swap, Alignment, and Polarity Check 21 Wave Shaping, Slew Rate Control and Partial Response 21 PLL Clock Synthesizer 21 MII Interface 23 GMII Signal Definition 24 GMII Signal Definition 24 MII Interface 25 MII Signal Definition 26 MII Management (MIIM) Interface 27 Interrupt (INT_N) 27 LED Mode 28 Single LED Mode 28 Single LED Mode 28 Arri-color Dual LED Mode 28 Loopback Mode 29 Local (Digital) Loopback 29 Remote (Analog) Loopback <td></td> <td></td>		
Timing Recovery Circuit. 20 Adaptive Equalizer. 20 Trellis Encoder and Decoder. 20 Functional Description: Additional 10/100/1000 PHY Features. 20 Auto MDI/MDI-X. 20 Pair- Swap, Alignment, and Polarity Check. 21 Wave Shaping, Slew Rate Control and Partial Response. 21 PLL Clock Synthesizer. 21 Auto-Negotiation 21 GMII Interface. 23 GMII Signal Definition 24 GMII Signal Definition 24 MII Interface 25 MII Signal Definition 26 MII Signal Diagram 26 MII Management (MIIM) Interface 27 Interrupt (INT_N) 27 LED Mode 28 Single LED Mode 28 Tri-color Dual LED Mode 28 Loopback Mode 29 Local (Digital) Loopback 29 Remote (Analog) Loopback 30		
Adaptive Equalizer 20 Trellis Encoder and Decoder 20 Functional Description: Additional 10/100/1000 PHY Features 20 Auto MDI/MDI-X 20 Pair- Swap, Alignment, and Polarity Check. 21 Wave Shaping, Slew Rate Control and Partial Response. 21 PLL Clock Synthesizer. 21 Auto-Negotiation 21 GMII Interface. 23 GMII Signal Definition 24 MII Signal Diagram 24 MII Signal Definition 26 MII Signal Definition 26 MII Signal Definition 26 MII Signal Definition 26 MII Signal Diagram 26 MII Signal Definition 26 MII Signal Diagram 26 MII Signal Diagram 26 MII Management (MIIM) Interface. 27 IteD Mode 28 Single LED Mode 28 Tri-color Dual LED Mode 28 Local (Digital) Loopback 29 Local (Digital) Loopback 29 Remote (Analog) Loopback 30		
Trellis Encoder and Decoder 20 Functional Description: Additional 10/100/1000 PHY Features 20 Auto MDI/MDI-X 20 Pair- Swap, Alignment, and Polarity Check. 21 Wave Shaping, Slew Rate Control and Partial Response. 21 PLL Clock Synthesizer 21 Auto-Negotiation 21 GMII Interface 23 GMII Signal Definition 24 MII Signal Diagram 24 MII Signal Definition 26 MII Signal Diagram 26 MII Management (MIIM) Interface 27 Interrupt (INT_N) 27 LED Mode 28 Single LED Mode 28 Loopback Mode 29 Local (Digital) Loopback 29 Remote (Analog) Loopback 30	o	
Functional Description: Additional 10/100/1000 PHY Features. 20 Auto MDI/MDI-X. 20 Pair- Swap, Alignment, and Polarity Check. 21 Wave Shaping, Slew Rate Control and Partial Response. 21 PLL Clock Synthesizer. 21 Auto-Negotiation 21 GMII Interface. 23 GMII Signal Definition 24 GMII Signal Diagram 24 MII Interface. 25 MII Signal Definition 26 MII Signal Definition 26 MII Signal Definition 26 MII Signal Diagram 26 MII Signal Diagram 26 MII Management (MIIM) Interface 27 Interrupt (INT_N). 27 LED Mode 28 Single LED Mode 28 Tri-color Dual LED Mode 28 Local (Digital) Loopback 29 Remote (Analog) Loopback 30		
Auto MDI/MDI-X20Pair- Swap, Alignment, and Polarity Check.21Wave Shaping, Slew Rate Control and Partial Response.21PLL Clock Synthesizer.21Auto-Negotiation21GMII Interface.23GMII Signal Definition24GMII Signal Diagram24MII Interface.25MII Signal Definition26MII Signal Definition26MII Signal Definition26MII Signal Definition26MII Signal Diagram26MII Signal Diagram26MII Management (MIIM) Interface.27Interrupt (INT_N)27LED Mode28Single LED Mode28Tri-color Dual LED Mode28Local (Digital) Loopback29Remote (Analog) Loopback30		
Pair- Swap, Alignment, and Polarity Check.21Wave Shaping, Slew Rate Control and Partial Response.21PLL Clock Synthesizer.21Auto-Negotiation21GMII Interface.23GMII Signal Definition24GMII Signal Diagram24MII Interface25MII Signal Definition26MII Signal Diagram26MII Signal Diagram26MII Signal Diagram26MII Signal Diagram26MII Signal Diagram26MII Signal Diagram26MII Management (MIIM) Interface27Interrupt (INT_N)27LED Mode28Single LED Mode28Tri-color Dual LED Mode28Loopback Mode29Local (Digital) Loopback29Remote (Analog) Loopback30	•	
Wave Shaping, Slew Rate Control and Partial Response.21PLL Clock Synthesizer.21Auto-Negotiation21GMII Interface.23GMII Signal Definition24GMII Signal Diagram24MII Interface25MII Signal Definition26MII Signal Diagram26MII Signal Diagram26MII Signal Diagram26MII Management (MIIM) Interface27Interrupt (INT_N)27LED Mode28Single LED Mode28Tri-color Dual LED Mode28Local (Digital) Loopback29Remote (Analog) Loopback30		
PLL Clock Synthesizer 21 Auto-Negotiation 21 GMII Interface 23 GMII Signal Definition 24 GMII Signal Diagram 24 MII Interface 25 MII Signal Definition 26 MII Signal Diagram 26 MII Signal Diagram 26 MII Management (MIIM) Interface 27 Interrupt (INT_N) 27 LED Mode 28 Single LED Mode 28 Tri-color Dual LED Mode 28 Loopback Mode 29 Local (Digital) Loopback 29 Remote (Analog) Loopback 30		
Auto-Negotiation 21 GMII Interface 23 GMII Signal Definition 24 GMII Signal Diagram 24 MII Interface 25 MII Signal Definition 26 MII Signal Diagram 26 MII Signal Diagram 26 MII Management (MIIM) Interface 27 Interrupt (INT_N) 27 LED Mode 28 Single LED Mode 28 Loopback Mode 28 Local (Digital) Loopback 29 Remote (Analog) Loopback 30		
GMII Interface.23GMII Signal Definition24GMII Signal Diagram24MII Interface25MII Signal Definition26MII Signal Diagram26MII Management (MIIM) Interface27Interrupt (INT_N)27LED Mode28Single LED Mode28Tri-color Dual LED Mode28Loopback Mode29Local (Digital) Loopback29Remote (Analog) Loopback30		
GMII Signal Definition24GMII Signal Diagram24MII Interface25MII Signal Definition26MII Signal Diagram26MII Management (MIIM) Interface27Interrupt (INT_N)27LED Mode28Single LED Mode28Tri-color Dual LED Mode28Local (Digital) Loopback29Remote (Analog) Loopback30	5	
GMII Signal Diagram24MII Interface25MII Signal Definition26MII Signal Diagram26MII Management (MIIM) Interface27Interrupt (INT_N)27LED Mode28Single LED Mode28Tri-color Dual LED Mode28Loopback Mode29Local (Digital) Loopback29Remote (Analog) Loopback30		
MII Interface 25 MII Signal Definition 26 MII Signal Diagram 26 MII Management (MIIM) Interface 27 Interrupt (INT_N) 27 LED Mode 28 Single LED Mode 28 Tri-color Dual LED Mode 28 Loopback Mode 29 Local (Digital) Loopback 29 Remote (Analog) Loopback 30	0	
MII Signal Definition26MII Signal Diagram26MII Management (MIIM) Interface27Interrupt (INT_N)27LED Mode28Single LED Mode28Tri-color Dual LED Mode28Loopback Mode29Local (Digital) Loopback29Remote (Analog) Loopback30		
MII Signal Diagram 26 MII Management (MIIM) Interface 27 Interrupt (INT_N) 27 LED Mode 28 Single LED Mode 28 Tri-color Dual LED Mode 28 Loopback Mode 29 Local (Digital) Loopback 29 Remote (Analog) Loopback 30		
MII Management (MIIM) Interface 27 Interrupt (INT_N) 27 LED Mode 28 Single LED Mode 28 Tri-color Dual LED Mode 28 Loopback Mode 29 Local (Digital) Loopback 29 Remote (Analog) Loopback 30		
Interrupt (INT_N) 27 LED Mode 28 Single LED Mode 28 Tri-color Dual LED Mode 28 Loopback Mode 29 Local (Digital) Loopback 29 Remote (Analog) Loopback 30		
LED Mode 28 Single LED Mode 28 Tri-color Dual LED Mode 28 Loopback Mode 29 Local (Digital) Loopback 29 Remote (Analog) Loopback 30		
Single LED Mode 28 Tri-color Dual LED Mode 28 Loopback Mode 29 Local (Digital) Loopback 29 Remote (Analog) Loopback 30	\cdot \cdot $ \cdot$	
Tri-color Dual LED Mode		
Loopback Mode 29 Local (Digital) Loopback 29 Remote (Analog) Loopback 30		
Local (Digital) Loopback		
Remote (Analog) Loopback	•	


NAND Tree Support	
Power Management	
Energy Detect Power Down Mode	
Software Power Down Mode	
Chip Power Down Mode	
Energy Efficient Ethernet (EEE)	
Transmit Direction Control (MAC-to-PHY)	
Receive Direction Control (PHY-to-MAC)	
Registers Associated with EEE	35
Wake-on-LAN	
Magic Packet Detection	35
Customized Packet Detection	
Link Status Change Detection	
Typical Current / Power Consumption	
Transceiver (3.3V), Digital I/Os (3.3V)	
Transceiver (3.3V), Digital I/Os (1.8V)	
Transceiver (2.5V), Digital I/Os (2.5V)	
Transceiver (2.5V), Digital I/Os (1.8V)	
Register Map	
Standard Registers	41
IEEE Defined Registers – Descriptions	
Vendor Specific Registers – Descriptions	
MMD Registers	51
MMD Registers – Descriptions	
Absolute Maximum Ratings ⁽¹⁾	
Operating Ratings ⁽²⁾	
Electrical Characteristics ⁽³⁾	60
Timing Diagrams	
GMII Transmit Timing	63
GMII Receive Timing	
MII Transmit Timing	
MII Receive Timing	
Auto-Negotiation Timing	
MDC/MDIO Timing	
Power-up / Power-down / Reset Timing	
Reset Circuit	
Reference Circuits – LED Strap-in Pins	
Reference Clock – Connection and Selection	72
Magnetic – Connection and Selection	
Recommended Land Pattern	
Package Information	76

List of Figures

Figure 1. KSZ9031MNX Block Diagram	17
Figure 2. KSZ9031MNX 1000Base-T Block Diagram - Single Channel	
Figure 3. Auto-Negotiation Flow Chart	
Figure 4. KSZ9031MNX GMII Interface	24
Figure 5. KSZ9031MNX MII Interface	26
Figure 6. Local (Digital) Loopback	29
Figure 7. Remote (Analog) Loopback	30
Figure 8. LPI Mode (Refresh transmissions and Quiet periods)	33
Figure 9. LPI Transition – GMII (1000Mbps) Transmit	
Figure 10. LPI Transition – MII (100Mbps) Transmit	
Figure 11. LPI Transition – GMII (1000Mbps) Receive	
Figure 12. LPI Transition – MII (100Mbps) Receive	
Figure 13. GMII Transmit Timing - Data Input to PHY	
Figure 14. GMII Receive Timing - Data Input to MAC	
Figure 15. MII Transmit Timing - Data Input to PHY	
Figure 16. MII Receive Timing - Data Input to MAC	
Figure 17. Auto-Negotiation Fast Link Pulse (FLP) Timing	
Figure 18. MDC/MDIO Timing	
Figure 19. Power-up / Power-down / Reset Timing	
Figure 20. Recommended Reset Circuit	
Figure 21. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output	
Figure 22. Reference Circuits for LED Strapping Pins	
Figure 23. 25 MHz Crystal / Oscillator Reference Clock Connection	
Figure 24. Typical Gigabit Magnetic Interface Circuit	
Figure 25. Recommended Land Pattern, 64-Pin (8mm x 8mm) QFN	75

List of Tables

Pin Configuration

64-Pin QFN (Top View)

Pin Description

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function
1	AVDDH	Р	3.3V / 2.5V (commercial temp only) analog V_{DD}
2	TXRXP_A	I/O	Media Dependent Interface[0], positive signal of differential pair
			1000Base-T Mode:
			TXRXP_A corresponds to BI_DA+ for MDI configuration and BI_DB+ for MDI-X configuration, respectively.
			10Base-T / 100Base-TX Mode:
			TXRXP_A is the positive transmit signal (TX+) for MDI configuration and the positive receive signal (RX+) for MDI-X configuration, respectively.
3	TXRXM_A	I/O	Media Dependent Interface[0], negative signal of differential pair
			1000Base-T Mode:
			TXRXM_A corresponds to BI_DA- for MDI configuration and BI_DB- for MDI-X configuration, respectively.
			10Base-T / 100Base-TX Mode:
			TXRXM_A is the negative transmit signal (TX-) for MDI configuration and the negative receive signal (RX-) for MDI-X configuration, respectively.
4	AVDDL	Р	1.2V analog V _{DD}
5	AVDDL	Р	1.2V analog V _{DD}
6	NC	-	No connect
7	TXRXP_B	I/O	Media Dependent Interface[1], positive signal of differential pair
			1000Base-T Mode:
			TXRXP_B corresponds to BI_DB+ for MDI configuration and BI_DA+ for MDI-X configuration, respectively.
			10Base-T / 100Base-TX Mode:
			TXRXP_B is the positive receive signal (RX+) for MDI configuration and the positive transmit signal (TX+) for MDI-X configuration, respectively.
8	TXRXM_B	I/O	Media Dependent Interface[1], negative signal of differential pair
			1000Base-T Mode:
			TXRXM_B corresponds to BI_DB- for MDI configuration and BI_DA- for MDI-X configuration, respectively.
			10Base-T / 100Base-TX Mode:
			TXRXM_B is the negative receive signal (RX-) for MDI configuration and the negative transmit signal (TX-) for MDI-X configuration, respectively.
9	AGNDH	Gnd	Analog ground
10	TXRXP_C	I/O	Media Dependent Interface[2], positive signal of differential pair
			1000Base-T Mode:
			TXRXP_C corresponds to BI_DC+ for MDI configuration and BI_DD+ for MDI-X configuration, respectively.
			10Base-T / 100Base-TX Mode:
			TXRXP_C is not used.
11	TXRXM_C	I/O	Media Dependent Interface[2], negative signal of differential pair
			1000Base-T Mode:
			TXRXM_C corresponds to BI_DC- for MDI configuration and BI_DD- for MDI-X configuration, respectively.
			10Base-T / 100Base-TX Mode:
			TXRXM_C is not used.

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function							
12	AVDDL	Р	1.2V analog V _{DD}							
13	AVDDL	Р	1.2V analog V _{DD}							
14	TXRXP_D	I/O	Media Dependent Inter	face[3],	posit	ive sig	nal of differ	ential pair		
			1000Base-T Mode:							
			TXRXP_D corr MDI-X configur				for MDI co	nfiguration	and BI_DC+	- for
			10Base-T / 100Base-T	X Mode:						
			TXRXP_D is no	ot used.						
15	TXRXM_D	I/O	Media Dependent Inter	face[3], i	nega	tive się	gnal of diffe	rential pair		
			1000Base-T Mode:							
			TXRXM_D corr MDI-X configur				for MDI co	nfiguration a	and BI_DC-	for
			10Base-T / 100Base-T	X Mode:						
			TXRXM_D is n	ot used.						
16	AVDDH	Р	3.3V / 2.5V (commercia	al temp c	only)	analog	, V _{DD}			
17	LED2 /	I/O	LED2 Output: Prog	rammab	le LE	D2 Ou	utput /			
PHYAD1			powe	r-up / re	set p	rocess	s sampled a s to determi ons" section	ne the value	during the e of PHYAD	[1].
		The LED2 pin is programmed by the LED_MODE strapping option (pin 55, and is defined as follows:								
			Single LED Mode							
			Link	Pin St	ate	LED	Definition	7		
			Link off	Н		OFF				
			Link on (any speed)	L		ON				
			Tri-color Dual LED Mo	ode						
					Pin State		LED Defi	nition		
			Link / Activity		LE	D2	LED1	LED2	LED1	
			Link off		Н		Н	OFF	OFF	
			1000 Link / No Activity	y	L		Н	ON	OFF	ĺ
			1000 Link / Activity (RX, TX)			ggle	Н	Blinking	OFF	
			100 Link / No Activity				L	OFF	ON	ĺ
			100 Link / Activity (RX	(, TX)	Н		Toggle	OFF	Blinking	ĺ
			10 Link / No Activity		L		L	ON	ON	
					То	ggle	Toggle	Blinking	Blinking	ĺ
			For Tri-color Dual LED indicate 10 Mbps Link a			works	in conjunct	ion with LE	D1 (pin 19 t	o
18	DVDDH	Р	3.3V, 2.5V, or 1.8V digital V _{DD}							
19	LED1 /	I/O	-	rammab	le LE	D1 OL	utput /			
	PHYAD0 /		Config Mode: The v	oltage o eset pro	n thi	s pin is to det	s sampled a	value of PH	during the p YAD[0]. See	

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function													
	PME_N1	PME_N Output: Programmable PME_N Output (pin option 1). This prequires an external pull-up resistor to DVDDH (digin a range from $1.0K\Omega$ to $4.7K\Omega$. When asserted low signals a WOL event has occurred.							I/O)							
										The LED1 pin is progra defined as follows.	immed by th	ne LED_	_MODE stra	pping optio	n (pin 55, ar	nd is
			Single LED Mode				_									
			Activity	Pin State	LED	Definition										
			No Activity	Н	OFF											
			Activity (RX, TX)	Toggle	Blink	king										
			Tri-color Dual LED M	ode												
			Link / Activity	Р	in State	9	LED Definition									
				L	ED2	LED1	LED2	LED1								
			Link off	Н		Н	OFF	OFF								
			1000 Link / No Activit	y L		Н	ON	OFF								
			1000 Link / Activity (F	X, TX) T	oggle	Н	Blinking	OFF								
			100 Link / No Activity	Н		L	OFF	ON								
		100 Link / Activity (RX, TX)			Toggle	OFF	Blinking									
			10 Link / No Activity	L		L	ON	ON								
			10 Link / Activity (RX,	TX) T	oggle	Toggle	Blinking	Blinking								
			For Tri-color Dual LED indicate 10 Mbps Link			s in conjunct	ion with LE	D2 (pin 17 to	D							
20	DVDDL	Р	1.2V digital V _{DD}													
21	TXD0	I		TXD0 (Tra XD0 (Trans		ata 0) Input a 0) Input										
22	TXD1	I				ata 1) Input										
				XD1 (Trans		<i>,</i> .										
23	TXD2	I				ata 2) Input										
			MII Mode: MII T	XD2 (Trans	smit Dat	a 2) Input										
24	TXD3	I	GMII Mode: GMI	TXD3 (Tra	nsmit D	ata 3) Input										
			MII Mode: MII 1	XD3 (Trans	mit Dat	a 3) Input										
25	DVDDL	Р	1.2V digital V _{DD}													
26	TXD4	I	GMII Mode: GMI	TXD4 (Tra	nsmit D	ata 4) Input										
			MII Mode: This	pin is not u	sed and	can be drive	en high or l	ow.								
27	TXD5	Ι	GMII Mode: GMI	TXD5 (Tra	nsmit D	ata 5) Input										
			MII Mode: This	pin is not u	sed and	can be drive	en high or l	ow.								
28	TXD6	I	GMII Mode: GMI	TXD6 (Tra	nsmit D	ata 6) Input										
			MII Mode: This	pin is not u	sed and	can be drive	en high or l	ow.								
29	TXD7	Ι	GMII Mode: GMI	TXD7 (Tra	nsmit D	ata 7) Input										
			MII Mode: This	pin is not u	sed and	can be drive	en high or l	ow.								
30	DVDDH	Р	3.3V, 2.5V, or 1.8V dig	ital V _{DD}												

