
KH1000A/5000V

HIGH POWER THYRISTOR FOR PHASE CONTROL APPLICATIONS

Features:

- . All Diffused Structure
- . Spoke Amplifying Gate Configuration
- . Blocking capabilty up to5000volts
- . Guaranteed Maximum Turn-Off Time
- . High dV/dt Capability
- . Pressure Assembled Device

ELECTRICAL CHARACTERISTICS AND RATINGS

Blocking - Off State

Device Type	V _{RRM} (1)	V _{DRM} (1)	V _{RSM} (1)
KH1000	5000	5000	5200

 V_{RRM} = Repetitive peak reverse voltage

 V_{DRM} = Repetitive peak off state voltage

 V_{RSM} = Non repetitive peak reverse voltage (2)

Repetitive peak reverse leakage and off state leakage	I_{RRM}/I_{DRM}	80 mA 350mA (3)
Critical rate of voltage rise	dV/dt (4)	1500V/μsec

Conducting - on state

All ratings are specified for Tj=25 °C unless otherwise stated.

- (1) All voltage ratings are specified for an applied 50Hz/60zHz sinusoidal waveform over the temperature range -40 to +125 °C.
- (2) 10 msec. max. pulse width
- (3) Maximum value for $T_i = 125$ °C.
- (4) Minimum value for linear and exponential waveshape to 70% rated V_{DRM} . Gate open. Tj = 125 °C. (5) Non-repetitive value.
- (6) The value of di/dt is established in accordance with EIA/NIMA Standard RS-397, Section5-2-2-6. The value defined would be in addi-tion to that obtained from a snubber circuit, comprising a 0.2 µF capacitor and 20 ohmsresistance in parallel with the thristor under

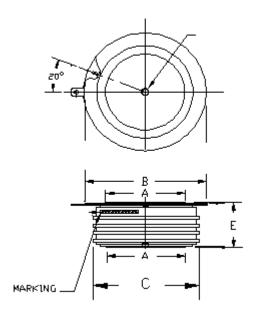
Parameter	Symbol	Min.	Max.	Тур.	Units	Conditions
Average value of on-state current	$I_{T(AV)}$		1000		Α	Sinewave,180° conduction,T _c =85°C
RMS value of on-state current	I _{TRMS}		1550		Α	Nominal value
Peak one cycle surge (non repetitive) current	I _{TSM}		15000		A	10.0 msec (50Hz), sinusoidal wave- shape, 180° conduction, T _i = 125 °C
I square t	I^2t		$2.0x10^6$		A^2s	10.0 msec
Latching current	$I_{\rm L}$		3		A	$V_D = 24 \text{ V}; R_L = 12 \text{ ohms}$
Holding current	I_{H}		80		mA	$V_{D} = 24 \text{ V}; I = 2.5 \text{ A}$
Peak on-state voltage	V_{TM}		3.00		V	$I_{TM} = 3000 \text{ A}$; Duty cycle $\leq 0.01\%$
Critical rate of rise of on-state current (5, 6)	di/dt		200		A/μs	Switching from V _{DRM} ≤ 3000 V, non-repetitive
Critical rate of rise of on-state current (6)	di/dt		100		A/μs	Switching from V _{DRM} ≤ 3000 V

Gating

Parameter	Symbol	Min.	Max.	Тур.	Units	Conditions
Peak gate power dissipation	P_{GM}		200		W	$t_p = 40 \text{ us}$
Average gate power dissipation	$P_{G(AV)}$		5		W	
Peak gate current	I_{GM}		20		Α	
Gate current required to trigger all units	I_{GT}		300		mA	$V_D = 6 \text{ V}; R_L = 3 \text{ ohms}; T_j = +25 \text{ °C}$
Gate voltage required to trigger all units	V _{GT}		3		V	$V_D = 6 \text{ V}; R_L = 3 \text{ ohms}; T_j = 25^{\circ}\text{C}$
Peak negative voltage	$V_{ m GRM}$		20		V	

Dynamic

Parameter	Symbol	Min.	Max.	Typ.	Units	Conditions
Delay time	t _d		3.0		μs	$I_{TM} = 50 \text{ A}; V_D = 2000 \text{ V}$ Gate pulse: $V_G = 20 \text{ V}; R_G = 20 \text{ ohms};$ $t_r = 0.1 \mu\text{s}; t_p = 20 \mu\text{s}$
Turn-off time (with $V_R = -50 \text{ V}$)	t _q		700	250	μs	$I_{TM} > 2000 \text{ A}$; di/dt = 10 A/ μ s; $V_R \ge -50 \text{ V}$; Re-applied dV/dt = 500 V/ μ s linear to 2000 V; $V_G = 0$; $T_i = 125 ^{\circ}\text{C}$; Duty cycle $\ge 0.01\%$
Reverse recovery current	I _{rr}		300		A	$I_{TM} > 2000 \text{ A}; \text{ di/dt} = 10 \text{ A/}\mu\text{s};$ $V_R \ge -50 \text{ V}$


THERMAL AND MECHANICAL CHARACTERISTICS AND RATINGS

Parameter	Symbol	Min.	Max.	Тур.	Units	Conditions
Operating temperature	T _j	-40	+125		°C	
Storage temperature	T_{stg}	-40	+150		°C	
Thermal resistance - junction to case	R _e (j-c)		0.006		°C/W	Double sided cooled
Thermal resistance - case to sink	R _e (c-s)		0.002		°C/W	Double sided cooled *
Mounting force	F		60		kN	

^{*} Mounting surfaces smooth, flat and

greased

Note: for case outline and dimensions, see case outline drawing in page 3 of this Technical Data

A: 63 mm
B: 100 mm
C: 89 mm
E: 26 mm