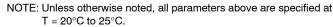
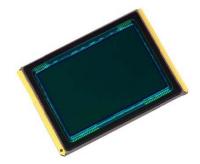
5270 (H) x 3516 (V) Full Frame CCD Image Sensor

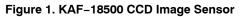

Description

The KAF-18500 is a dual output, high performance color CCD (charge coupled device) image sensor with 5270 (H) x 3516 (V) photoactive pixels designed for a wide range of color image sensing applications including digital imaging. Each pixel contains anti-blooming protection by means of a lateral overflow drain thereby preventing image corruption during high light level conditions. Each of the 6.8 μ m square pixels are selectively covered with red, green or blue pigmented filters for color separation. Microlenses are added for improved sensitivity.

The sensor utilizes the TRUESENSE Transparent Gate Electrode to improve sensitivity compared to the use of a standard front side illuminated polysilicon electrode.

_	
Parameter	Typical Value
Architecture	Full Frame CCD with Square Pixels
Total Number of Pixels	5422 (H) x 3610 (V) = 19.6 M
Number of Effective Pixels	5310 (H) x 3556 (V) = 18.8 M
Number of Active Pixels	5270 (H) x 3516 (V) = 18.5 M
Pixel Size	6.8 μm (H) x 6.8 μm (V)
Imager Size	43.1 mm (diagonal), 35 mm Optical format
Chip Size	37.8 mm (H) x 26.4 mm (V)
Aspect Ratio	3:2
Saturation Signal	42 ke⁻
Charge to Voltage Conversion	25 μV/e ⁻
Quantum Efficiency (RGB)	30%, 45%, 40%
Read Noise (f = 24 MHz)	15.7 e⁻
Dark Signal (T = 60°C)	50 pA/cm ²
Dark Current Doubling Temperature	5.3°C
Linear Dynamic Range (f = 24 MHz, T = 60°C)	68.1 dB
Charge Transfer Efficiency	0.999995
(HCTE/VCTE)	0.999998
Blooming Protection (4 ms exposure time)	5600 X saturation exposure
Maximum Data Rate	24 MHz
Readout Mode	Dual Output Only
Package	PGA
Cover Glass	AR coated (S8612)


Table 1. GENERAL SPECIFICATIONS



ON Semiconductor®

www.onsemi.com

Features

- TRUESENSE Transparent Gate Electrode for High Sensitivity
- High Resolution, 35 mm Format
- Broad Dynamic Range
- Low Noise
- Large Image Area

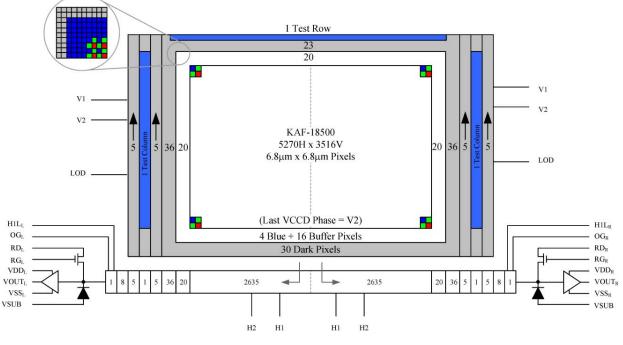
Applications

• Digital Still Cameras

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION


Table 2. ORDERING INFORMATION

Part Number	Description	Marking Code
KAF-18500-NXA-JH-AA-08	Special Color, Aperture, Enhanced, ESD, LOD, Microlens, Sealed IR Cover Glass, 0.8 mm glass	KAF-18500-NXA-08
KAF-18500-NXA-JH-AE-08	Special Color, Aperture, Enhanced, ESD, LOD, Microlens, Sealed IR Cover Glass, 0.8 mm glass [Engineering Grade]	

See the ON Semiconductor *Device Nomenclature* document (TND310/D) for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at www.onsemi.com.

DEVICE DESCRIPTION

Architecture

2711 Pixels/Line/Output

Dark Reference Pixels

Surrounding the periphery of the device is a border of light shielded pixels creating a dark region. Within this dark region, exist light shielded pixels that include 36 leading dark pixels on every line. There are also 30 full dark lines at the start and 23 full dark lines at the end of every frame. Under normal circumstances, these pixels do not respond to light and may be used as a dark reference.

Dummy Pixels

Within each horizontal shift register there are 20 leading additional shift phases required before the dark reference pixels: (1 + 8 + 5 + 1 + 5) (See Figure 2). These pixels are designated as dummy pixels and should not be used to determine a dark reference level.

Active Buffer Pixels

Forming the outer boundary of the effective active pixel region, there are 20 unshielded active buffer pixels between the photoactive area and the dark reference. These pixels are light sensitive but they are not tested for defects and non–uniformities. For the leading 20 active column pixels, the first 4 pixels are covered with blue pigment while the remaining are arranged in a Bayer pattern (R, GR, GB, B).