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function	
31	TX_ER	I	GMII Mode:	GMII TX_ER (Transmit Error) Input
			MII Mode:	MII TX_ER (Transmit Error) Input
			If the GMII / MII tied low.	MAC does not provide the TX_ER output signal, this pin should be
32	GTX_CLK	I	GMII Mode:	GMII GTX_CLK (Transmit Reference Clock) Input
33	TX_EN	I	GMII Mode:	GMII TX_EN (Transmit Enable) Input
			MII Mode:	MII TX_EN (Transmit Enable) Input
34	RXD7	0	GMII Mode:	GMII RXD7 (Receive Data 7) Output
			MII Mode:	This pin is not used and is driven low.
35	RXD6	0	GMII Mode:	GMII RXD6 (Receive Data 6) Output
			MII Mode:	This pin is not used and is driven low.
36	DVDDL	Р	1.2V digital V _{DD}	
37	RXD5	0	GMII Mode:	GMII RXD5 (Receive Data 5) Output
			MII Mode:	This pin is not used and is driven low.
38	RXD4	0	GMII Mode:	GMII RXD4 (Receive Data 4) Output
			MII Mode:	This pin is not used and is driven low.
39	RXD3 /	I/O	GMII Mode:	GMII RXD3 (Receive Data 3) Output
			MII Mode:	MII RXD3 (Receive Data 3) Output /
	MODE3		Config Mode:	The voltage on this pin is sampled and latched during the power-up / reset process to determine the value of MODE3. See the "Strapping Options" section for details.
40	DVDDH	Р	3.3V, 2.5V, or 1.	8V digital V _{DD}
41	RXD2 /	I/O	GMII Mode:	GMII RXD2 (Receive Data 2) Output
			MII Mode:	MII RXD2 (Receive Data 2) Output) /
	MODE2		Config Mode:	The voltage on this pin is sampled and latched during the power-up / reset process to determine the value of MODE2. See the "Strapping Options" section for details.
42	DVDDL	Р	1.2V digital V _{DD}	
43	RXD1 /	I/O	GMII Mode:	GMII RXD1 (Receive Data 1) Output
			MII Mode:	MII RXD1 (Receive Data 1) Output /
	MODE1		Config Mode:	The voltage on this pin is sampled and latched during the power-up / reset process to determine the value of MODE1. See the "Strapping Options" section for details.
44	RXD0 /	I/O	GMII Mode:	GMII RXD0 (Receive Data 0) Output
			MII Mode:	MII RXD0 (Receive Data 0) Output /
	MODE0		Config Mode:	The voltage on this pin is sampled and latched during the power-up / reset process to determine the value of MODE0. See the "Strapping Options" section for details.
45	RX_DV /	I/O	GMII Mode:	GMII RX_DV (Receive Data Valid) Output
			MII Mode:	MII RX_DV (Receive Data Valid) Output /
	CLK125_EN		Config Mode:	The voltage on this pin is sampled and latched during the power-up / process to establish the value of CLK125_EN. See the "Strapping Options" section for details.
46	DVDDH	Р	3.3V, 2.5V, or 1.	8V digital V _{DD}
47	RX_ER	0	GMII Mode:	GMII RX_ER (Receive Error) Output
			MII Mode:	MII RX_ER (Receive Error) Output

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function
48	RX_CLK /	I/O	GMII Mode: GMII RX_CLK (Receive Reference Clock) Output
	PHYAD2		MII Mode: MII RX_CLK (Receive Reference Clock) Output /
			Config Mode: The voltage on this pin is sampled and latched during the power up / reset process to determine the value of PHYAD[2]. See the "Strapping Options" section for details.
49	CRS	0	GMII Mode: GMII CRS (Carrier Sense) Output
			MII Mode: MII CRS (Carrier Sense) Output
50	MDC	Ipu	Management Data Clock Input
			This pin is the input reference clock for MDIO (pin 51).
51	MDIO	lpu/O	Management Data Input / Output
			This pin is synchronous to MDC (pin 50) and requires an external pull-up resistor to DVDDH (digital V_{DD}) in a range from 1.0K Ω to 4.7K Ω .
52	COL	0	GMII Mode: GMII COL (Collision Detected) Output
			MII Mode: MII COL (Collision Detected) Output
53	INT_N /	0	Interrupt Output: Programmable Interrupt Output with register 1Bh as the Interrup Control/Status Register for programming the interrupt conditions and reading the interrupt status. Register 1Fh, bit [14] sets the interrupt output to active low (default) or active high.
	PME_N2		PME_N Output: Programmable PME_N Output (pin option 2). When asserted low, this pin signals a WOL event has occurred.
			For Interrupt (when active low) and PME functions, this pin requires an external pull-up resistor to DVDDH (digital $V_{DD_{-}I'O}$) in a range from 1.0K Ω to 4.7K Ω .
54	DVDDL	Р	1.2V digital V _{DD}
55	CLK125_NDO /	I/O	125 MHz Clock Output
			This pin provides a 125 MHz reference clock output option for use by the MAC.
	LED_MODE		Config Mode: The voltage on this pin is sampled during the power-up / reset process to determine the value of LED_MODE. See the "Strapping Options" section for details.
56	RESET_N	Ipu	Chip Reset (active low)
			Hardware pin configurations are strapped-in (sampled and latched) at the de- assertion (rising edge) of RESET_N. See "Strapping Options" section for more details.
57	TX_CLK	0	MII Mode: MII TX_CLK (Transmit Reference Clock) Output
58	LDO_O	0	On-chip 1.2V LDO Controller Output
			This pin drives the input gate of a P-channel MOSFET to generate 1.2V for the chip's core voltages. If 1.2V is provided by the system and this pin is not used, it can be left floating.
59	AVDDL_PLL	Р	1.2V analog V_{DD} for PLL
60	ХО	0	25 MHz Crystal Feedback
			This pin connects to one end of an external 25 MHz crystal.
			This pin is a no connect if an oscillator or other external (non-crystal) clock source is used.
61	XI	I	Crystal / Oscillator / External Clock Input
			This pin connects to one end an external 25 MHz crystal or to the output of an oscillator or other external (non-crystal) clock source.
			25 MHz +/-50ppm tolerance
62	AVDDH	Р	3.3V / 2.5V (commercial temp only) analog V _{DD}

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function	
63	ISET	I/O	Sets the transmit output level	
			Connect a 12.1K Ω 1% resistor to ground on this pin.	
64	AGNDH	Gnd	Analog ground	
PADDLE	P_GND	Gnd	Exposed Paddle on bottom of chip	
			Connect P_GND to ground.	

Note:

1. P = Power supply.

Gnd = Ground.

I = Input.

O = Output.

I/O = Bi-directional.

Ipu = Input with internal pull-up (see Electrical Characteristics for value).

Ipu/O = Input with internal pull-up (see Electrical Characteristics for value) / Output.

Strapping Options

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function			
48	PHYAD2	I/O		s, PHYAD[2:0], is sampled and latched a		
17	PHYAD1	I/O	-	configurable to any value from 0 to 7. Each PHY address bit is configured as follows:		
19	PHYAD0	I/O	Pull-up = 1			
			Pull-down = 0			
				PHY Address bits [4:3] are always set to '00'.		
39	MODE3	I/O	The MODE[3:0] s defined as follow	strap-in pins are sampled and latched at	power-up / reset and are	
41	MODE2	I/O		3.		
43	MODE1	I/O	MODE[3:0]	Mode	1	
44	MODE0	I/O	0000	Reserved – not used		
			0001	GMII / MII Mode		
			0010	Reserved – not used	-	
			0011	Reserved – not used		
			0100	NAND Tree Mode	-	
			0101	Reserved – not used		
			0110	Reserved – not used		
			0111	Chip Power Down Mode		
			1000	Reserved – not used	-	
			1001	Reserved – not used		
			1010	Reserved – not used		
			1011	Reserved – not used		
			1100	Reserved – not used		
			1101	Reserved – not used		
			1110	Reserved – not used		
			1111	Reserved – not used		
45	CLK125_EN	I/O	CLK125_EN is s	ampled and latched at power-up / reset a	and is defined as follows:	
			Pull-up	(1) = Enable 125 MHz Clock Output		
			Pull-down (0) = Disable 125 MHz Clock Output			
			Pin 55 (CLK125_NDO) provides the 125 MHz reference clock output option for use by the MAC.			
55	LED_MODE	I/O	LED_MODE is sa	ampled and latched at power-up / reset a	ind is defined as follows:	
			Pull-up	(1) = Single LED Mode		
			Pull-down (0) = Tri-color Dual LED Mode			

Note:

1. I/O = Bi-directional.

Pin strap-ins are latched during power-up or reset. In some systems, the MAC receive input pins may be driven during the power-up or reset process, and consequently cause the PHY strap-in pins on the GMII/MII signals to be latched to the incorrect configuration. In this case, it is recommended to add external pull-up or pull-down resistors on the PHY strap-in pins to ensure the PHY is configured to the correct pin strap-in mode.

Functional Overview

The KSZ9031MNX is a completely integrated triple speed (10Base-T/100Base-TX/1000Base-T) Ethernet Physical Layer Transceiver solution for transmission and reception of data over a standard CAT-5 unshielded twisted pair (UTP) cable. Its on-chip proprietary 1000Base-T transceiver and Manchester/MLT-3 signaling-based 10Base-T/100Base-TX transceivers are all IEEE 802.3 compliant.

The KSZ9031MNX reduces board cost and simplifies board layout by using on-chip termination resistors for the four differential pairs and by integrating a LDO controller to drive a low cost MOSFET to supply the 1.2V core.

On the copper media interface, the KSZ9031MNX can automatically detect and correct for differential pair misplacements and polarity reversals, and correct propagation delays and re-sync timing between the four differential pairs, as specified in the IEEE 802.3 standard for 1000Base-T operation.

The KSZ9031MNX provides the GMII/MII interface for connection to GMACs in Gigabit Ethernet Processors and Switches for data transfer at 10/100/1000 Mbps speed.

The following figure shows a high-level block diagram of the KSZ9031MNX.

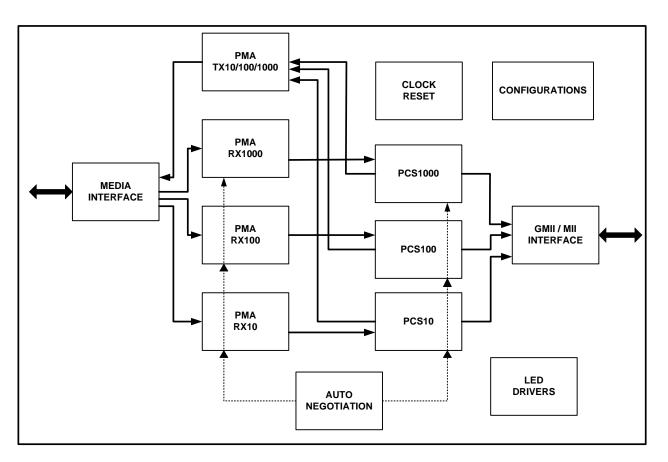


Figure 1. KSZ9031MNX Block Diagram

Functional Description: 10Base-T/100Base-TX Transceiver

100Base-TX Transmit

The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling, NRZ-to-NRZI conversion, and MLT-3 encoding and transmission.

The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125 MHz serial bit stream. The data and control stream is then converted into 4B/5B coding, followed by a scrambler. The serialized data is further converted from NRZ-to-NRZI format, and then transmitted in MLT-3 current output. The output current is set by an external $12.1K\Omega$ 1% resistor for the 1:1 transformer ratio.

The output signal has a typical rise/fall time of 4ns and complies with the ANSI TP-PMD standard regarding amplitude balance, overshoot, and timing jitter. The wave-shaped 10Base-T output is also incorporated into the 100Base-TX transmitter.

100Base-TX Receive

The 100BASE-TX receiver function performs adaptive equalization, DC restoration, MLT-3-to-NRZI conversion, data and clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.

The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair cable. Since the amplitude loss and phase distortion are a function of the cable length, the equalizer must adjust its characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on comparisons of incoming signal strength against some known cable characteristics, and then tunes itself for optimization. This is an ongoing process and self-adjusts against environmental changes such as temperature variations.

Next, the equalized signal goes through a DC restoration and data conversion block. The DC restoration circuit is used to compensate for the effect of baseline wander and to improve the dynamic range. The differential data conversion circuit converts the MLT-3 format back to NRZI. The slicing threshold is also adaptive.

The clock recovery circuit extracts the 125 MHz clock from the edges of the NRZI signal. This recovered clock is then used to convert the NRZI signal into the NRZ format. This signal is sent through the de-scrambler followed by the 4B/5B decoder. Finally, the NRZ serial data is converted to the GMII/MII format and provided as the input data to the MAC.

Scrambler/De-Scrambler (100Base-TX only)

The purpose of the scrambler is to spread the power spectrum of the signal to reduce electromagnetic interference (EMI) and baseline wander. Transmitted data is scrambled through the use of an 11-bit wide linear feedback shift register (LFSR). The scrambler generates a 2047-bit non-repetitive sequence, and the receiver then de-scrambles the incoming data stream using the same sequence as at the transmitter.

10Base-T Transmit

The 10Base-T output drivers are incorporated into the 100Base-TX drivers to allow for transmission with the same magnetic. The drivers perform internal wave-shaping and pre-emphasis, and output signals with a typical amplitude of 2.5V peak for standard 10Base-T mode and 1.75V peak for energy-efficient 10Base-Te mode. The 10Base-T/10Base-Te signals have harmonic contents that are at least 31dB below the fundamental frequency when driven by an all-ones Manchester-encoded signal.

10Base-T Receive

On the receive side, input buffer and level detecting squelch circuits are employed. A differential input receiver circuit and a phase-locked loop (PLL) perform the decoding function. The Manchester-encoded data stream is separated into clock signal and NRZ data. A squelch circuit rejects signals with levels less than 300 mV or with short pulse widths in order to prevent noises at the receive inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL locks onto the incoming signal and the KSZ9031MNX decodes a data frame. The receiver clock is maintained active during idle periods in between receiving data frames.

Auto-polarity correction is provided for receive differential pair to automatically swap and fix the incorrect +/- polarity wiring in the cabling.

Functional Description: 1000Base-T Transceiver

The 1000Base-T transceiver is based-on a mixed-signal / digital signal processing (DSP) architecture, which includes the analog front-end, digital channel equalizers, trellis encoders/decoders, echo cancellers, cross-talk cancellers, precision clock recovery scheme, and power efficient line drivers.

The following figure shows a high-level block diagram of a single channel of the 1000Base-T transceiver for one of the four differential pairs.

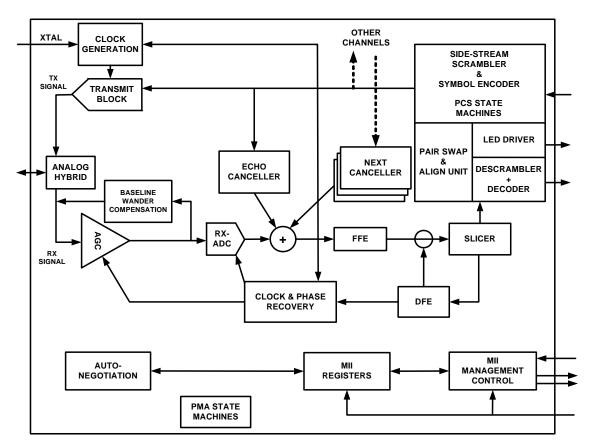


Figure 2. KSZ9031MNX 1000Base-T Block Diagram - Single Channel

Analog Echo Cancellation Circuit

In 1000Base-T mode, the analog echo cancellation circuit helps to reduce the near-end echo. This analog hybrid circuit relieves the burden of the ADC and the adaptive equalizer.

This circuit is disabled in 10Base-T/100Base-TX mode.

Automatic Gain Control (AGC)

In 1000Base-T mode, the automatic gain control (AGC) circuit provides initial gain adjustment to boost up the signal level. This pre-conditioning circuit is used to improve the signal-to-noise ratio of the receive signal.

Analog-to-Digital Converter (ADC)

In 1000Base-T mode, the analog-to-digital converter (ADC) digitizes the incoming signal. ADC performance is essential to the overall performance of the transceiver.

This circuit is disabled in 10Base-T/100Base-TX mode.

Timing Recovery Circuit

In 1000Base-T mode, the mixed-signal clock recovery circuit together with the digital phase locked loop is used to recover and track the incoming timing information from the received data. The digital phase locked loop has very low long-term jitter to maximize the signal-to-noise ratio of the receive signal.

The 1000Base-T slave PHY is required to transmit the exact receive clock frequency recovered from the received data back to the 1000Base-T master PHY. Otherwise, the master and slave will not be synchronized after long transmission. Additionally, this helps to facilitate echo cancellation and NEXT removal.

Adaptive Equalizer

In 1000Base-T mode, the adaptive equalizer provides the following functions:

- Detection for partial response signaling
- Removal of NEXT and ECHO noise
- Channel equalization

Signal quality is degraded by residual echo that is not removed by the analog hybrid due to impedance mismatch. The KSZ9031MNX employs a digital echo canceller to further reduce echo components on the receive signal.

In 1000Base-T mode, data transmission and reception occurs simultaneously on all four pairs of wires (four channels). This results in high frequency cross-talk coming from adjacent wires. The KSZ9031MNX employs three NEXT cancellers on each receive channel to minimize the cross-talk induced by the other three channels.

In 10Base-T/100Base-TX mode, the adaptive equalizer needs only to remove the inter-symbol interference and recover the channel loss from the incoming data.

Trellis Encoder and Decoder

In 1000Base-T mode, the transmitted 8-bit data is scrambled into 9-bit symbols and further encoded into 4D-PAM5 symbols. The initial scrambler seed is determined by the specific PHY address to reduce EMI when more than one KSZ9031MNX are used on the same board. On the receiving side, the idle stream is examined first. The scrambler seed, pair skew, pair order and polarity have to be resolved through the logic. The incoming 4D-PAM5 data is then converted into 9-bit symbols and then de-scrambled into 8-bit data.

Functional Description: Additional 10/100/1000 PHY Features

Auto MDI/MDI-X

The Automatic MDI/MDI-X feature eliminates the need to determine whether to use a straight cable or a crossover cable between the KSZ9031MNX and its link partner. This auto-sense function detects the MDI/MDI-X pair mapping from the link partner, and then assigns the MDI/MDI-X pair mapping of the KSZ9031MNX accordingly.

The following table shows the KSZ9031MNX 10/100/1000 pin-out assignments for MDI/MDI-X pin mapping.

Pin (RJ-45 pair)		MDI		MDI-X		
Fill (K5-45 pair)	1000Base-T	100Base-TX	10Base-T	1000Base-T	100Base-TX	10Base-T
TXRXP/M_A (1,2)	A+/-	TX+/-	TX+/-	B+/-	RX+/-	RX+/-
TXRXP/M_B (3,6)	B+/-	RX+/-	RX+/-	A+/-	TX+/-	TX+/-
TXRXP/M_C (4,5)	C+/-	Not used	Not used	D+/-	Not used	Not used
TXRXP/M_D (7,8)	D+/-	Not used	Not used	C+/-	Not used	Not used

Table 1. MDI / MDI-X Pin Mapping

Auto MDI/MDI-X is enabled by default. It is disabled by writing a one to register 1Ch, bit [6]. MDI and MDI-X mode is set by register 1Ch, bit [7] if Auto MDI/MDI-X is disabled.

An isolation transformer with symmetrical transmit and receive data paths is recommended to support auto MDI/MDI-X.

Pair- Swap, Alignment, and Polarity Check

In 1000Base-T mode, the KSZ9031MNX

- Detects incorrect channel order and automatically restore the pair order for the A, B, C, D pairs (four channels)
- Supports 50±10ns difference in propagation delay between pairs of channels in accordance with the IEEE 802.3 standard, and automatically corrects the data skew so the corrected four pairs of data symbols are synchronized

Incorrect pair polarities of the differential signals are automatically corrected for all speeds.

Wave Shaping, Slew Rate Control and Partial Response

In communication systems, signal transmission encoding methods are used to provide the noise-shaping feature and to minimize distortion and error in the transmission channel.

- For 1000Base-T, a special partial response signaling method is used to provide the band-limiting feature for the transmission path.
- For 100Base-TX, a simple slew rate control method is used to minimize EMI.
- For 10Base-T, pre-emphasis is used to extend the signal quality through the cable.

PLL Clock Synthesizer

The KSZ9031MNX generates 125 MHz, 25 MHz and 10 MHz clocks for system timing. Internal clocks are generated from the external 25 MHz crystal or reference clock.

Auto-Negotiation

The KSZ9031MNX conforms to the Auto-Negotiation protocol, defined in Clause 28 of the IEEE 802.3 Specification.

Auto-Negotiation allows UTP (Unshielded Twisted Pair) link partners to select the highest common mode of operation.

During Auto-Negotiation, link partners advertise capabilities across the UTP link to each other, and then compare their own capabilities with those they received from their link partners. The highest speed and duplex setting that is common to the two link partners is selected as the mode of operation.

The following list shows the speed and duplex operation mode from highest to lowest.

- Priority 1: 1000Base-T, full-duplex
- Priority 2: 1000Base-T, half-duplex
- Priority 3: 100Base-TX, full-duplex
- Priority 4: 100Base-TX, half-duplex
- Priority 5: 10Base-T, full-duplex
- Priority 6: 10Base-T, half-duplex

If Auto-Negotiation is not supported or the KSZ9031MNX link partner is forced to bypass Auto-Negotiation for 10Base-T and 100Base-TX modes, then the KSZ9031MNX sets its operating mode by observing the input signal at its receiver. This is known as parallel detection, and allows the KSZ9031MNX to establish link by listening for a fixed signal protocol in the absence of Auto-Negotiation advertisement protocol.

The Auto-Negotiation link up process is shown in the following flow chart.

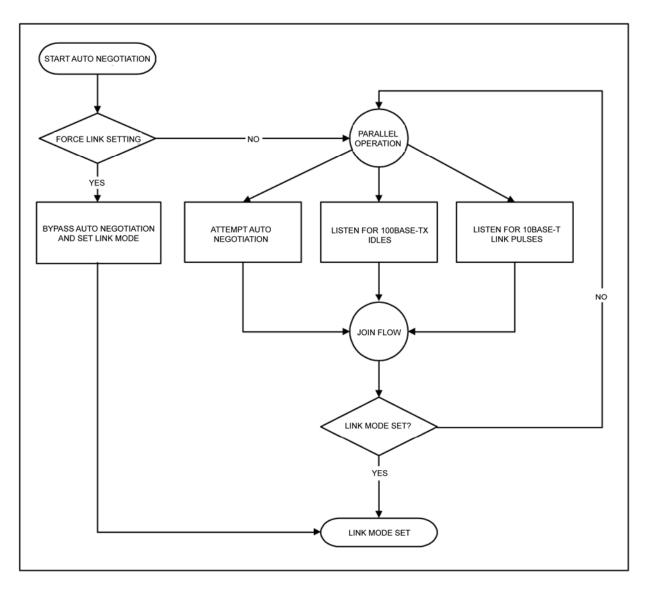


Figure 3. Auto-Negotiation Flow Chart

For 1000Base-T mode, Auto-Negotiation is required and always used to establish a link. During 1000Base-T Auto-Negotiation, the Master and Slave configuration is first resolved between link partners, and then the link is established with the highest common capabilities between link partners.

Auto-Negotiation is enabled by default after power-up or hardware reset. Afterwards, Auto-Negotiation can be enabled or disabled through register 0h, bit [12]. If Auto-Negotiation is disabled, the speed is set by register 0h, bits [6, 13] and the duplex is set by register 0h, bit [8].

If the speed is changed on the fly, the link goes down and either Auto-Negotiation or parallel detection will initiate until a common speed between KSZ9031MNX and its link partner is re-established for a link.

If link is already established and there is no change of speed on the fly, then the changes (e.g., duplex and PAUSE capabilities) will not take effect unless either Auto-Negotiation is restarted through register 0h, bit [9], or a link down to link up transition occurs (i.e., disconnecting and reconnecting the cable).

After Auto-Negotiation is completed, the link status is updated in register 1h, bit [2], and the link partner capabilities are updated in registers 5h, 6h, and Ah.

The Auto-Negotiation finite state machines employ interval timers to manage the Auto-Negotiation process. The duration of these timers under normal operating conditions are summarized in the following table.

Auto-Negotiation Interval Timers	Time Duration
Transmit Burst interval	16 ms
Transmit Pulse interval	68 us
FLP detect minimum time	17.2 us
FLP detect maximum time	185 us
Receive minimum Burst interval	6.8 ms
Receive maximum Burst interval	112 ms
Data detect minimum interval	35.4 us
Data detect maximum interval	95 us
NLP test minimum interval	4.5 ms
NLP test maximum interval	30 ms
Link Loss time	52 ms
Break Link time	1480 ms
Parallel Detection wait time	830 ms
Link Enable wait time	1000 ms

Table 2. Auto-Negotiation Timers

GMII Interface

The Gigabit Media Independent Interface (GMII) is compliant to the IEEE 802.3 Specification. It provides a common interface between GMII PHYs and MACs, and has the following key characteristics:

- Pin count is 24 pins (11 pins for data transmission, 11 pins for data reception, and 2 pins for carrier and collision indication).
- 1000 Mbps is supported at both half and full duplex.
- Data transmission and reception are independent and belong to separate signal groups.
- Transmit data and receive data are each 8-bit wide, a byte.

In GMII operation, the GMII pins function as follow:

- The MAC sources the transmit reference clock, GTX_CLK, at 125 MHz for 1000 Mbps.
- The PHY recovers and sources the receive reference clock, RX_CLK, at 125 MHz for 1000 Mbps.
- TX_EN, TXD[7:0] and TX_ER are sampled by the KSZ9031MNX on the rising edge of GTX_CLK.
- RX_DV, RXD[7:0], and RX_ER are sampled by the MAC on the rising edge of RX_CLK.
- CRS and COL are driven by the KSZ9031MNX and are not required to transition synchronously with respect to either GTX_CLK or RX_CLK.

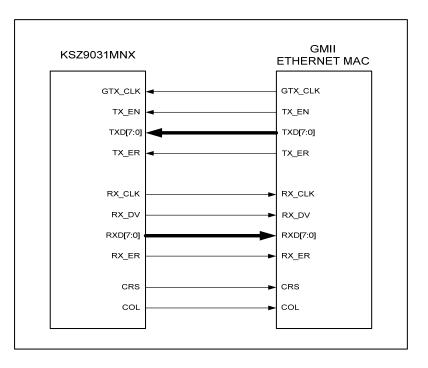
The KSZ9031MNX combines GMII mode with MII mode to form GMII/MII mode to support data transfer at 10/100/1000 Mbps speed. After power-up or reset, the KSZ9031MNX is configured to GMII/MII mode if the MODE[3:0] strap-in pins are set to "0001". See Strapping Options section.

The KSZ9031MNX has the option to output a 125 MHz reference clock on CLK125_NDO (pin 55). This clock provides a lower cost reference clock alternative for GMII/MII MACs that require a 125 MHz crystal or oscillator. The 125 MHz clock output is enabled after power-up or reset if the CLK125_EN strap-in pin is pulled high.

The KSZ9031MNX provides a dedicated transmit clock input pin for GMII mode, defined as follow:

• GTX_CLK (input, pin 32): Sourced by MAC in GMII mode for 1000 Mbps speed

GMII Signal Definition


The following table describes the GMII signals. Refer to Clause 35 of the IEEE 802.3 Specification for more detailed information.

GMII Signal Name (per spec)	GMII Signal Name (per KSZ9031MNX)	Pin Type (with respect to PHY)	Pin Type (with respect to MAC)	Description
GTX_CLK	GTX_CLK	Input	Output	Transmit Reference Clock (125 MHz for 1000 Mbps)
TX_EN	TX_EN	Input	Output	Transmit Enable
TXD[7:0]	TXD[7:0]	Input	Output	Transmit Data [7:0]
TX_ER	TX_ER	Input	Output	Transmit Error
RX_CLK	RX_CLK	Output	Input	Receive Reference Clock (125 MHz for 1000 Mbps)
RX_DV	RX_DV	Output	Input	Receive Data Valid
RXD[7:0]	RXD[7:0]	Output	Input	Receive Data [7:0]
RX_ER	RX_ER	Output	Input	Receive Error
CRS	CRS	Output	Input	Carrier Sense
COL	COL	Output	Input	Collision Detected

Table 3. GMII Signal Definition

GMII Signal Diagram

The KSZ9031MNX GMII pin connections to the MAC are shown in the following figure.

 The PHY recovers and sources the receive reference clock, RX_CLK, at 25 MHz for 100 Mbps and 2.5 MHz for 10 Mbps.

The PHY sources the transmit reference clock, TX_CLK, at 25 MHz for 100 Mbps and 2.5 MHz for 10 Mbps.

The Media Independent Interface (MII) is compliant with the IEEE 802.3 Specification. It provides a common interface

Data transmission and reception are independent and belong to separate signal groups.

Pin count is 16 pins (7 pins for data transmission, 7 pins for data reception, and 2 pins for carrier and collision

between MII PHYs and MACs, and has the following key characteristics:

10 Mbps and 100 Mbps are supported at both half and full duplex.

Transmit data and receive data are each 4-bit wide, a nibble.

- TX EN, TXD[3:0] and TX ER are driven by the MAC and shall transition synchronously with respect to TX CLK.
- RX_DV, RXD[3:0], and RX_ER are driven by the KSZ9031MNX and shall transition synchronously with respect to RX_CLK.
- CRS and COL are driven by the KSZ9031MNX and are not required to transition synchronously with respect to either TX_CLK or RX_CLK.

The KSZ9031MNX combines GMII mode with MII mode to form GMII/MII mode to support data transfer at 10/100/1000 Mbps speeds. After the power-up or reset, the KSZ9031MNX is then configured to GMII/MII mode if the MODE[3:0] strap-in pins are set to "0001". See Strapping Options section.

The KSZ9031MNX has the option to output a 125 MHz reference clock on CLK125_NDO (pin 55). This clock provides a lower cost reference clock alternative for GMII/MII MACs that require a 125 MHz crystal or oscillator. The 125 MHz clock output is enabled after power-up or reset if the CLK125_EN strap-in pin is pulled high.

The KSZ9031MNX provides a dedicated transmit clock output pin for MII mode, defined as follow:

TX_CLK (output, pin 57): Sourced by KSZ9031MNX in MII mode for 10/100 Mbps speed

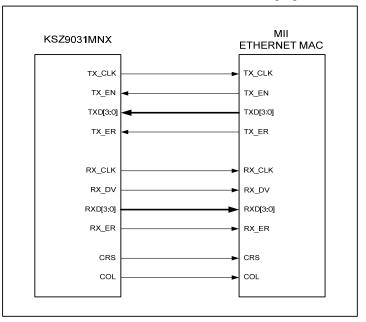
25

MII Interface

indication).

In MII operation, the MII pins function as follow:

MII Signal Definition


The following table describes the MII signals. Refer to Clause 22 of the IEEE 802.3 Specification for detailed information.

MII Signal Name (per spec)	MII Signal Name (per KSZ9031MNX)	Pin Type (with respect to PHY)	Pin Type (with respect to MAC)	Description
TX_CLK	TX_CLK	Output	Input	Transmit Reference Clock (25 MHz for 100 Mbps, 2.5 MHz for 10 Mbps)
TX_EN	TX_EN	Input	Output	Transmit Enable
TXD[3:0]	TXD[3:0]	Input	Output	Transmit Data [3:0]
TX_ER	TX_ER	Input	Output	Transmit Error
RX_CLK	RX_CLK	Output	Input	Receive Reference Clock
				(25 MHz for 100 Mbps, 2.5 MHz for 10 Mbps)
RX_DV	RX_DV	Output	Input	Receive Data Valid
RXD[3:0]	RXD[3:0]	Output	Input	Receive Data [3:0]
RX_ER	RX_ER	Output	Input	Receive Error
CRS	CRS	Output	Input	Carrier Sense
COL	COL	Output	Input	Collision Detected

Table 4. MII Signal Definition

MII Signal Diagram

The KSZ9031MNX MII pin connections to the MAC are shown in the following figure.

MII Management (MIIM) Interface

The KSZ9031MNX supports the IEEE 802.3 MII Management Interface, also known as the Management Data Input/ Output (MDIO) Interface. This interface allows upper-layer devices to monitor and control the state of the KSZ9031MNX. An external device with MIIM capability is used to read the PHY status and/or configure the PHY settings. Further detail on the MIIM interface can be found in Clause 22.2.4 of the IEEE 802.3 Specification.

The MIIM interface consists of the following:

- A physical connection that incorporates the clock line (MDC) and the data line (MDIO).
- A specific protocol that operates across the aforementioned physical connection that allows an external controller to communicate with one or more KSZ9031MNX device. Each KSZ9031MNX device is assigned a unique PHY address between 0h and 7h by the PHYAD[2:0] strapping pins.
- A 32-registers address space for direct access to IEEE Defined Registers and Vendor Specific Registers, and for indirect access to MMD Addresses and Registers. See Register Map section.

PHY address 0h is supported as the unique PHY address only; it is not supported as the broadcast PHY address, which allows for a single write command to simultaneously program an identical PHY register for two or more PHY devices (e.g., using PHY address 0h to set register 0h to a value of 0x1940 to set bit [11] to a value of one to enable Software Power Down). Instead, separate write commands are used to program each PHY device.

	Preamble	Start of Frame	Read/Write OP Code	PHY Address Bits [4:0]	REG Address Bits [4:0]	ТА	Data Bits [15:0]	Idle
Rea	d 32 1's	01	10	00AAA	RRRRR	Z0	DDDDDDDD_DDDDDDD	Z
Wri	ae 32 1's	01	01	00AAA	RRRRR	10	DDDDDDDD_DDDDDDD	Z

The following table shows the MII Management frame format for the KSZ9031MNX.

Table 5. MII Management Frame Format – for the KSZ9031MNX

Interrupt (INT_N)

The INT_N pin is an optional interrupt signal that is used to inform the external controller that there has been a status update in the KSZ9031MNX PHY register. Bits [15:8] of register 1Bh are the interrupt control bits to enable and disable the conditions for asserting the INT_N signal. Bits [7:0] of register 1Bh are the interrupt status bits to indicate which interrupt conditions have occurred. The interrupt status bits are cleared after reading register 1Bh.

Bit [14] of register 1Fh sets the interrupt level to active high or active low. The default is active low.

The MII management bus option gives the MAC processor complete access to the KSZ9031MNX control and status registers. Additionally, an interrupt pin eliminates the need for the processor to poll the PHY for status change.

LED Mode

The KSZ9031MNX provides two programmable LED output pins, LED2 and LED1, which are configurable to support two LED modes. The LED mode is configured by the LED_MODE strap-in (pin 55). It is latched at power-up / reset and is defined as follows:

- Pull-up: Single LED Mode
- Pull-down: Tri-color Dual LED Mode

Single LED Mode

In Single LED Mode, the LED2 pin indicates the link status while the LED1 pin indicates the activity status, as shown in the following table.

LED pin	Pin State	LED Definition	Link / Activity
LED2	Н	OFF	Link off
LEDZ	L	ON	Link on (any speed)
LED1	Н	OFF	No Activity
	Toggle	Blinking	Activity (RX, TX)

Table 6. Single LED Mode – Pin Definition

Tri-color Dual LED Mode

In Tri-color Dual LED Mode, the Link and Activity status are indicated by the LED2 pin for 1000Base-T, by the LED1 pin for 100Base-TX, and by both LED2 and LED1 pin, working in conjunction, for 10Base-T. This is summarized in the following table.

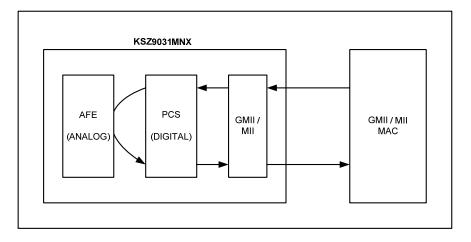
LED Pin		LED Pin		Link / Activity
(State)	Т	(Definition)		Link / Activity
LED2	LED1	LED2	LED1	
Н	Н	OFF	OFF	Link off
L	Н	ON	OFF	1000 Link / No Activity
Toggle	Н	Blinking	OFF	1000 Link / Activity (RX, TX)
Н	L	OFF	ON	100 Link / No Activity
Н	Toggle	OFF	Blinking	100 Link / Activity (RX, TX)
L	L	ON	ON	10 Link / No Activity
Toggle	Toggle	Blinking	Blinking	10 Link / Activity (RX, TX)

Table 7. Tri-color Dual LED Mode – Pin Definition

Each LED output pin can directly drive a LED with a series resistor (typically 220Ω to 470Ω).

Loopback Mode

The KSZ9031MNX supports the following loopback operations to verify analog and/or digital data paths.


- Local (Digital) Loopback .
- Remote (Analog) Loopback

Local (Digital) Loopback

This loopback mode checks the GMII / MII transmit and receive data paths between KSZ9031MNX and external MAC, and is supported for all three speeds (10/100/1000 Mbps) at full-duplex.

The loopback data path is shown in the following figure.

- 1) GMII / MII MAC transmits frames to KSZ9031MNX.
- Frames are wrapped around inside KSZ9031MNX.
- 3) KSZ9031MNX transmits frames back to GMII / MII MAC.

Figure 6. Local (Digital) Loopback

// Enable Master-Slave manual configuration

// Select Slave configuration (must use for this loopback mode)

The following programming steps and register settings are used for Local Loopback mode.

For 1000 Mbps loopback,

•

•

• •

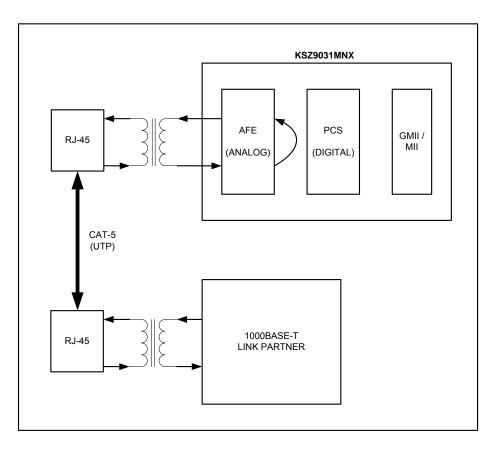
•

- 1) Set Register 0h,
 - Bit [14] = 1 // Enable Local Loopback mode
 - Bits [6, 13] = 10 // Select 1000Mbps speed
 - Bit [12] = 0 // Disable Auto-Negotiation
 - // Select full-duplex mode

// Disable Auto-Negotiation

- 2) Set Register 9h,
 - Bit [12] = 1 •

Bit [8] = 1


- Bit [11] = 0 •
- For 10/100 Mbps loopback,
 - 1) Set Register 0h,
 - Bit [14] = 1 •
 - // Enable Local Loopback mode Bits [6, 13] = 00 / 01 // Select 10Mbps / 100Mbps speed
 - Bit [12] = 0 .
 - // Select full-duplex mode Bit [8] = 1

Remote (Analog) Loopback

This loopback mode checks the line (differential pairs, transformer, RJ-45 connector, Ethernet cable) transmit and receive data paths between KSZ9031MNX and its link partner, and is supported for 1000Base-T full-duplex mode only.