Image Acquisition

An electronic representation of an image is formed when incident photons falling on the sensor plane create electron-hole within device. pairs the These photon-induced electrons are collected locally by the formation of potential wells at each photogate or pixel site. The number of electrons collected is linearly dependent on light level and exposure time and non-linearly dependent on wavelength. When the pixel's capacity is reached, excess electrons are discharged into the lateral overflow drain to prevent crosstalk or 'blooming'. During the integration period, the V1 and V2 register clocks are held at a constant (low) level.

Charge Transport

The integrated charge from each photogate (pixel) is transported to the output using a two-step process. Each line (row) of charge is first transported from the vertical CCD's to a horizontal CCD register using the V1 and V2 register clocks. The horizontal CCD is presented with a new line on the falling edge of V2 while H1 is held high. The horizontal CCD's then transport each line, pixel by pixel, to the output structure by alternately clocking the H1 and H2 pins in a complementary fashion. A separate connection to the last H1 phase (H1L) is provided to improve the transfer speed of charge to the floating diffusion output amplifier. On each falling edge of H1L a new charge packet is dumped onto a floating diffusion and sensed by the output amplifier.

HORIZONTAL REGISTER

Output Structure

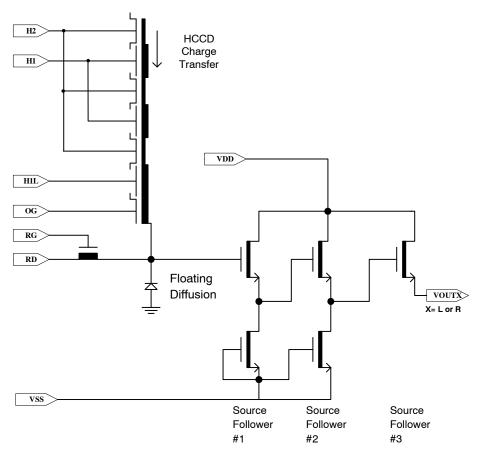
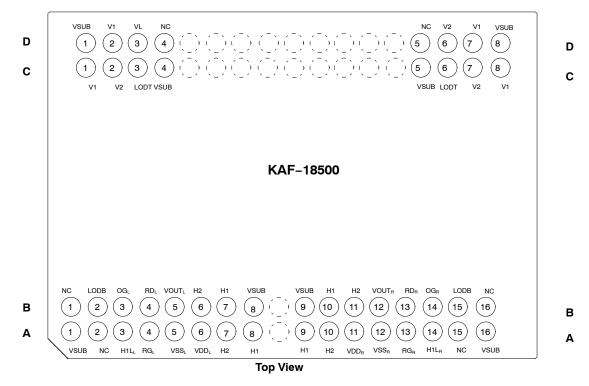


Figure 3. Output Architecture (Left or Right)

The output consists of a floating diffusion capacitance connected to a three-stage source follower. Charge presented to the floating diffusion (FD) is converted into a voltage and is current amplified in order to drive off-chip loads. The resulting voltage change seen at the output is linearly related to the amount of charge placed on the FD. Once the signal has been sampled by the system electronics, the reset gate (RG) is clocked to remove the signal and FD is reset to the potential applied by reset drain (RD). Increased signal at the floating diffusion reduces the voltage seen at the output pin. To activate the output structures, an off-chip current source must be added to the VOUT pins of the device. See Figure 4.



Note: Component values may be revised based on operating conditions and other design considerations.

Figure 4. Typical Output Structure Load Diagram

PHYSICAL DESCRIPTION

Pin Description and Device Orientation

Pin	Name	Description			
1	VSUB	Substrate			
2	NC	Physical pin with no connection on die			
3	H1LL	Horizontal Phase 1, last phase, left side			
4	RGL	Reset Drain, left side			
5	VSSL	Output Amplifier Return, left side			
6	VDDL	Output Amplifier Supply, left side			
7	H2	Horizontal Phase 2			
8	H1	Horizontal Phase 1			
9	H1	Horizontal Phase 1			
10	H2	Horizontal Phase 2			
11	VDD _R	Output Amplifier Supply, right side			
12	VSS _R	Output Amplifier Return, right side			
13	RG _R	Reset Gate, right side			
14	H1L _R	Horizontal Phase 1, last phase, right side			
15	NC	Physical pin with no connection on die			
16	VSUB	Substrate			