The loopback data path is shown in the following figure.

- 1) Gigabit PHY Link Partner transmits frames to KSZ9031MNX.
- 2) Frames are wrapped around inside KSZ9031MNX.
- 3) KSZ9031MNX transmits frames back to Gigabit PHY Link Partner.

Figure 7. Remote (Analog) Loopback

The following programming steps and register settings are used for Remote Loopback mode.

1) Set Register 0h,

•

- Bits [6, 13] = 10
 - // Select 1000Mbps speed
- Bit [12] = 0 // Disable Auto-Negotiation
- Bit [8] = 1 // Select full-duplex mode

Or just simply auto-negotiate and link up at 1000Base-T full-duplex mode with link partner

2) Set Register 11h,

Bit [8] = 1 // Enable Remote Loopback mode

LinkMD[®] Cable Diagnostic

The LinkMD[®] function utilizes time domain reflectometry (TDR) to analyze the cabling plant for common cabling problems, such as open circuits, short circuits and impedance mismatches.

LinkMD[®] operates by sending a pulse of known amplitude and duration down the selected differential pair, and then analyzing the polarity and shape of the reflected signal to determine the type of fault: open circuit for a positive/non-inverted amplitude reflection and short circuit for a negative/inverted amplitude reflection. The time duration for the reflected signal to return provides the approximate distance to the cabling fault. The LinkMD[®] function processes this TDR information and presents it as a numerical value that can be translated to a cable distance.

LinkMD[®] is initiated by accessing register 12h, the LinkMD[®] - Cable Diagnostic Register, in conjunction with register 1Ch, the Auto MDI/MDI-X Register. The latter register is needed to disable the auto MDI/MDI-X function before executing the LinkMD[®] test. Additionally, a software reset (Reg. 0h, bit [15] = 1) should be performed before and after executing the LinkMD[®] test. The reset helps to ensure the KSZ9031MNX is in the normal operating state before and after the test.

NAND Tree Support

The KSZ9031MNX provides parametric NAND tree support for fault detection between chip I/Os and board. NAND tree mode is enabled at power-up / reset with the MODE[3:0] strap-in pins set to "0100".

The following table lists the NAND tree pin order.

Pin	Description
LED2	Input
LED1 / PME_N1	Input
TXD0	Input
TXD1	Input
TXD2	Input
TXD3	Input
TX_ER	Input
GTX_CLK	Input
TX_EN	Input
RX_DV	Input
RX_ER	Input
RX_CLK	Input
CRS	Input
COL	Input
INT_N / PME_N2	Input
MDC	Input
MDIO	Input
CLK125_NDO	Output

Table 8. NAND Tree Test Pin Order – for the KSZ9031MNX

Power Management

The KSZ9031MNX incorporates a number of power management modes and features to provide the user various methods of consuming less energy.

Energy Detect Power Down Mode

Energy Detect Power Down (EDPD) Mode is used to further reduce the transceiver power consumption when the cable is unplugged. It is enabled by writing a one to MMD address 1Ch, register 23h, bit [0], and is in effect when auto-negotiation mode is enabled and cable is disconnected (no link).

In EDPD Mode, the KSZ9031MNX shuts down all transceiver blocks, except for the transmitter and energy detect circuits. Further power reduction is achieved by extending the time interval in between transmission of link pulses to check for the presence of a link partner. The periodic transmission of link pulses is needed to ensure two link partners in the same low power state and with Auto MDI/MDI-X disabled can wake up when the cable is connected between them. By default, EDPD Mode is disabled after power-up.

Software Power Down Mode

This mode is used to power down the KSZ9031MNX device when it is not in use after power-up. Software Power Down (SPD) Mode is enabled by writing a one to register 0h, bit [11]. In the SPD state, the KSZ9031MNX disables all internal functions, except for the MII management interface. The KSZ9031MNX exits the SPD state after a zero is written to register 0h, bit [11].

Chip Power Down Mode

This mode provides the lowest power state for the KSZ9031MNX device when it is not in use and is mounted on the board. Chip Power Down (CPD) Mode is enabled after power-up / reset with the MODE[3:0] strap-in pins set to "0111". The KSZ9031MNX exits CPD Mode after a hardware reset is applied to the RESET_N pin (pin 56) with the MODE[3:0] strap-in pins set to an operating mode other than CPD Mode.

Energy Efficient Ethernet (EEE)

The KSZ9031MNX implements Energy Efficient Ethernet (EEE) as described per the IEEE Standard 802.3az. The Standard is defined around an EEE-compliant MAC on the host side and an EEE-compliant Link Partner on the line side that support special signaling associated with EEE. EEE saves power by keeping the AC signal on the copper Ethernet cable at approximately 0V peak-to-peak for as often as possible during periods of no traffic activity, while maintaining the link-up status. This is referred to as Low Power Idle (LPI) mode or state.

During LPI mode, the copper link will respond automatically upon receiving traffic and resume normal PHY operation immediately, without blockage of traffic or loss of packet – exiting LPI mode and returning to normal 100/1000Mbps operating mode. Wake-up times are <16us for 1000Base-T and <30us for 1000Base-TX.

The LPI state is controlled independently for transmit and receive paths, allowing the LPI state to be active (enabled) for:

- Transmit cable path only
- Receive cable path only
- Both transmit and receive cable paths

The KSZ9031MNX has the EEE function disabled as the power-up default setting. The EEE function is enabled by setting the following EEE Advertisement bits at MMD address 7h, register 3Ch, and then followed by re-starting Auto-Negotiation (writing a '1' to register 0h, bit [9]):

- Bit [2] = 1 // Enable 1000Mbps EEE mode
- Bit [1] = 1 // Enable 100Mbps EEE mode

For standard (non-EEE) 10Base-T mode, Normal Link Pulses (NLPs) with long durations of no AC signal transmission are used already to maintain link during the idle period when there is no traffic activity. For further power saving, the KSZ9031MNX provides the option to enable 10Base-Te mode which saves additional power by reducing the transmitted signal amplitude from 2.5V to 1.75V. To enable 10Base-Te mode, write a one to MMD address 1Ch, register 4h, bit [10].

During LPI mode, Refresh transmissions are used to maintain link and the Quiet periods are when the power savings take place. Approximately, every 20-22 milliseconds a Refresh transmission of 200-220 microseconds is sent to the link partner. The Refresh transmissions and Quiet periods are shown in the following figure.

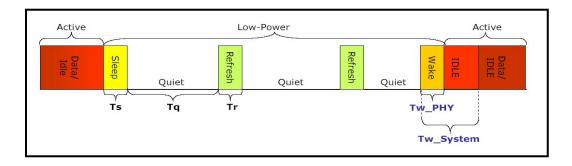


Figure 8. LPI Mode (Refresh transmissions and Quiet periods)

Transmit Direction Control (MAC-to-PHY)

The KSZ9031MNX enters LPI mode for the transmit direction when its attached EEE-compliant MAC de-asserts TX_EN, asserts TX_ER, and sets TXD[7:0] to "0000_0001" for GMII (1000Mbps) or TXD[3:0] to "0001" for MII (100Mbps). The KSZ9031MNX will remain in the transmit LPI state while the MAC maintains the states of these signals. When the MAC changes any of the TX_EN, TX_ER, or TX data signals from their LPI state values, the KSZ9031MNX will exit the LPI transmit state.

For GMII (1000Mbps), the GTX_CLK clock can be stopped by the MAC after the GMII signals for the LPI state have been asserted for 9 or more GTX_CLK clock cycles to save additional power.

The following figure shows the LPI transition for GMII transmit.

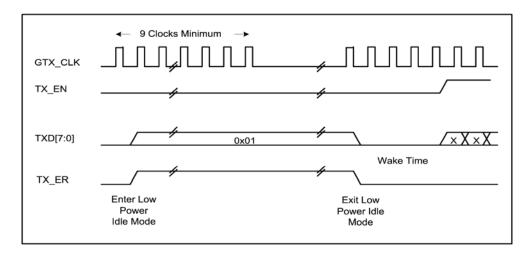


Figure 9. LPI Transition – GMII (1000Mbps) Transmit

For MII (100Mbps), the TX_CLK is not stopped, as it is sourced from the PHY and is used by the MAC for MII transmit. The following figure shows the LPI transition for MII transmit.

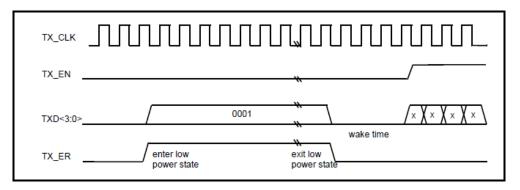


Figure 10. LPI Transition – MII (100Mbps) Transmit

Receive Direction Control (PHY-to-MAC)

The KSZ9031MNX enters LPI mode for the receive direction upon receiving the /P/ code bit pattern (Sleep/Refresh) from its EEE-compliant link partner, and then will de-assert RX_DV, assert RX_ER and drive RXD[7:0] to "0000_0001" for GMII (100Mbps) or RXD[3:0] to "0001" for MII (100Mbps). The KSZ9031MNX will remain in the receive LPI state while it continues to receive the Refresh from its link partner, and thus will continue to maintain and drive the LPI output states for the GMII / MII receive signals to inform the attached EEE-compliant MAC that it is in the receive LPI state. When the KSZ9031MNX receives a non /P/ code bit pattern (non Refresh), it exits the receive LPI state and sets the RX_DV, RX_ER and RX data signals accordingly for a normal frame or normal idle.

For GMII (1000Mbps), the KSZ9031MNX stops the RX_CLK clock output to the MAC after 9 or more RX_CLK clock cycles have occurred in the receive LPI state to provide further power saving.

The following figure shows the LPI transition for GMII receive.

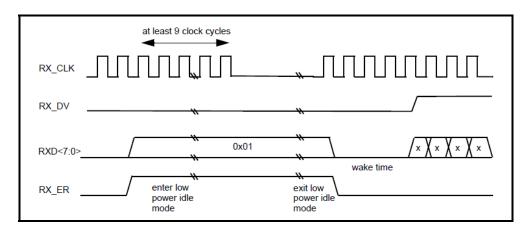


Figure 11. LPI Transition – GMII (1000Mbps) Receive

Similarly, for MII (100Mbps), the KSZ9031MNX stops the RX_CLK clock output to the MAC after 9 or more RX_CLK clock cycles have occurred in the receive LPI state to provide further power saving.

The following figure shows the LPI transition for MII receive.

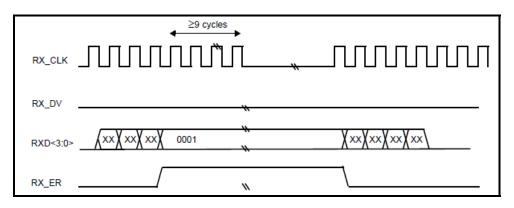


Figure 12. LPI Transition – MII (100Mbps) Receive

Registers Associated with EEE

The following MMD registers are provided for EEE configuration and management:

- MMD address 3h, register 0h PCS EEE Control Register
- MMD address 3h, register 1h PCS EEE Status Register
- MMD address 7h, register 3Ch EEE Advertisement Register
- MMD address 7h, register 3Dh EEE Link Partner Advertisement Register

Wake-on-LAN

Wake-On-LAN (WOL) is normally a MAC-based function to wake up a host system (for example, an Ethernet end device, such as a PC) that is in standby power mode. Wake-up is triggered by receiving and detecting a special packet (commonly referred to as the "Magic Packet") that is sent by the remote link partner. The KSZ9031MNX can perform the same WOL function if the MAC address of its associated MAC device is entered into the KSZ9031MNX PHY registers for Magic Packet detection. Upon detection of the Magic Packet, the KSZ9031MNX wakes up the host by driving its Power Management Event (PME) output pin low.

By default, the WOL function is disabled. It is enabled by setting the enabling bit and configuring the associated registers for the selected PME wake-up detection method.

The KSZ9031MNX provides three methods to trigger a PME wake-up:

- Magic Packet Detection
- Customized Packet Detection
- Link Status Change Detection

Magic Packet Detection

The Magic Packet's frame format starts with 6-bytes of 0xFFh and is followed by 16 repetitions of the MAC address of its associated MAC device (local MAC device).

When the Magic Packet is detected from its link partner, the KSZ9031MNX asserts its PME output pin low.

The following MMD address 2h registers are provided for Magic Packet detection:

- Magic Packet detection is enabled by writing a one to MMD address 2h, register 10h, bit [6]
- MAC address (for local MAC device) is written to and stored in MMD address 2h, registers 11h 13h

The KSZ9031MNX does not generate the Magic Packet. The Magic Packet must be provided by the external system.

Customized Packet Detection

The Customized Packet has associated register/bit masks to select which byte or bytes of the first 64-bytes of the packet to utilize in the CRC calculation. As the KSZ9031MNX receives the packet from its link partner, the selected byte(s) for the received packet is/are used to calculate the CRC. The calculated CRC is compared with the expected CRC value written to and stored in the KSZ9031MNX PHY registers in advance. If there is a match, the KSZ9031MNX asserts its PME output pin low.

Four Customized Packets are provided to support four types of wake-up scenarios. A dedicated set of registers is used to configure and enable each Customized Packet.

The following MMD registers are provided for Customized Packet detection:

- Each of the four Customized Packets is enabled via MMD address 2h, register 10h,
 - bit [2] // for Customized Packets, type 0
 - bit [3] // for Customized Packets, type 1
 - bit [4] // for Customized Packets, type 2
 - bit [5] // for Customized Packets, type 3
- 32-bit expected CRCs are written to and stored in:
 - MMD address 2h, registers 14h 15h // for Customized Packets, type 0
 - MMD address 2h, registers 16h 17h // for Customized Packets, type 1
 - MMD address 2h, registers 18h 19h // for Customized Packets, type 2
 - MMD address 2h, registers 1Ah 1Bh // for Customized Packets, type 3
- Masks to indicate which of the first 64-bytes to utilize in the CRC calculation are set in:
 - MMD address 2h, registers 1Ch 1Fh // for Customized Packets, type 0
 - MMD address 2h, registers 20h 23h // for Customized Packets, type 1
 - MMD address 2h, registers 24h 27h // for Customized Packets, type 2
 - MMD address 2h, registers 28h 2Bh // for Customized Packets, type 3
- 32-bit calculated CRCs (of receive packet) are stored in:
 - MMD address 2h, registers 30h 31h // for Customized Packets, type 0
 - MMD address 2h, registers 32h 33h // for Customized Packets, type 1
 - MMD address 2h, registers 34h 35h // for Customized Packets, type 2
 - MMD address 2h, registers 36h 37h // for Customized Packets, type 3

Link Status Change Detection

If Link Status Change Detection is enabled, the KSZ9031MNX asserts its PME output pin low whenever there is a link status change per the following MMD address 2h register bits and their enabled(1) or disabled (0) settings:

- MMD address 2h, register 10h, bit [0] // for link-up detection
- MMD address 2h, register 10h, bit [1] // for link-down detection

The PME output signal is available on either LED1/PME_N1 (pin 19) or INT_N/PME_N2 (pin 53), and is selected and enabled via MMD address 2h, register 2h, bits [8] and [10], respectively. Additionally, MMD address 2h, register 10h, bits [15:14] defines the output function(s) for pins 19 and 53.

The PME output is active low and requires a 1K pull-up to the VDDIO supply. When asserted, the PME output is cleared by disabling the register bit that enabled the PME trigger source (Magic Packet, Customized Packet, Link Status Change).

Typical Current / Power Consumption

The following tables show the typical current consumption by the core (DVDDL, AVDDL, AVDDL_PLL), transceiver (AVDDH) and digital I/Os (DVDDH) supply pins, and the total typical power for the entire KSZ9031MNX device for various nominal operating voltages combinations.

Transceiver (3.3V), Digital I/Os (3.3V)

Condition	1.2V Core (DVDDL, AVDDL, AVDDL_PLL)	3.3V Transceiver (AVDDH)	3.3V Digital I/Os (DVDDH)	Total Chip Power
	mA	mA	mA	mW
1000Base-T Link-up (no traffic)	211	66.6	26.0	560
1000Base-T Full-duplex @ 100% utilization	221	65.6	53.8	660
100Base-TX Link-up (no traffic)	60.6	28.7	13.3	211
100Base-TX Full-duplex @ 100% utilization	61.2	28.7	18.0	228
10Base-T Link-up (no traffic)	7.0	17.0	5.7	83
10Base-T Full-duplex @ 100% utilization	7.7	29.3	11.1	143
EEE Mode – 1000Mbps	41.6	5.5	3.7	80
EEE Mode – 100Mbps (Tx and Rx in LPI)	25.3	5.2	7.0	71
Software Power Down Mode (Reg. 0h.11 =1)	0.9	4.1	7.1	38

Table 9. Typical Current / Power Consumption – Transceiver (3.3V), Digital I/Os (3.3V)

Transceiver (3.3V), Digital I/Os (1.8V)

Condition	1.2V Core (DVDDL, AVDDL, AVDDL_PLL)	3.3V Transceiver (AVDDH)	1.8V Digital I/Os (DVDDH)	Total Chip Power
	mA	mA	mA	mW
1000Base-T Link-up (no traffic)	211	66.6	14.2	498
1000Base-T Full-duplex @ 100% utilization	221	65.6	29.3	534
100Base-TX Link-up (no traffic)	60.6	28.7	7.3	181
100Base-TX Full-duplex @ 100% utilization	61.2	28.7	10.0	186
10Base-T Link-up (no traffic)	7.0	17.0	3.1	70
10Base-T Full-duplex @ 100% utilization	7.7	29.3	6.0	117
EEE Mode – 1000Mbps	41.6	5.5	2.4	72
EEE Mode – 100Mbps (Tx and Rx in LPI)	25.3	5.2	3.8	54
Software Power Down Mode (Reg. 0h.11 =1)	0.9	4.1	3.7	21

Table 10. Typical Current / Power Consumption – Transceiver (3.3V), Digital I/Os (1.8V)

Transceiver (2.5V), Digital I/Os (2.5V)

Condition	1.2V Core (DVDDL, AVDDL, AVDDL_PLL)	2.5V Transceiver (AVDDH – commercial temp only) *	2.5V Digital I/Os (DVDDH)	Total Chip Power
	mA	mA	mA	mW
1000Base-T Link-up (no traffic)	211	58.6	19.3	448
1000Base-T Full-duplex @ 100% utilization	221	57.6	40.5	510
100Base-TX Link-up (no traffic)	60.6	24.8	10.0	160
100Base-TX Full-duplex @ 100% utilization	61.2	24.8	13.7	170
10Base-T Link-up (no traffic)	7.0	12.5	4.3	50
10Base-T Full-duplex @ 100% utilization	7.7	25.8	8.3	94
EEE Mode – 1000Mbps	41.6	4.4	2.9	68
EEE Mode – 100Mbps (Tx and Rx in LPI)	25.3	4.0	5.2	53
Software Power Down Mode (Reg. 0h.11 =1)	0.9	3.0	5.3	22

Note: * 2.5V AVDDH is recommended for commercial temperature range (0°C to +70°C) operation only.

Table 11. Typical Current / Power Consumption – Transceiver (2.5V), Digital I/Os (2.5V)

Transceiver (2.5V), Digital I/Os (1.8V)

Condition	1.2V Core (DVDDL, AVDDL, AVDDL_PLL)	2.5V Transceiver (AVDDH – commercial temp only) *	1.8V Digital I/Os (DVDDH)	Total Chip Power
	mA	mA	mA	mW
1000Base-T Link-up (no traffic)	211	58.6	14.2	425
1000Base-T Full-duplex @ 100% utilization	221	57.6	29.3	462
100Base-TX Link-up (no traffic)	60.6	24.8	7.3	148
100Base-TX Full-duplex @ 100% utilization	61.2	24.8	10.0	153
10Base-T Link-up (no traffic)	7.0	12.5	3.1	45
10Base-T Full-duplex @ 100% utilization	7.7	25.8	6.0	85
EEE Mode – 1000Mbps	41.6	4.4	2.4	65
EEE Mode – 100Mbps (Tx and Rx in LPI)	25.3	4.0	3.8	47
Software Power Down Mode (Reg. 0h.11 =1)	0.9	3.0	3.7	15

Note: * 2.5V AVDDH is recommended for commercial temperature range (0°C to +70°C) operation only.

Table 12. Typical Current / Power Consumption – Transceiver (2.5V), Digital I/Os (1.8V)

Register Map

The register space within the KSZ9013MNX is comprised of two distinct areas.

- Standard Registers // direct register access
- MDIO Manageable Device (MMD) Registers // i

// indirect register access

The KSZ9031MNX supports the following Standard Registers.

Register Number (Hex)	Description
IEEE Defined Registers	
Oh	Basic Control
1h	Basic Status
2h	PHY Identifier 1
3h	PHY Identifier 2
4h	Auto-Negotiation Advertisement
5h	Auto-Negotiation Link Partner Ability
6h	Auto-Negotiation Expansion
7h	Auto-Negotiation Next Page
8h	Auto-Negotiation Link Partner Next Page Ability
9h	1000Base-T Control
Ah	1000Base-T Status
Bh – Ch	Reserved
Dh	MMD Access – Control
Eh	MMD Access – Register/Data
Fh	Extended Status
Vendor Specific Registers	
10h	Reserved
11h	Remote Loopback
12h	LinkMD [®] Cable Diagnostic
13h	Digital PMA/PCS Status
14h	Reserved
15h	RXER Counter
16h – 1Ah	Reserved
1Bh	Interrupt Control/Status
1Ch	Auto MDI/MDI-X
1Dh – 1Eh	Reserved
1Fh	PHY Control

Table 13. Standard Registers – supported by KSZ9031MNX

The KSZ9031MNX supports the following MMD Device Addresses and their associated Register Addresses, which makes up the indirect MMD Registers.

Device Address (Hex)	Register Address (Hex)	Description	
1h	5Ah	1000Base-T Link-up Time Control	
2h	0h	Common Control	
	1h	Strap Status	
	2h	Operation Mode Strap Override	
	3h	Operation Mode Strap Status	
	4h	GMII Control Signal Pad Skew	
	8h	GMII Clock Pad Skew	
	10h	Wake-On-LAN – Control	
	11h	Wake-On-LAN – Magic Packet, MAC-DA-0	
	12h	Wake-On-LAN – Magic Packet, MAC-DA-1	
	13h	Wake-On-LAN – Magic Packet, MAC-DA-2	
	14h	Wake-On-LAN – Customized Packet, Type-0, Expected-CRC-0	
	15h	Wake-On-LAN – Customized Packet, Type-0, Expected-CRC-1	
	16h	Wake-On-LAN – Customized Packet, Type-1, Expected-CRC-0	
	17h	Wake-On-LAN – Customized Packet, Type-1, Expected-CRC-1	
	18h	Wake-On-LAN – Customized Packet, Type-2, Expected-CRC-0	
	19h	Wake-On-LAN – Customized Packet, Type-2, Expected-CRC-1	
	1Ah	Wake-On-LAN – Customized Packet, Type-3, Expected-CRC-0	
	1Bh	Wake-On-LAN – Customized Packet, Type-3, Expected-CRC-1	
	1Ch	Wake-On-LAN – Customized Packet, Type-0, Mask-0	
	1Dh	Wake-On-LAN – Customized Packet, Type-0, Mask-1	
	1Eh	Wake-On-LAN – Customized Packet, Type-0, Mask-2	
	1Fh	Wake-On-LAN – Customized Packet, Type-0, Mask-3	
	20h	Wake-On-LAN – Customized Packet, Type-1, Mask-0	
	21h	Wake-On-LAN – Customized Packet, Type-1, Mask-1	
	22h	Wake-On-LAN – Customized Packet, Type-1, Mask-2	
	23h	Wake-On-LAN – Customized Packet, Type-1, Mask-3	
	24h	Wake-On-LAN – Customized Packet, Type-2, Mask-0	
	25h	Wake-On-LAN – Customized Packet, Type-2, Mask-1	
	26h	Wake-On-LAN – Customized Packet, Type-2, Mask-2	
	27h	Wake-On-LAN – Customized Packet, Type-2, Mask-3	
	28h	Wake-On-LAN – Customized Packet, Type-3, Mask-0	
	29h	Wake-On-LAN – Customized Packet, Type-3, Mask-1	
	2Ah	Wake-On-LAN – Customized Packet, Type-3, Mask-2	
	2Bh	Wake-On-LAN – Customized Packet, Type-3, Mask-3	
3h	0h	PCS EEE – Control	
	1h	PCS EEE – Status	
7h	3Ch	EEE Advertisement	
	3Dh	EEE Link Partner Advertisement	
1Ch	4h	Analog Control 4	
	23h	EDPD Control	

Table 14. MMD Registers – supported by KSZ9031MNX

Standard Registers

Standard Registers provide direct read/write access to a 32-register address space, as defined per Clause 22 of the IEEE 802.3 Specification. Within this address space, the first 16-registers (registers 0h to Fh) are defined per the IEEE specification, while the remaining 16-registers (registers 10h to 1Fh) are defined specific to the PHY vendor.

IEEE Defined Registers – Descriptions

Register 0h – Basic Control								
Reset	1 = Software PHY reset	RW/SC	0					
	0 = Normal operation							
	This bit is self-cleared after a '1' is written to it.							
Loop-back	1 = Loop-back mode	RW	0					
	0 = Normal operation							
Speed Select	[0.6, 0.13]	RW	0					
(LSB)	[1,1] = Reserved							
	[1,0] = 1000 Mbps							
	[0,1] = 100 Mbps							
	[0,0] = 10 Mbps							
	This bit is ignored if Auto-Negotiation is enabled (Reg. $0.12 = 1$).							
Auto-	1 = Enable Auto-Negotiation process	RW	1					
	0 = Disable Auto-Negotiation process							
LINDIC	If enabled, Auto-Negotiation result overrides settings in Reg. 0.13, 0.8 and 0.6.							
Power Down	1 = Power down mode	RW	0					
	0 = Normal operation							
Isolate	1 = Electrical isolation of PHY from GMII / MII	RW	0					
	0 = Normal operation							
Restart Auto-	1 = Restart Auto-Negotiation process	RW/SC	0					
Negotiation	0 = Normal operation.							
	This bit is self-cleared after a '1' is written to it.							
Duplex Mode	1 = Full-duplex	RW	1					
	0 = Half-duplex							
Collision Test	1 = Enable COL test	RW	0					
	0 = Disable COL test							
Speed Select	[0.6, 0.13]	RW	Set by MODE[3:0] strapping					
(MSB)	[1,1] = Reserved		pins.					
	[1,0] = 1000 Mbps		See "Strapping Options" section for details.					
	[0,1] = 100 Mbps							
	[0,0] = 10 Mbps							
	This bit is ignored if Auto-Negotiation is enabled (Reg. $0.12 = 1$).							
Reserved	Reserved	RO	00_0000					
	Loop-back Speed Select (LSB) Auto- Negotiation Enable Power Down Isolate Restart Auto- Negotiation Duplex Mode Collision Test Speed Select (MSB)	0 = Normal operation This bit is self-cleared after a '1' is written to it.Loop-back1 = Loop-back mode 0 = Normal operationSpeed Select (LSB)[0.6, 0.13] [1,1] = Reserved [1,0] = 100 Mbps [0,1] = 100 Mbps [0,1] = 100 Mbps [0,0] = 10 Mbps This bit is ignored if Auto-Negotiation is enabled (Reg. 0.12 = 1).Auto- Negotiation Enable1 = Enable Auto-Negotiation process 0 = Disable Auto-Negotiation process If enabled, Auto-Negotiation process If enabled, Auto-Negotiation result overrides settings in Reg. 0.13, 0.8 and 0.6.Power Down1 = Power down mode 0 = Normal operationIsolate1 = Electrical isolation of PHY from GMII / MII 0 = Normal operationRestart Auto- Negotiation 2 = Normal operation. This bit is self-cleared after a '1' is written to it.Duplex Mode1 = Full-duplex 0 = Half-duplexCollision Test1 = Enable COL test 0 = Disable COL test 0 = Disable COL testSpeed Select (MSB)[0,6, 0.13] [1,1] = Reserved [1,0] = 100 Mbps [0,1] = 100 Mbps [0,1] = 100 Mbps [0,1] = 100 Mbps [0,0] = 10 Mbps This bit is ignored if Auto-Negotiation is enabled (Reg. 0.12 = 1).	0 = Normal operation This bit is self-cleared after a '1' is written to it.Loop-back1 = Loop-back mode 0 = Normal operationRWSpeed Select (LSB)[0.6, 0.13] [1,1] = Reserved [1,0] = 1000 Mbps [0,0] = 10 Mbps [0,0] = 10 Mbps [0,0] = 10 Mbps This bit is ignored if Auto-Negotiation is enabled (Reg. 0.12 = 1).RWAuto- Negotiation Enable1 = Enable Auto-Negotiation process If enabled, Auto-Negotiation process If enabled, Auto-Negotiation result overrides settings in Reg. 0.13, 0.8 and 0.6.RWPower Down1 = Power down mode 0 = Normal operationRWIsolate1 = Electrical isolation of PHY from GMII / MII 0 = Normal operationRWRestart Auto- Negotiation1 = Restart Auto-Negotiation process 0 = Normal operationRW/SCDuplex Mode1 = Full-duplex 0 = Normal operation. This bit is self-cleared after a '1' is written to it.RWDuplex Mode1 = Full-duplex 0 = Half-duplexRWCollision Test1 = Enable COL test 0 = Disable COL testRWSpeed Select (MSB)[0,6, 0.13] [1,1] = Reserved [1,0] = 100 Mbps [0,0] = 10 Mbps [0,0] = 10 Mbps This bit is ignored if Auto-Negotiation is enabled (Reg. 0.12 = 1).RW					

Address	Name	Description	Mode ⁽¹⁾	Default
Register 1h	– Basic Status	1		
1.15	100Base-T4	1 = T4 capable	RO	0
		0 = Not T4 capable		
1.14	100Base-TX	1 = Capable of 100 Mbps full-duplex	RO	1
Full-Duplex		0 = Not capable of 100 Mbps full-duplex		
1.13	100Base-TX	1 = Capable of 100 Mbps half-duplex	RO	1
	Half-Duplex	0 = Not capable of 100 Mbps half-duplex		
1.12	10Base-T	1 = Capable of 10 Mbps full-duplex	RO	1
	Full-Duplex	0 = Not capable of 10 Mbps full-duplex		
1.11	10Base-T	1 = Capable of 10 Mbps half-duplex	RO	1
	Half-Duplex	0 = Not capable of 10 Mbps half-duplex		
1.10:9	Reserved	Reserved	RO	00
1.8	Extended	1 = Extended Status Info in Reg. 15h.	RO	1
	Status	0 = No Extended Status Info in Reg. 15h.		
1.7	Reserved	Reserved	RO	0
1.6	No Preamble	1 = Preamble suppression	RO	1
		0 = Normal preamble		
1.5	Auto-	1 = Auto-Negotiation process completed	RO	0
	Negotiation Complete	0 = Auto-Negotiation process not completed		
1.4	Remote Fault	1 = Remote fault	RO/LH	0
		0 = No remote fault		
1.3	Auto-	1 = Capable to perform Auto-Negotiation	RO	1
	Negotiation Ability	0 = Not capable to perform Auto-Negotiation		
1.2	Link Status	1 = Link is up	RO/LL	0
		0 = Link is down		
1.1	Jabber Detect	1 = Jabber detected	RO/LH	0
		0 = Jabber not detected (default is low)		
1.0	Extended Capability	1 = Supports extended capability registers	RO	1
Register 2h	– PHY Identifier 1	1		
2.15:0	PHY ID Number	Assigned to the 3rd through 18th bits of the Organizationally Unique Identifier (OUI). Kendin Communication's OUI is 0010A1h	RO	0022h
Register 3h	– PHY Identifier 2			
3.15:10	PHY ID	Assigned to the 19th through 24 th bits of the	RO	0001_01
	Number	Organizationally Unique Identifier (OUI). Kendin Communication's OUI is 0010A1h		
3.9:4	Model Number	Six-bit manufacturer's model number	RO	10_0010
3.3:0	Revision Number	Four-bit manufacturer's revision number	RO	Indicates silicon revision
Register 4h	– Auto-Negotiatio	n Advertisement	<u> </u>	_
4.15	Next Page	1 = Next page capable	RW	0
		0 = No next page capability.		
4.14	Reserved	Reserved	RO	0

Address	Name	Description	Mode ⁽¹⁾	Default
4.13	Remote Fault	1 = Remote fault supported	RW	0
		0 = No remote fault		
4.12	Reserved	Reserved	RO	0
4.11:10	Pause [4.11, 4.10]		RW	00
		[0,0] = No PAUSE		
		[1,0] = Asymmetric PAUSE (link partner)		
		[0,1] = Symmetric PAUSE		
		[1,1] = Symmetric & Asymmetric PAUSE		
		(local device)		
4.9	100Base-T4	1 = T4 capable	RO	0
		0 = No T4 capability		
4.8	100Base-TX	1 = 100 Mbps full-duplex capable	RW	1
	Full-Duplex	0 = No 100Mbps full-duplex capability		
4.7	100Base-TX	1 = 100 Mbps half-duplex capable	RW	1
	Half-Duplex	0 = No 100 Mbps half-duplex capability		
4.6	10Base-T	1 = 10 Mbps full-duplex capable	RW	1
	Full-Duplex	0 = No 10 Mbps full-duplex capability		
4.5	10Base-T	1 = 10 Mbps half-duplex capable	RW	1
	Half-Duplex	0 = No 10 Mbps half-duplex capability		
4.4:0	Selector Field	[00001] = IEEE 802.3	RW	0_0001
Register 5h	– Auto-Negotiatio	n Link Partner Ability	•	
5.15	Next Page	1 = Next page capable	RO	0
		0 = No next page capability		
5.14	Acknowledge	1 = Link code word received from partner	RO	0
		0 = Link code word not yet received		
5.13	Remote Fault	1 = Remote fault detected	RO	0
		0 = No remote fault		
5.12	Reserved		RO	0
5.11:10	Pause	[5.11, 5.10]	RW	00
		[0,0] = No PAUSE		
		[1,0] = Asymmetric PAUSE (link partner)		
		[0,1] = Symmetric PAUSE		
		[1,1] = Symmetric & Asymmetric PAUSE		
		(local device)		
5.9	100Base-T4	1 = T4 capable	RO	0
		0 = No T4 capability		
5.8	100Base-TX	1 = 100 Mbps full-duplex capable	RO	0
	Full-Duplex	0 = No 100 Mbps full-duplex capability		
5.7	100Base-TX	1 = 100 Mbps half-duplex capable	RO	0
	Half-Duplex	0 = No 100 Mbps half-duplex capability		
5.6	10Base-T	1 = 10 Mbps full-duplex capable	RO	0
	Full-Duplex	0 = No 10 Mbps full-duplex capability		

Address	Name	Description	Mode ⁽¹⁾	Default
5.5	10Base-T	1 = 10 Mbps half-duplex capable	RO	0
	Half-Duplex	0 = No 10 Mbps half-duplex capability		
5.4:0	Selector Field	[00001] = IEEE 802.3	RO	0_0000
Register 6h	- Auto-Negotiatio	n Expansion	I	
6.15:5	Reserved	Reserved	RO	0000_0000_000
6.4	Parallel	1 = Fault detected by parallel detection	RO/LH	0
	Detection Fault	0 = No fault detected by parallel detection.		
6.3	Link Partner	1 = Link partner has next page capability	RO	0
	Next Page Able	0 = Link partner does not have next page capability		
6.2	Next Page	1 = Local device has next page capability	RO	1
	Able	0 = Local device does not have next page capability		
6.1	Page Received	1 = New page received	RO/LH	0
		0 = New page not received yet		
6.0	Link Partner	1 = Link partner has Auto-Negotiation capability	RO	0
	Auto- Negotiation Able	0 = Link partner does not have Auto-Negotiation capability		
Register 7h	– Auto-Negotiatio	n Next Page		
7.15	Next Page	1 = Additional next page(s) will follow	RW	0
	Ū	0 = Last page		
7.14	Reserved	Reserved	RO	0
7.13	Message Page	1 = Message page	RW	1
		0 = Unformatted page		
7.12	Acknowledge2	1 = Will comply with message	RW	0
		0 = Cannot comply with message		
7.11	Toggle	1 = Previous value of the transmitted link code word equaled logic one	RO	0
		0 = Logic zero		
7.10:0	Message Field	11-bit wide field to encode 2048 messages	RW	000_0000_0001
Register 8h	- Auto-Negotiatio	n Link Partner Next Page Ability		
8.15	Next Page	1 = Additional Next Page(s) will follow	RO	0
		0 = Last page		
8.14	Acknowledge	1 = Successful receipt of link word	RO	0
		0 = No successful receipt of link word		
8.13	Message Page	1 = Message page	RO	0
		0 = Unformatted page		
8.12	Acknowledge2	1 = Able to act on the information	RO	0
		0 = Not able to act on the information		
8.11	Toggle	1 = Previous value of transmitted link code word equal to logic zero	RO	0
		0 = Previous value of transmitted link code word equal to logic one		
8.10:0	Message Field		RO	000_0000_0000

Address	Name	Descriptio	n	Mode ⁽¹⁾	Default
Register 9h	– 1000Base-T Cor	ntrol			
9.15:13	Test Mode Bits	Transmitter	test mode operations	RW	000
		[9.15:13]	Mode		
		[000]	Normal Operation		
		[001]	Test mode 1 –Transmit waveform test		
		[010]	Test mode 2 –Transmit jitter test in Master mode		
		[011]	Test mode 3 –Transmit jitter test in Slave mode		
		[100]	Test mode 4 –Transmitter distortion test		
		[101]	Reserved, operations not identified		
		[110]	Reserved, operations not identified		
		[111]	Reserved, operations not identified		
9.12	MASTER- SLAVE		MASTER-SLAVE Manual ration value	RW	0
	Manual Config Enable		0 = Disable MASTER-SLAVE Manual configuration value		
9.11	MASTER- SLAVE		re PHY as MASTER during ER-SLAVE negotiation	RW	0
	Manual Config Value		re PHY as SLAVE during MASTER-		
			gnored if MASTER-SLAVE Manual sabled (Reg. 9.12 = 0).		
9.10	Port Type		e the preference to operate as rt device (MASTER)	RW	0
			the preference to operate as single- vice (SLAVE)		
		Manual Co	alid only if the MASTER-SLAVE nfig Enable bit is disabled 9.12 = 0).		
9.9	1000Base-T Full-Duplex	1 = Advertis capable	se PHY is 1000Base-T full-duplex e	RW	1
			se PHY is not 1000Base-T full- capable		
9.8	1000Base-T Half-Duplex	1 = Advertis capable	se PHY is 1000Base-T half-duplex e	RW	Set by MODE[3:0] strapping pins.
			se PHY is not 1000Base-T half- capable		See "Strapping Options" section for details.
9.7:0	Reserved	Write as 0,	ignore on read	RO	
Register Ah	- 1000Base-T Sta	tus		<u> </u>	
A.15	MASTER- SLAVE	1 = MASTE detecte	R-SLAVE configuration fault	RO/LH/SC	0
	configuration fault	0 = No MAS detecte	STER-SLAVE configuration fault d		

Address	Name	Description	Mode ⁽¹⁾	Default
A.14	MASTER- SLAVE	1 = Local PHY configuration resolved to MASTER	RO	0
	configuration resolution	0 = Local PHY configuration resolved to SLAVE		
A.13	Local	1 = Local Receiver OK (loc_rcvr_status = 1)	RO	0
	Receiver Status	0 = Local Receiver not OK (loc_rcvr_status = 0)		
A.12	Remote	1 = Remote Receiver OK (rem_rcvr_status = 1)	RO	0
	Receiver Status	0 = Remote Receiver not OK (rem_rcvr_status = 0)		
A.11	Link Partner 1000Base-T	1 = Link Partner is capable of 1000Base-T full- duplex	RO	0
	Full-duplex capability	0 = Link Partner is not capable of 1000Base-T full-duplex		
A.10	Link Partner 1000Base-T	1 = Link Partner is capable of 1000Base-T half- duplex	RO	0
	Half-duplex capability	0 = Link Partner is not capable of 1000Base-T half-duplex		
A.9:8	Reserved	Reserved	RO	00
A.7:0	Idle Error Count	Cumulative count of errors detected when receiver is receiving idles and PMA_TXMODE.indicate = SEND_N.	RO/SC	0000_0000
		The counter is incremented every symbol period that rxerror_status = ERROR.		
Register Dh	– MMD Access – O	Control		
D.15:14	MMD – Operation Mode	For the selected MMD – Device Address (bits [4:0] of this register), these two bits select one of the following Register or Data operations and the usage for MMD Access – Register/Data (Reg. Eh).	RW	00
		00 = Register		
		01 = Data, no post increment		
		10 = Data, post increment on reads and writes		
		11 = Data, post increment on writes only		
D.13:5	Reserved	Reserved	RW	00_0000_000
D.4:0	MMD – Device Address	The MMD – Device Address is set by these five bits.	RW	0_0000
Register Eh	– MMD Access – F	Register/Data		
E.15:0	MMD – Register / Data	For the selected MMD – Device Address (Reg. Dh, bits [4:0]),	RW	0000_0000_0000_0000
		When Reg. Dh, bits [15:14] = 00, this register contains the read/write register address for the MMD – Device Address.		
		Otherwise, this register contains the read/write data value for the MMD – Device Address and its selected Register Address.		
		See also Reg. Dh, bits [15:14] descriptions for post increment reads and writes of this register for Data operation.		

Address	Name	Description	Mode ⁽¹⁾	Default
Register Fr	n – Extended Statu	IS		
F.15	1000Base-X	1 = PHY able to perform 1000Base-X	RO	0
	Full-duplex	Full-duplex		
		0 = PHY not able to perform 1000Base-X		
		Full-duplex		
F.14	1000Base-X	1 = PHY able to perform 1000Base-X	RO	0
	Half-duplex	Half-duplex		
		0 = PHY not able to perform 1000Base-X		
		Half-duplex		
F.13	1000Base-T	1 = PHY able to perform 1000Base-T	RO	1
	Full-duplex	Full-duplex		
		0 = PHY not able to perform 1000Base-T		
		Full-duplex		
F.12	1000Base-T	1 = PHY able to perform 1000Base-T	RO	1
	Half-duplex	Half-duplex		
		0 = PHY not able to perform 1000Base-T		
		Half-duplex		
F.11:0	Reserved	Ignore when read	RO	-

Note:

1. RW = Read/Write.

RO = Read only.

SC = Self-cleared.

LH = Latch high.

LL = Latch low.

Vendor Specific Registers – Descriptions

Address	Name	Description	Mode ⁽¹⁾	Default			
Register 11h – Remote Loopback							
11.15:9	Reserved	Reserved	RW	0000_000			
11.8	Remote	1 = Enable Remote Loopback	RW	0			
	Loopback	0 = Disable Remote Loopback					
11.7:1	Reserved	Reserved	RW	1111_010			
11.0	Reserved	Reserved	RO	0			
Register 12	h – LinkMD [®] – Ca	ble Diagnostic					
12.15	Cable	Write value:	RW/SC	0			
	Diagnostic Test Enable	1 = Enable cable diagnostic test. After test has completed, this bit is self-cleared.					
		0 = Disable cable diagnostic test.					
		Read value:					
		1 = Cable diagnostic test is in progress.					
		 0 = Indicates cable diagnostic test (if enabled) has completed and the status information is valid for read. 					

Address	Name	Description	Mode ⁽¹⁾	Default
12.14	Reserved	This bit should always be set to '0'.	RW	0
12.13:12	Cable Diagnostic	These two bits select the differential pair for testing:	RW	00
	Test Pair	00 = Differential pair A (pins 2, 3)		
		01 = Differential pair B (pins 5, 6)		
		10 = Differential pair C (pins 7, 8)		
		11 = Differential pair D (pins 10, 11)		
12.11:10	Reserved	These two bits should always be set to '00'.	RW	00
12.9:8	Cable Diagnostic Status	These two bits represent the test result for the selected differential pair in bits [13:12] of this register.	RO	00
		00 = Normal cable condition (no fault detected)		
		01 = Open cable fault detected		
		10 = Short cable fault detected		
		11 = Reserved		
12.7:0	Cable Diagnostic Fault Data	For the open or short cable fault detected in bits [9:8] of this register, this 8-bit value represents the distance to the cable fault.	RO	0000_0000
Register 13	h – Digital PMA/PC	S Status		
13.15:3	Reserved	Reserved	RO/LH	0000_0000_0000_0
13.2	1000Base-T Link Status	1000Base-T Link Status	RO	0
		1 = Link status is OK		
		0 = Link status is not OK		
13.1	100Base-TX	100Base-TX Link Status	RO	0
	Link Status	1 = Link status is OK		
		0 = Link status is not OK		
13.0	Reserved	Reserved	RO	0
Register 15	h – RXER Counter	·		
15.15:0	RXER Counter	Receive error counter for Symbol Error frames	RO/RC	0000_0000_0000
Register 1B	h – Interrupt Contr	ol/Status		
1B.15	Jabber	1 = Enable Jabber Interrupt	RW	0
	Interrupt Enable	0 = Disable Jabber Interrupt		
1B.14	Receive Error	1 = Enable Receive Error Interrupt	RW	0
	Interrupt Enable	0 = Disable Receive Error Interrupt		
1B.13	Page Received	1 = Enable Page Received Interrupt	RW	0
	Interrupt Enable	0 = Disable Page Received Interrupt		
1B.12	Parallel Detect	1 = Enable Parallel Detect Fault Interrupt	RW	0
	Fault Interrupt Enable	0 = Disable Parallel Detect Fault Interrupt		
1B.11	Link Partner	1 = Enable Link Partner Acknowledge Interrupt	RW	0
	Acknowledge Interrupt Enable	0 = Disable Link Partner Acknowledge Interrupt		

Address	Name	Description	Mode ⁽¹⁾	Default
1B.10	Link Down	1 = Enable Link Down Interrupt	RW	0
	Interrupt Enable	0 = Disable Link Down Interrupt		
1B.9	Remote Fault	1 = Enable Remote Fault Interrupt	RW	0
	Interrupt Enable	0 = Disable Remote Fault Interrupt		
1B.8	Link Up Interrupt Enable	1 = Enable Link Up Interrupt 0 = Disable Link Up Interrupt	RW	0
1B.7	Jabber	1 = Jabber occurred	RO/RC	0
	Interrupt	0 = Jabber did not occurred		
1B.6	Receive Error	1 = Receive Error occurred	RO/RC	0
	Interrupt	0 = Receive Error did not occurred		
1B.5	Page Receive	1 = Page Receive occurred	RO/RC	0
	Interrupt	0 = Page Receive did not occurred		
1B.4	Parallel Detect	1 = Parallel Detect Fault occurred	RO/RC	0
	Fault Interrupt	0 = Parallel Detect Fault did not occurred		
1B.3	Link Partner	1 = Link Partner Acknowledge occurred	RO/RC	0
	Acknowledge Interrupt	0 = Link Partner Acknowledge did not occurred		
1B.2	Link Down	1 = Link Down occurred	RO/RC	0
	Interrupt	0 = Link Down did not occurred		
1B.1	Remote Fault	1 = Remote Fault occurred	RO/RC	0
	Interrupt	0 = Remote Fault did not occurred		
1B.0	Link Up	1 = Link Up occurred	RO/RC	0
	Interrupt	0 = Link Up did not occurred		
Register 1C	h – Auto MDI/MDI-	x		
1C.15:8	Reserved	Reserved	RW	0000_0000
1C.7	MDI-set	When Swap-off (bit [6] of this register) is asserted (1),	RW	0
		1 = PHY is set to operate as MDI mode.		
		0 = PHY is set to operate as MDI-X mode.		
		This bit has no function when Swap-off is de- asserted (0).		
1C.6	Swap-off	1 = Disable Auto MDI/MDI-X function	RW	0
		0 = Enable Auto MDI/MDI-X function		
1C.5:0	Reserved	Reserved	RW	00_0000
Register 1F	h – PHY Control	·	<u>.</u>	
1F.15	Reserved	Reserved	RW	0
1F.14	Interrupt Level	1 = Interrupt pin active high	RW	0
		0 = Interrupt pin active low		
1F.13:12	Reserved	Reserved	RW	00
1F.11:10	Reserved	Reserved	RO/LH/RC	00
1F.9	Enable Jabber	1 = Enable jabber counter	RW	1
		0 = Disable jabber counter		

Address	Name	Description	Mode ⁽¹⁾	Default
1F.8:7	Reserved	Reserved	RW	00
1F.6	Speed status 1000Base-T	1 = Indicate chip final speed status at 1000Base-T	RO	0
1F.5	Speed status 100Base-TX	1 = Indicate chip final speed status at 100Base-TX	RO	0
1F.4	Speed status 10Base-T	1 = Indicate chip final speed status at 10Base-T	RO	0
1F.3	Duplex status	Indicate chip duplex status 1 = Full-duplex 0 = Half-duplex	RO	0
1F.2	1000Base-T Mater/Slave status	Indicate chip Master/Slave status 1 = 1000Base-T Master mode 0 = 1000Base-T Slave mode	RO	0
1F.1	Reserved	Reserved	RW	0
1F.0	Link Status Check Fail	1 = Fail 0 = Not Failing	RO	0

Note:

1. RW = Read/Write.

RC = Read-cleared

RO = Read only.

SC = Self-cleared.

LH = Latch high.

MMD Registers

MMD Registers provide indirect read/write access up to 32 MMD Device Addresses with each device supporting up to 65,536 16-bit registers, as defined per Clause 22 of the IEEE 802.3 Specification. The KSZ9031MNX, however, uses only a small fraction of the available registers. See Register Map section for a list of supported MMD Device Addresses and their associated Register Addresses.

The following two Standard Registers serve as the portal registers to access the indirect MMD Registers.

- Standard Register Dh MMD Access Control
- Standard Register Eh MMD Access Register/Data

Register D	h – MMD Access – (Control		
D.15:14	MMD – Operation Mode	For the selected MMD – Device Address (bits [4:0] of this register), these two bits select one of the following Register or Data operations and the usage for MMD Access – Register/Data (Reg. Eh).	RW	00
		00 = Register		
		01 = Data, no post increment		
		10 = Data, post increment on reads and writes		
		11 = Data, post increment on writes only		
D.13:5	Reserved	Reserved	RW	00_0000_000
D.4:0	MMD – Device Address	The MMD – Device Address is set by these five bits.	RW	0_0000
Register El	h – MMD Access – I	Register/Data		
E.15:0	MMD – Register / Data	For the selected MMD – Device Address (Reg. Dh, bits [4:0]),	RW	0000_0000_0000_0000
		When Reg. Dh, bits [15:14] = 00, this register contains the read/write register address for the MMD – Device Address.		
		Otherwise, this register contains the read/write data value for the MMD – Device Address and its selected Register Address.		
		See also Reg. Dh, bits [15:14] descriptions for post increment reads and writes of this register for Data operation.		

Table 15. Portal Registers (Access to indirect MMD Registers)

Examples:

MMD Register Write

Write MMD – Device Address 2h, Register 10h = 0001h to enable link-up detection to trigger PME for WOL.

- 1. Write register Dh with 0002h
- // Setup Register Address for MMD Device Address 2h.
- 2. Write register Eh with 0010h
- // Select Register 10h of MMD Device Address 2h.
- 3. Write register Dh with 4002h // S
- // Select Register Data for MMD Device Address 2h, Register 10h.
 - 4. Write register Eh with 0001h // Write value 0001h to MMD Device Address 2h, Register 10h.

• MMD Register Read

Read MMD – Device Address 2h, Register 11h – 13h for the Magic Packet's MAC Address

- 1. Write register Dh with 0002h
- // Setup Register Address for MMD Device Address 2h.
- 2. Write register Eh with 0011h
- // Select Register 11h of MMD Device Address 2h.// Select Register Data for MMD Device Address 2h, Register 11h.
- Write register Dh with 8002h
 Read register Eh
- // Read data in MMD Device Address 2h, Register 11h.
- 5. Read register Eh
- 6. Read register Eh
- // Read data in MMD Device Address 2h, Register 12h.// Read data in MMD Device Address 2h, Register 13h.

MMD Registers – Descriptions

		Description	Mode ⁽¹⁾	Default
MMD Address	s 1h, Register 5A	h – 1000Base-T Link-up Time Control		
1.5A.15:9	Reserved	Reserved	RO	0000_000
1.5A.8:4	Reserved	Reserved	RW	1_0000
1.5A.3:1	1000Base-T Link-up Time	When the Link Partner is another KSZ9031 device, the 1000Base-T link-up time can be long. These three bits provides an optional setting to reduce the 1000Base-T link-up time.	RW	100
		100 = Default power-up setting		
		011 = Optional setting to reduce link-up time when Link Partner is KSZ9031 device.		
		All other settings are reserved and should not be used.		
		The optional setting is safe to use with any Link Partner.		
		Note: Read/Write access to this register bit is available only when Reg. 0h is set to 0x2100 for Auto-Negotiation disable and force 100Base-TX mode.		
1.5A.0	Reserved	Reserved	RW	0
MMD Address	s 2h, Register 0h	– Common Control		
2.0.15:4	Reserved	Reserved	RW	0000_0000_0000
2.0.3	LED Mode	Override strap-in for LED_MODE	RW	Set by LED_MODE strapping
		1 = Single LED Mode		pin.
		0 = Bi-color Dual LED Mode		See "Strapping Options" section for details.
2.0.2	Reserved	Reserved	RW	0
2.0.1	CLK125_EN	Override strap-in for CLK125_EN	RW	Set by CLK125_EN strapping
	Status	1 = CLK125_EN strap-in is enabled		pin.
		0 = CLK125_EN strap-in is disabled		See "Strapping Options" section for details.
2.0.0	Reserved	Reserved	RW	0
MMD Address	s 2h, Register 1h	– Strap Status		
2.1.15:8	Reserved	Reserved	RO	0000_0000

Address	Name	Description	Mode ⁽¹⁾	Default
2.1.7	LED_MODE	Strap to	RO	Set by LED_MODE strapping
	strap-in status	1 = Single LED Mode		pin.
		0 = Bi-color Dual LED Mode		See "Strapping Options" section for details.
2.1.6	Reserved	Reserved	RO	0
2.1.5	CLK125_EN strap-in status	Strap to 1 = CLK125 EN strap-in is enabled	RO	Set by CLK125_EN strapping pin.
		0 = CLK125_EN strap-in is disabled		See "Strapping Options" section for details.
2.1.4:3	Reserved	Reserved	RO	00
2.1.2:0	PHYAD[2:0]	Strap-in value for PHY Address	RO	Set by PHYAD[2:0] strapping pin
	strap-in value	Bits [4:3] of PHY Address are always set to '00'.		See "Strapping Options" section for details.
MMD Addres	s 2h, Register 2h	– Operation Mode Strap Override		
2.2.15:11	Reserved	Reserved	RW	0000_0
2.2.10	PME_N2	For INT_N / PME_N2 (pin 53),	RW	0
	Output Enable	1 = Enable PME Output		
		0 = Disable PME Output		
		This bit works in conjunction with MMD Address 2h, Reg. 10h, Bits [15:14] to define the output for pin 53.		
2.2.9	Reserved	Reserved	RW	0
2.2.8	PME_N1 Output Enable	For LED1 / PME_N1 (pin 19),	RW	0
		1 = Enable PME Output		
		0 = Disable PME Output		
		This bit works in conjunction with MMD Address 2h, Reg. 10h, Bits [15:14] to define the output for pin 19.		
2.2.7	Chip Power		RW	Set by MODE[3:0] strapping pin.
	Down override	mode		See "Strapping Options" section for details.
2.2.6:5	Reserved	Reserved	RW	00
2.2.4	NAND Tree	1 = Override strap-in for NAND Tree mode	RW	Set by MODE[3:0] strapping pin.
	override			See "Strapping Options" section for details.
2.2.3:2	Reserved	Reserved	RW	00
2.2.1	GMII / MII	1 = Override strap-in for GMII / MII mode	RW	Set by MODE[3:0] strapping pin.
	override			See "Strapping Options" section for details.
2.2.0	Reserved	Reserved	RW	0
MMD Addres	ss 2h, Register 3h	– Operation Mode Strap Status		
2.3.15:8	Reserved	Reserved	RO	0000_0000
2.3.7	Chip Power	1 = Strap to Chip Power Down mode	RO	Set by MODE[3:0] strapping pin.
	Down strap-in status			See "Strapping Options" section for details.
2.3.6:5	Reserved	Reserved	RO	00
			1	

Address	Name	Description	Mode ⁽¹⁾	Default
2.3.4	NAND Tree	1 = Strap to NAND Tree mode	RO	Set by MODE[3:0] strapping pin.
	strap-in status			See "Strapping Options" section for details.
2.3.3:2	Reserved	Reserved	RO	00
2.3.1	GMII / MII strap-in status	1 = Strap to GMII / MII mode	RO	Set by MODE[3:0] strapping pin. See "Strapping Options" section for details.
2.3.0	Reserved	Reserved	RO	0
MMD Addres	s 2h, Register 4h	- GMII Control Signal Pad Skew		
2.4.15:8	Reserved	Reserved	RW	0000_0000
2.4.7:4	RX_DV pad skew	GMII RX_DV output pad skew control (0.06ns/step)	RW	0111
2.4.3:0	TX_EN pad skew	GMII TX_EN input pad skew control (0.06ns/step)	RW	0111
MMD Addres	s 2h, Register 8h	– GMII Clock Pad Skew		
2.8.15:10	Reserved	Reserved	RW	0000_00
2.8.9:5	GTX_CLK pad skew	GMII GTX_CLK input pad skew control (0.06ns/step)	RW	01_111
2.8.4:0	RX_CLK pad skew	GMII RX_CLK output pad skew control (0.06ns/step)	RW	0_1111
MMD Addres	s 2h, Register 10	h – Wake-On-LAN – Control		
2.10.15:14	PME Output Select	These two bits work in conjunction with MMD Address 2h, Reg. 2h, Bits [8] and [10] for PME_N1 and PME_N2 enable to define the output for pins 19 and 53, respectively.	RW	00
		LED1 / PME_N1 (pin 19)		
		00 = PME_N1 output only		
		01 = LED1 output only		
		10 = LED1 and PME_N1 output 11 = Reserved		
		INT_N / PME_N2 (pin 53) 00 = PME_N2 output only 01 = INT_N output only 10 = INT_N and PME_N2 output 11 = Reserved		
2.10.13:7	Reserved	Reserved	RW	00_0000_0
2.10.6	Magic Packet Detect Enable	1 = Enable Magic Packet detection 0 = Disable Magic Packet detection	RW	0
2.10.5	Custom Packet Type-3 Detect Enable	0 = Disable Magie Fasher detection 1 = Enable Custom Packet, Type-3 detection 0 = Disable Custom Packet, Type-3 detection	RW	0

Address	Name	Description	Mode ⁽¹⁾	Default
2.10.4	Custom Packet	1 = Enable Custom Packet, Type-2 detection	RW	0
	Type-2 Detect Enable	0 = Disable Custom Packet, Type-2 detection		
2.10.3	.3 Custom Packet	1 = Enable Custom Packet, Type-1 detection	RW	0
	Type-1 Detect Enable	0 = Disable Custom Packet, Type-1 detection		
2.10.2	Custom Packet	1 = Enable Custom Packet, Type-0 detection	RW	0
	Type-0 Detect Enable	0 = Disable Custom Packet, Type-0 detection		
2.10.1	Link-down	1 = Enable Link-down detection	RW	0
	Detect Enable	0 = Disable Link-down detection		
2.10.0	Link-up	1 = Enable Link-up detection	RW	0
	Detect Enable	0 = Disable Link-up detection		
MMD Addres	s 2h, Register 11	n – Wake-On-LAN – Magic Packet, MAC-DA-0		
2.11.15:0	Magic Packet MAC-DA-0	This register stores the lower 2 bytes of the Destination MAC Address for the Magic Packet	RW	0000_0000_0000_0000
		Bit [15:8] = byte-2 (MAC Address [15:8])		
		Bit [7:0] = byte-1 (MAC Address [7:0])		
		The upper 4 bytes of the Destination MAC		
		Address are stored in the following two registers.		
MMD Addres	ss 2h, Register 12l	n – Wake-On-LAN – Magic Packet, MAC-DA-1		
2.12.15:0	Magic Packet MAC-DA-1	This register stores the middle 2 bytes of the Destination MAC Address for the Magic Packet	RW	0000_0000_0000
		Bit [15:8] = byte-4 (MAC Address [31:24])		
		Bit [7:0] = byte-3 (MAC Address [23:16])		
		The lower 2 bytes and upper 2 bytes of the Destination MAC Address are stored in the previous and following registers, respectively.		
MMD Addres	s 2h. Register 13l	n – Wake-On-LAN – Magic Packet, MAC-DA-2		
2.13.15:0	Magic Packet MAC-DA-2	This register stores the upper 2 bytes of the Destination MAC Address for the Magic Packet	RW	0000_0000_0000
		Bit [15:8] = byte-6 (MAC Address [47:40])		
		Bit [7:0] = byte-5 (MAC Address [39:32])		
		The lower 4 bytes of the Destination MAC		
		Address are stored in the previous two registers.		

Address	Name	Description	Mode ⁽¹⁾	Default
MMD Address	s 2h, Register 14h	n – Wake-On-LAN – Customized Packet, Type-0,	Expected-Cl	RC-0
MMD Address	s 2h, Register 16h	n – Wake-On-LAN – Customized Packet, Type-1,	Expected-Cl	RC-0
MMD Address	s 2h, Register 18h	n – Wake-On-LAN – Customized Packet, Type-2,	Expected-Cl	RC-0
MMD Address	s 2h, Register 1Al	n – Wake-On-LAN – Customized Packet, Type-3	, Expected-C	RC-0
2.14.15:0 2.16.15:0 2.18.15:0 2.1A.15:0	Custom Packet Type-X CRC-0	This register stores the lower 2 bytes for the expected CRC Bit [15:8] = byte-2 (CRC [15:8]) Bit [7:0] = byte-1 (CRC [7:0])	RW	0000_0000_0000
		The upper 2 bytes for the expected CRC is stored in the following register.	-	
MMD Address	s 2h, Register 17h	n – Wake-On-LAN – Customized Packet, Type-1,	Expected-Cl	RC-1
		n – Wake-On-LAN – Customized Packet, Type-2,	-	
		h – Wake-On-LAN – Customized Packet, Type-3		
2.15.15:0 2.17.15:0 2.19.15:0 2.1B.15:0	Custom Packet Type-X CRC-1	This register stores the upper 2 bytes for the expected CRC Bit [15:8] = byte-4 (CRC [31:24]) Bit [7:0] = byte-3 (CRC [23:16]) The lower 2 bytes for the expected CRC is stored in the previous register.	RW	0000_0000_0000_0000
MMD Address MMD Address	s 2h, Register 20h s 2h, Register 24h	h – Wake-On-LAN – Customized Packet, Type-0 h – Wake-On-LAN – Customized Packet, Type-1, h – Wake-On-LAN – Customized Packet, Type-2, h – Wake-On-LAN – Customized Packet, Type-3, This register selects the byte(s) in the first 16	Mask-0 Mask-0	0000_0000_0000_0000
2.20.15:0 2.24.15:0 2.28.15:0	Type-X Mask-0	bytes of the packet (bytes 1 thru 16) that will be used for the CRC calculation. For each bit in this register, 1 = byte is selected for CRC calculation 0 = byte is not selected for CRC calculation The register-bit to packet-byte mapping is as follows: Bit [15] : byte-16 : Bit [2] : byte-2 Bit [0] : byte-1		

Address	Name	Description	Mode ⁽¹⁾	Default
MMD Address	s 2h, Register 1D	h – Wake-On-LAN – Customized Packet, Type-0	, Mask-1	
MMD Address	s 2h, Register 21h	– Wake-On-LAN – Customized Packet, Type-1,	Mask-1	
MMD Address	s 2h, Register 25ł	n – Wake-On-LAN – Customized Packet, Type-2,	Mask-1	
MMD Address	s 2h, Register 29h	n – Wake-On-LAN – Customized Packet, Type-3,	Mask-1	
2.1D.15:0 2.21.15:0 2.25.15:0 2.29.15:0	Custom Packet Type-X Mask-1	This register selects the byte(s) in the second16 bytes of the packet (bytes 17 thru 32) thatwill be used for the CRC calculation.For each bit in this register,1 = byte is selected for CRC calculation0 = byte is not selected for CRC calculationThe register-bit to packet-byte mapping is asfollows:Bit [15] :byte-32Bit [2] :byte-18Bit [0] :byte-17	RW	0000_0000_0000
MMD Address	s 2h, Register 26l	n – Wake-On-LAN – Customized Packet, Type-1, n – Wake-On-LAN – Customized Packet, Type-2, n – Wake-On-LAN – Customized Packet, Type-3	Mask-2	
MMD Address 2.1E.15:0 2.22.15:0 2.26.15:0 2.2A.15:0	s 2h, Register 2A Custom Packet Type-X Mask-2	h - Wake-On-LAN - Customized Packet, Type-3 This register selects the byte(s) in the third 16 bytes of the packet (bytes 33 thru 48) that will be used for the CRC calculation. For each bit in this register, 1 = byte is selected for CRC calculation 0 = byte is not selected for CRC calculation The register-bit to packet-byte mapping is as follows: Bit [15] : byte-48 : Bit [2] : byte-34 Bit [0] : byte-33	, Mask-2 RW	0000_0000_0000

Address	Name	Description	Mode ⁽¹⁾	Default
MMD Addres	ss 2h, Register 1F	h – Wake-On-LAN – Customized Packet, Type-0	, Mask-3	
MMD Addres	ss 2h, Register 23l	h – Wake-On-LAN – Customized Packet, Type-1	, Mask-3	
MMD Addres	ss 2h, Register 27l	h – Wake-On-LAN – Customized Packet, Type-2	, Mask-3	
MMD Addres	ss 2h, Register 2B	h – Wake-On-LAN – Customized Packet, Type-3	, Mask-3	
2.1F.15:0 2.23.15:0	Custom Packet Type-X Mask-3	This register selects the byte(s) in the fourth 16 bytes of the packet (bytes 49 thru 64) that will be used for the CRC calculation.	RW	0000_0000_0000_0000
2.27.15:0		For each bit in this register,		
2.2B.15:0		1 = byte is selected for CRC calculation		
		0 = byte is not selected for CRC calculation		
		The register-bit to packet-byte mapping is as follows:		
		Bit [15] : byte-64		
		:		
		Bit [2] : byte-50		
		Bit [0] : byte-49		
MMD Addres	ss 3h, Register 0h	- PCS EEE - Control		
3.0.15:12	Reserved	Reserved	RW	0000
3.0.11	1000Base-T Force LPI	1 = Force 1000Base-T Low Power Idle transmission	RW	0
		0 = Normal operation		
3.0.10	100Base-TX RX_CLK	During receive Lower Power Idle mode, 1 = RX_CLK stoppable for 100Base-TX	RW	0
	Stoppable	0 = RX_CLK not stoppable for 100Base-TX		
3.0.9:0	Reserved	Reserved	RW	00_0000_0000
MMD Addres	ss 3h. Register 1h	– PCS EEE – Status		•
3.1.15:12	Reserved	Reserved	RO	0000
3.1.11	Transmit Low	1 = Transmit PCS has received Low Power Idle	RO/LH	0
0.1.11	Power Idle received	0 = Low Power Idle not received	i to, Eri	
3.1.10	Receive Low	1 = Receive PCS has received Low Power Idle	RO/LH	0
	Power Idle received	0 = Low Power Idle not received		
3.1.9	Transmit Low Power Idle	1 = Transmit PCS is currently receiving Low Power Idle	RO	
	Indication	0 = Transmit PCS is not currently receiving Low Power Idle		
3.1.8	Receive Low Power Idle	1 = Receive PCS is currently receiving Low Power Idle	RO	
	Indication	0 = Receive PCS is not currently receiving Low Power Idle		
3.1.7:0	Reserved	Reserved	RO	0000_0000
MMD Addres	ss 7h, Register 3C	h – EEE Advertisement		
7.3C.15:3	Reserved	Reserved	RW	0000_0000_0000_0

Address	Name	Description	Mode ⁽¹⁾	Default
7.3C.2	1000Base-T	1 = 1000Mbps EEE capable	RW	0
	EEE	0 = No 1000Mbps EEE capability		
		This bit is set to '0' as the default after power-up or reset. Set this bit to '1' to enable 1000Mbps EEE mode.		
7.3C.1	100Base-TX	1 = 100Mbps EEE capable	RW	0
	EEE	0 = No 100Mbps EEE capability		
		This bit is set to '0' as the default after power-up or reset. Set this bit to '1' to enable 100Mbps EEE mode.		
7.3C.0	Reserved	Reserved	RW	0
MMD Addres	ss 7h, Register 3I	Dh – EEE Link Partner Advertisement		
7.3D.15:3	Reserved	Reserved	RO	0000_0000_0000_0
7.3D.2	1000Base-T	1 = 1000Mbps EEE capable	RO	0
	EEE	0 = No 1000Mbps EEE capability		
7.3D.1	100Base-TX	1 = 100Mbps EEE capable	RO	0
	EEE	0 = No 100Mbps EEE capability		
7.3D.0	Reserved	Reserved	RO	0
MMD Addres	ss 1Ch, Register	4h – Analog Control 4		
1C.4.15:11	Reserved	Reserved	RW	0000_0
1C.4.10	10Base-Te	1 = EEE 10Base-Te (1.75V TX amplitude)	RW	0
	Mode	0 = Standard 10Base-T (2.5V TX amplitude)		
1C.4.9:0	Reserved	Reserved	RW	00_1111_111
MMD Addres	ss 1Ch, Register	23h – EDPD Control		
1C.23.15:1	Reserved	Reserved	RW	0000_0000_0000_000
1C.23.0	EDPD Mode	Energy Detect Power Down mode	RW	0
	Enable	1 = Enable		
		0 = Disable		

Note:

1. RW = Read/Write.

RO = Read only.

LH = Latch high.

Absolute Maximum Ratings⁽¹⁾

Supply Voltage

(DVDDL, AVDDL, AVDDL_PLL)	
(AVDDH)	0.5V to +5.0V
(DVDDH)	
Input Voltage (all inputs)	0.5V to +5.0V
Output Voltage (all outputs)	
Lead Temperature (soldering, 10sec.)	
Storage Temperature (T _s)	55°C to +150°C

Operating Ratings⁽²⁾

Supply Voltage
(DVDDL, AVDDL, AVDDL_PLL) +1.140V to +1.260V
(AVDDH @ 3.3V)+3.135V to +3.465V
(AVDDH @ 2.5V, C-temp only) +2.375V to +2.625V
(DVDDH @ 3.3V)+3.135V to +3.465V
(DVDDH @ 2.5V) +2.375V to +2.625V
(DVDDH @ 1.8V) +1.710V to +1.890V
Ambient Temperature
(T _A Commercial: KSZ9031MNXC)0°C to +70°C
(T _A Industrial: KSZ9031MNXI)–40°C to +85°C
Maximum Junction Temperature (T _J Max) 125°C
Thermal Resistance (θ_{JA})
Thermal Resistance (θ_{JC})6.76°C/W

Electrical Characteristics⁽³⁾

Symbol	Parameter	Condition	Min	Тур	Max	Units
Supply Cu	urrent – Core / Digital I/Os					
I _{CORE}	1.2V total of:	1000Base-T Link-up (no traffic)		211		mA
	DVDDL (digital core) +	1000Base-T Full-duplex @ 100% utilization		221		mA
	AVDDL (analog core) +	100Base-TX Link-up (no traffic)		60.6		mA
	AVDDL_PLL (PLL)	100Base-TX Full-duplex @ 100% utilization		61.2		mA
		10Base-T Link-up (no traffic)		7.0		mA
		10Base-T Full-duplex @ 100% utilization		7.7		mA
		Software Power Down Mode (Reg. 0.11 =1)		0.9		mA
		Chip Power Down Mode (strap-in pins MODE[3:0] = "0111")		0.8		mA
I _{DVDDH_1.8}	1.8V for digital I/Os	1000Base-T Link-up (no traffic)		14.2		mA
		1000Base-T Full-duplex @ 100% utilization		29.3		mA
	(GMII / MII operating @ 1.8V)	100Base-TX Link-up (no traffic)		7.3		mA
		100Base-TX Full-duplex @ 100% utilization		10.0		mA
		10Base-T Link-up (no traffic)		3.1		mA
		10Base-T Full-duplex @ 100% utilization		6.0		mA
		Software Power Down Mode (Reg. 0.11 =1)		3.7		mA
		Chip Power Down Mode (strap-in pins MODE[3:0] = "0111")		0.2		mA
I _{DVDDH_2.5}	2.5V for digital I/Os	1000Base-T Link-up (no traffic)		19.3		mA
		1000Base-T Full-duplex @ 100% utilization		40.5		mA
	(GMII / MII operating @ 2.5V)	100Base-TX Link-up (no traffic)		10.0		mA
		100Base-TX Full-duplex @ 100% utilization		13.7		mA
		10Base-T Link-up (no traffic)		4.3		mA
		10Base-T Full-duplex @ 100% utilization		8.3		mA
		Software Power Down Mode (Reg. 0.11 =1)		5.3		mA
		Chip Power Down Mode (strap-in pins MODE[3:0] = "0111")		0.9		mA

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{DVDDH_3.3}	3.3V for digital I/Os	1000Base-T Link-up (no traffic)		26.0		mA
		1000Base-T Full-duplex @ 100% utilization		53.8		mA
	(GMII / MII operating @ 3.3V)	100Base-TX Link-up (no traffic)		13.3		mA
		100Base-TX Full-duplex @ 100% utilization		18.0		mA
		10Base-T Link-up (no traffic)		5.7		mA
		10Base-T Full-duplex @ 100% utilization		11.1		mA
		Software Power Down Mode (Reg. 0.11 =1)		7.1		mA
		Chip Power Down Mode (strap-in pins MODE[3:0] = "0111")		2.1		mA
	irrent – Transceiver (equivalent to de transmit drivers)	current draw through external transformer center	taps for P	HY transo	eivers wi	th
IAVDDH_2.5	2.5V for transceiver	1000Base-T Link-up (no traffic)		58.6		mA
-		1000Base-T Full-duplex @ 100% utilization		57.6		mA
	(Recommended for commerical	100Base-TX Link-up (no traffic)		24.8		mA
	temperature range operation	100Base-TX Full-duplex @ 100% utilization		24.8		mA
	only)	10Base-T Link-up (no traffic)		12.5		mA
		10Base-T Full-duplex @ 100% utilization		25.8		mA
		SW Power-Down Mode (Reg. 0h, bit 11 =1)		3.0		mA
		Chip Power Down Mode (strap-in pins MODE[3:0] = "0111")		0.02		mA
I _{AVDDH_3.3}	3.3V for transceiver	1000Base-T Link-up (no traffic)		66.6		mA
		1000Base-T Full-duplex @ 100% utilization		65.6		mA
		100Base-TX Link-up (no traffic)		28.7		mA
		100Base-TX Full-duplex @ 100% utilization		28.7		mA
		10Base-T Link-up (no traffic)		17.0		mA
		10Base-T Full-duplex @ 100% utilization		29.3		mA
		SW Power-Down Mode (Reg. 0h, bit 11 =1)		4.1		mA
		Chip Power Down Mode (strap-in pins MODE[3:0] = "0111")		0.02		mA
CMOS Inp	uts	·				
V _{IH}	Input High Voltage	DVDDH (digital I/Os) = 3.3V	2.0			V
		DVDDH (digital I/Os) = 2.5V	1.5			V
		DVDDH (digital I/Os) = 1.8V	1.1			V
V _{IL}	Input Low Voltage	DVDDH (digital I/Os) = 3.3V			1.3	V
		DVDDH (digital I/Os) = 2.5V			1.0	V
		DVDDH (digital I/Os) = 1.8V			0.7	V
l _{iN}	Input Current	$V_{IN} = GND \sim V_{DDIO}$		-10	10	μ A
CMOS Ou	tputs					<u>.</u>
V _{OH}	Output High Voltage	DVDDH (digital I/Os) = 3.3V	2.7			V
		DVDDH (digital I/Os) = 2.5V	2.0			V
		DVDDH (digital I/Os) = 1.8V	1.5			V
V _{OL}	Output Low Voltage	DVDDH (digital I/Os) = 3.3V			0.3	V
		DVDDH (digital I/Os) = 2.5V	1		0.3	V

Symbol	Parameter	Condition	Min	Тур	Max	Units
		DVDDH (digital I/Os) = 1.8V			0.3	V
I _{oz}	Output Tri-State Leakage				10	μ A
LED Outp	outs					
I _{LED}	Output Drive Current	Each LED pin (LED1, LED2)		8		mA
Pull-Up P	ins					
pu	Internal Pull-up Resistance	DVDDH (digital I/Os) = 3.3V	13	22	31	KΩ
	(MDC, MDIO, RESET_N pins)	DVDDH (digital I/Os) = 2.5V	16	28	39	KΩ
		DVDDH (digital I/Os) = 1.8V	26	44	62	KΩ
100Base-	TX Transmit (measured differentia	ally after 1:1 transformer)				
Vo	Peak Differential Output Voltage	100 Ω termination across differential output	0.95		1.05	V
V _{IMB}	Output Voltage Imbalance	100 Ω termination across differential output			2	%
t _r , t _f	Rise/Fall Time		3		5	ns
	Rise/Fall Time Imbalance		0		0.5	ns
	Duty Cycle Distortion				± 0.25	ns
	Overshoot				5	%
	Output Jitter	Peak-to-peak		0.7		ns
10Base-T	Transmit (measured differentially	v after 1:1 transformer)				
VP	Peak Differential Output Voltage	100 Ω termination across differential output	2.2		2.8	V
	Jitter Added	Peak-to-peak			3.5	ns
	Harmonic Rejection	Transmit all-one signal sequence		-31		dB
10Base-T	Receive					1
V _{SQ}	Squelch Threshold	5 MHz square wave	300	400		mV
Transmit	ter – Drive Setting		•	•	•	
V_{SET}	Reference Voltage of I _{SET}	R(I _{SET}) = 12.1K		1.2		V
LDO Con	troller – Drive Range					
V_{LDO_O}	Output drive range for LDO_O	AVDDH = 3.3V for MOSFET source voltage	0.85		2.8	V
	(pin 58) to gate input of P-channel MOSFET	AVDDH = 2.5V for MOSFET source voltage (recommended for commerical temperature range operation only)	0.85		2.0	V

Notes:

1. Exceeding the absolute maximum rating may damage the device. Stresses greater than the absolute maximum rating may cause permanent damage to the device. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

2. The device is not guaranteed to function outside its operating rating.

3. $T_A = 25^{\circ}C$. Specification is for packaged product only.

Timing Diagrams

GMII Transmit Timing

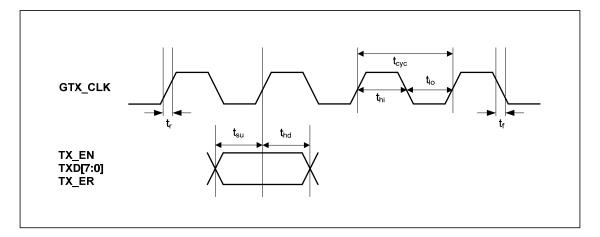


Figure 13. GMII Transmit Timing - Data Input to PHY

Timing Parameter	Description	Min	Тур	Max	Unit			
1000Base-T								
t _{cyc}	GTX_CLK period	7.5	8.0	8.5	ns			
t _{su}	TX_EN, TXD[7:0], TX_ER setup time to rising edge of GTX_CLK	2.0			ns			
t _{hd}	TX_EN, TXD[7:0], TX_ER hold time from rising edge of GTX_CLK	0			ns			
t _{hi}	GTX_CLK high pulse width	2.5			ns			
t _{lo}	GTX_CLK low pulse width	2.5			ns			
tr	GTX_CLK rise time			1.0	ns			
t _f	GTX_CLK fall time			1.0	ns			

Table 16. GMII Transmit Timing Parameters

GMII Receive Timing

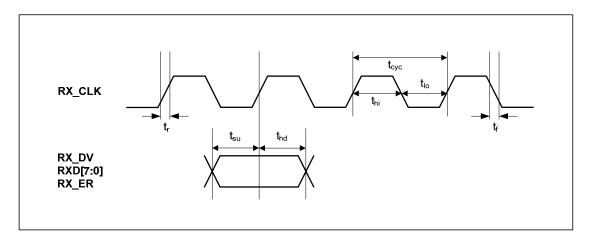


Figure 14. GMII Receive Timing - Data Input to MAC

Timing Parameter	Description	Min	Тур	Max	Unit			
1000Base-T								
t _{cyc}	RX_CLK period	7.5	8.0	8.5	ns			
t _{su}	RX_DV, RXD[7:0], RX_ER setup time to rising edge of RX_CLK	2.5			ns			
t _{hd}	RX_DV, RXD[7:0], RX_ER hold time from rising edge of RX_CLK	0.5			ns			
t _{hi}	RX_CLK high pulse width	2.5			ns			
t _{lo}	RX_CLK low pulse width	2.5			ns			
t _r	RX_CLK rise time			1.0	ns			
t _f	RX_CLK fall time			1.0	ns			

Table 17. GMII Receive Timing Parameters

MII Transmit Timing

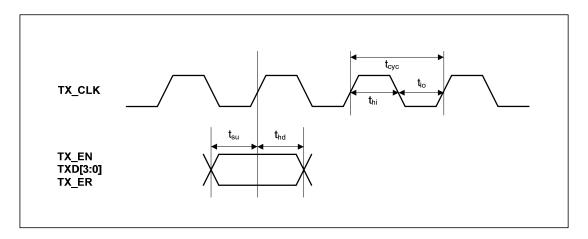


Figure 15. MII Transmit Timing - Data Input to PHY

Timing Parameter	Description	Min	Тур	Мах	Unit
10Base-T		•	•		
t _{cyc}	TX_CLK period		400		ns
t _{su}	TX_EN, TXD[3:0], TX_ER setup time to rising edge of TX_CLK	15			ns
t _{hd}	TX_EN, TXD[3:0], TX_ER hold time from rising edge of TX_CLK	0			ns
t _{hi}	TX_CLK high pulse width	140		260	ns
t _{lo}	TX_CLK low pulse width	140		260	ns
100Base-TX					
t _{cyc}	TX_CLK period		40		ns
t _{su}	TX_EN, TXD[3:0], TX_ER setup time to rising edge of TX_CLK	15			ns
t _{hd}	TX_EN, TXD[3:0], TX_ER hold time from rising edge of TX_CLK	0			ns
t _{hi}	TX_CLK high pulse width	14		26	ns
t _{lo}	TX_CLK low pulse width	14		26	ns

Table 18. MII Transmit Timing Parameters

MII Receive Timing

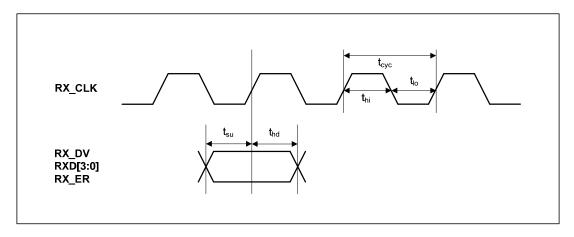


Figure 16. MII Receive Timing - Data Input to MAC

Timing Parameter	Description	Min	Тур	Max	Unit
10Base-T					
t _{cyc}	RX_CLK period		400		ns
t _{su}	RX_DV, RXD[3:0], RX_ER setup time to rising edge of RX_CLK	10			ns
t _{hd}	RX_DV, RXD[3:0], RX_ER hold time from rising edge of RX_CLK	10			ns
t _{hi}	RX_CLK high pulse width	140		260	ns
t _{io}	RX_CLK low pulse width	140		260	ns
100Base-TX					
t _{cyc}	RX_CLK period		40		ns
t _{su}	RX_DV, RXD[3:0], RX_ER setup time to rising edge of RX_CLK	10			ns
t _{hd}	RX_DV, RXD[3:0], RX_ER hold time from rising edge of RX_CLK	10			ns
t _{hi}	RX_CLK high pulse width	14		26	ns
t _{lo}	RX_CLK low pulse width	14		26	ns

Table 19. MII Receive Timing Parameters

Auto-Negotiation Timing

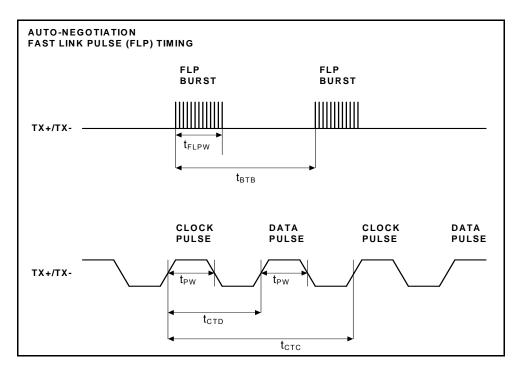
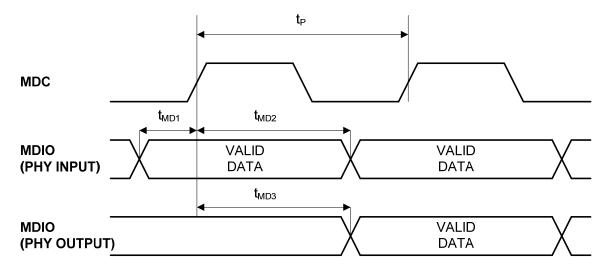
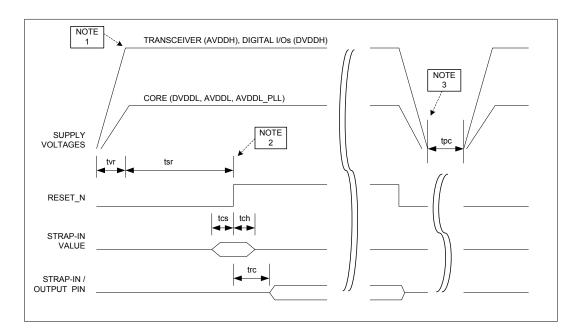



Figure 17. Auto-Negotiation Fast Link Pulse (FLP) Timing

Timing Parameter	Description	Min	Тур	Max	Units
t _{BTB}	FLP Burst to FLP Burst	8	16	24	ms
t _{FLPW}	FLP Burst width		2		ms
t _{PW}	Clock/Data Pulse width		100		ns
t _{CTD}	Clock Pulse to Data Pulse	55.5	64	69.5	μ S
t _{CTC}	Clock Pulse to Clock Pulse	111	128	139	μ S
	Number of Clock/Data Pulse per FLP Burst	17		33	

 Table 20. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters

MDC/MDIO Timing



Timing Parameter	Description	Min	Тур	Max	Unit
t _P	MDC period		400		ns
t _{1MD1}	MDIO (PHY input) setup to rising edge of MDC	10			ns
t _{MD2}	MDIO (PHY input) hold from rising edge of MDC	10			ns
t _{MD3}	MDIO (PHY output) delay from rising edge of MDC	0			ns

Table 21. MDC/MDIO Timing Parameters

Power-up / Power-down / Reset Timing

Figure 19. Power-up / Power-down / Reset Timing

Parameter	Description	Min	Max	Units
t _{vr}	Supply voltages rise time (must be monotonic)	200		μs
t _{sr}	Stable supply voltages to de-assertion of reset	10		ms
t _{cs}	Strap-in pin configuration setup time	5		ns
t _{ch}	Strap-in pin configuration hold time	5		ns
t _{rc}	De-assertion of reset to strap-in pin output	6		ns
t _{pc}	Supply voltages cycle off-to-on time	150		ms

Table 22. Power-up / Power-down / Reset Timing Parameters

NOTE 1: The recommended power-up sequence is to have the transceiver (AVDDH) and digital I/Os (DVDDH) voltages power up before the 1.2V core (DVDDL, AVDDL, AVDDL_PLL) voltage. If the 1.2V core must power-up first, the maximum lead time for the 1.2V core voltage with respect to the transceiver and digital I/O voltages should be 200µs. There is no power sequence requirement between transceiver (AVDDH) and digital I/Os (DVDDH) power rails. The power-up waveforms should be monotonic for all supply voltages to the KSZ9031MNX.

NOTE 2: After the de-assertion of reset, it is recommended to wait a minimum of 100µs before starting programming on the MIIM (MDC/MDIO) Interface.

NOTE 3: The recommended power-down sequence is to have the 1.2V core voltage power down first before powering down the transceiver and digital I/O voltages.

Before the next power-up cycle, all supply voltages to the KSZ9031MNX should reach 0V and there should be a minimum wait time of 150ms from power-off to power-on.

Reset Circuit

The following reset circuit is recommended for powering up the KSZ9031MNX if reset is triggered by the power supply.

Figure 20. Recommended Reset Circuit

The following reset circuit is recommended for applications where reset is driven by another device (e.g., CPU or FPGA). At power-on-reset, R, C and D1 provide the necessary ramp rise time to reset the KSZ9031MNX device. The RST_OUT_N from CPU/FPGA provides the warm reset after power up.

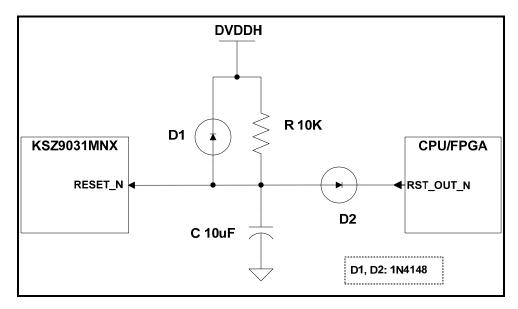


Figure 21. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output

Reference Circuits – LED Strap-in Pins

The pull-up and pull-down reference circuits for the LED2/PHYAD1 and LED1/PHYAD0 strapping pins are shown in the following figure for 3.3V and 2.5V DVDDH.

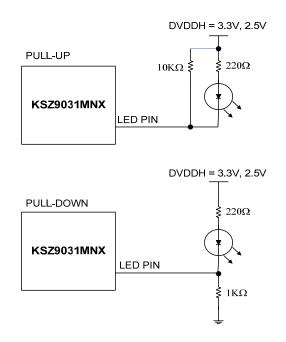


Figure 22. Reference Circuits for LED Strapping Pins

For 1.8V DVDDH, LED indication support is not recommended due to the low voltage. Without the LED indicator, the PHYAD1 and PHYAD0 strapping pins are functional with 10K pull-up to 1.8V DVDDH for a value of '1', and with 1.0K pull-down to ground for a value of '0'.

Reference Clock – Connection and Selection

A crystal or external clock source, such as an oscillator, is used to provide the reference clock for the KSZ9031MNX. The reference clock is 25 MHz for all operating modes of the KSZ9031MNX.

The following figure and table shows the reference clock connection to XI (pin 61) and XO (pin 60) of the KSZ9031MNX, and the reference clock selection criteria.

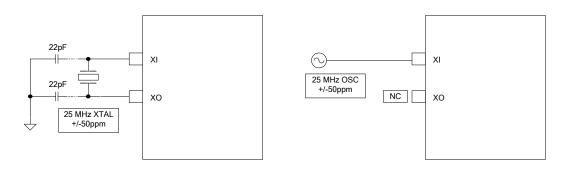


Figure 23. 25 MHz Crystal / Oscillator Reference Clock Connection

Characteristics	Value	Units	
Frequency	25	MHz	
Frequency tolerance (max)	±50	ppm	

 Table 23. Reference Crystal/Clock Selection Criteria

Magnetic – Connection and Selection

A 1:1 isolation transformer is required at the line interface. One with integrated common-mode chokes is recommended for exceeding FCC requirements. An optional auto-transformer stage following the chokes provides additional common-mode noise and signal attenuation.

The KSZ9031MNX design incorporates voltage-mode transmit drivers and on-chip terminations.

With the voltage-mode implementation, the transmit drivers supply the common-mode voltages to the four differential pairs. Therefore, the four transformer center tap pins on the KSZ9031MNX side should not be connected to any power supply source on the board, but rather, the center tap pins should be separated from one another and connected through separate 0.1uF common-mode capacitors to ground. Separation is required because the common-mode voltage could be different between the four differential pairs, depending on the connected speed mode.

The following figure shows the typical gigabit magnetic interface circuit for the KSZ9031MNX.

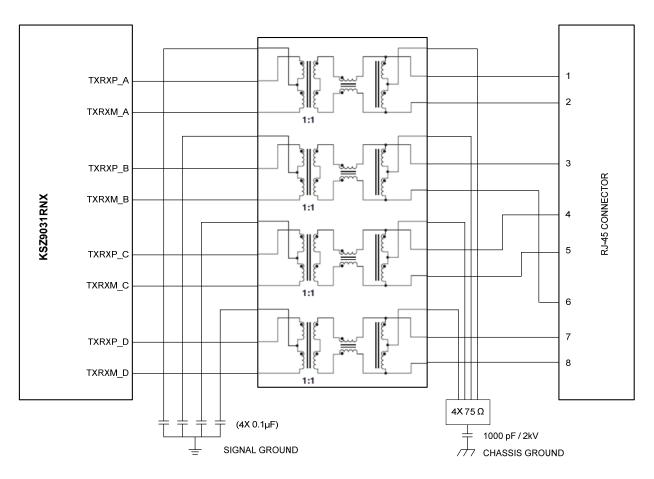


Figure 24. Typical Gigabit Magnetic Interface Circuit

The following table lists recommended magnetic characteristics.

Parameter	Value	Test Condition
Turns ratio	1 CT : 1 CT	
Open-circuit inductance (min.)	350μH	100mV, 100 kHz, 8mA
Insertion loss (max.)	1.0dB	0 MHz – 100 MHz
HIPOT (min.)	1500 Vrms	

Table 24. Magnetics Selection Criteria

The following is a list of compatible single-port magnetics with separated transformer center tap pins on the G-PHY chip side that can be used with the KSZ9031MNX.

Manufacturer	Part Number	Auto- transformer	Temperature Range	Magnetic + RJ-45	
Bel Fuse	0826-1G1T-23-F	Yes	0°C to 70°C	Yes	
HALO	TG1G-E001NZRL	No	-40°C to 85°C	No	
HALO	TG1G-S001NZRL	No	0°C to 70°C	No	
HALO	TG1G-S002NZRL	Yes	0°C to 70°C	No	
Pulse	H5007NL	Yes	0°C to 70°C	No	
Pulse	H5062NL	Yes	0°C to 70°C	No	
Pulse	HX5008NL	Yes	-40°C to 85°C	No	
Pulse	JK0654219NL	Yes	0°C to 70°C	Yes	
Pulse	JK0-0136NL	No	0°C to 70°C	Yes	
ТDК	TLA-7T101LF	No	0°C to 70°C	No	
Wurth / Midcom	000-7093-37R-LF1	Yes	0°C to 70°C	No	

Table 25. Compatible Single-port 10/100/1000 Magnetics

Recommended Land Pattern

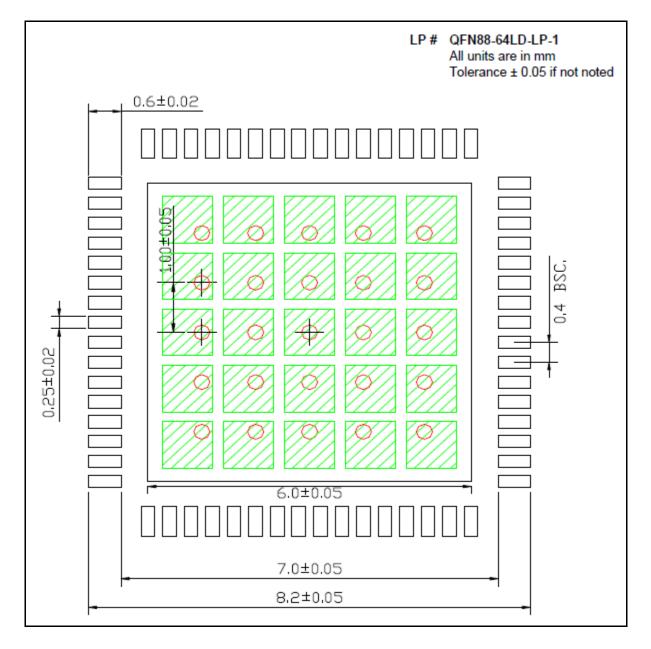
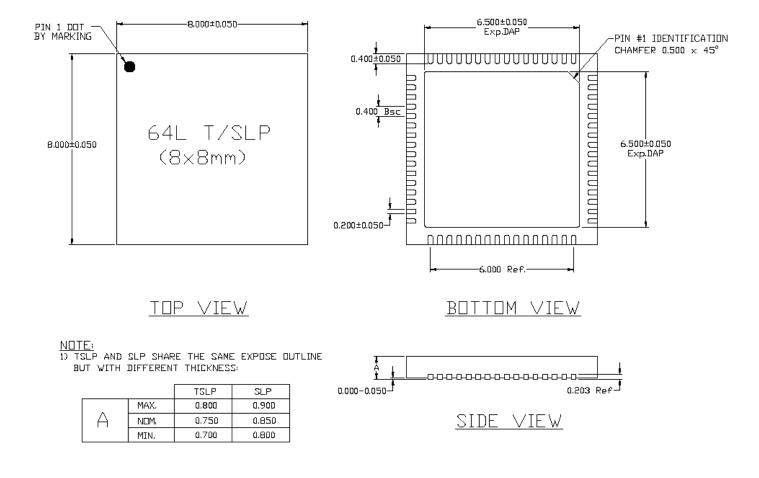



Figure 25. Recommended Land Pattern, 64-Pin (8mm x 8mm) QFN

Red circle indicates Thermal Via. Size should be 0.350 mm in diameter and it should be connected to GND plane for maximum thermal performance.

Green rectangle (with shaded area) indicates Solder Stencil Opening on exposed pad area. Size should be 0.93x0.93 mm in size, 1.13 mm pitch.

Package Information

64-Pin (8mm x 8mm) QFN

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2010, 2011, 2012 Micrel, Incorporated.