Table 3. PGA GRID ROW A

Table	Table 4. PGA GRID ROW B				
Pin	Name	Description			
1	NC	Physical pin with no connection on die			
2	LODB	Lateral Overflow Drain, bottom			
3	OGL	Output Gate, left side			
4	RD_L	Reset Gate, left side			
5	VOUTL	Video Output, left side			
6	H2	Horizontal Phase 2			
7	H1	Horizontal Phase 1			
8	VSUB	Substrate			
9	VSUB	Substrate			
10	H1	Horizontal Phase 1			
11	H2	Horizontal Phase 2			
12	VOUT _R	Video Output, right side			
13	RD _R	Reset Drain, right side			
14	OG _R	Output Gate, right side			
15	LODB	Lateral Overflow Drain, bottom			
16	NC	Physical pin with no connection on die			

Table 5. PGA GRID ROW C

Pin	Name	Description
1	V1	Vertical Phase 1
2	V2	Vertical Phase 2
3	LODT	Lateral Overflow Drain, top
4	VSUB	Substrate
5	VSUB	Substrate
6	LODT	Lateral Overflow Drain, top
7	V2	Vertical Phase 2
8	V1	Vertical Phase 1

Table 6. PGA GRID ROW D

Pin	Name	Description
1	VSUB	Substrate
2	V1	Vertical Phase 1
3	V2	Vertical Phase 2
4	NC	Physical pin with no connection on die
5	NC	Physical pin with no connection on die
6	V2	Vertical Phase 2
7	V1	Vertical Phase 1
8	VSUB	Substrate

IMAGING PERFORMANCE

Table 7. TYPICAL OPERATIONAL CONDITIONS

Description	Condition	Notes
Frame time (t _{readout} + t _{int})	Varies, see below	Includes overclock pixels
Readout time (t _{readout})	527 ms	
Integration time (t _{int})	Varies per test: Bright Field 250 ms, Dark Field 1 sec, Saturation 250 ms, Low light 33 ms	
Horizontal clock frequency	24 MHz	
Temperature	20 – 25°C	Room temperature
Mode	integrate – readout cycle	
Operation	Nominal operating voltages and timing with min. vertical pulse width t_{Vw} = 11 μs	

Table 8. SPECIFICATIONS

Description	Symbol	Min	Nom.	Max	Units	Notes	Verification Plan
Saturation Signal	Vsat Ne⁻ _{sat} Q/V	900 (35000)	1086 42000 25.6		mV e⁻ μV/e⁻	1, 19	die ¹⁷ design ¹⁸ design ¹⁸
Peak Quantum Efficiency red green blue	Rr Rg Rb		30 45 40		%		design ¹⁸
High Level Photoresponse Non-Linearity	Le_High		2	10	%	2	die ¹⁷
Low Level Photoresponse Non-Linearity	Le_Low		2	10	%	2	die ¹⁷
Photo Response Non-Uniformity each color plane	PRNU		4.5	25	%р–р	3	die ¹⁷
Integration Dark Signal	Vdark, int		4	10	mV/s	4, 16	die ¹⁷
Readout Dark Signal	Vdark, read		12	20	mV/s	15, 16	die ¹⁷
Dark Signal Non–Uniformity	DSNU		0.5	4	mV p–p	5	die ¹⁷
Dark Signal Doubling Temperature	ΔΤ		5.3		°C		design ¹⁸
Read Noise	N _R		15.7		e⁻ rms		design ¹⁸
Total Noise	N		18.9		e⁻ rms	6	design ¹⁸
Linear Dynamic Range	DR		68.1		dB	7	design ¹⁸
Red–Green Hue Shift Blue–Green Hue Shift	RGHueUnif BGHueUnif		1.8	12	%	8	die ¹⁷
Horizontal Charge Transfer Efficiency	HCTE	0.999995	0.999995			9	die ¹⁷
Vertical Charge Transfer Efficiency	VCTE	0.999999	0.999999				die ¹⁷
Blooming Protection	Xab		5600		x Vsat	10	design ¹⁸
DC Offset, output amplifier	Vodc	6.0	8	9.5	V	11	die ¹⁷
Output Amplifier Bandwidth	f _{–3dB}		232		MHz	12	design ¹⁸
Output Impedance, Amplifier	R _{OUT}	100	137	300	Ω		die ¹⁷
Hclk Feedthru	V _{hft}		3.7	20	mV	13	die ¹⁷
Reset Feedthru	V _{rft}		0.5		V	14	design ¹⁸

1. Increasing output load currents to improve bandwidth will decrease the conversion factor (Q/V).

2. Worst case deviation (from 10 mV to Vsat min), relative to a linear fit applied between 0 and 85% of Vsat min.

3. Difference between the maximum and minimum average signal levels of 148 x 148 blocks within the sensor on a per color basis as a % of average signal level.

4. $T = 60^{\circ}$ C. Average non-illuminated signal with respect to over-clocked vertical register signal.

5. T = 60°C. Absolute difference between the maximum and minimum average signal levels of 148 x 148 blocks within the sensor.

6. rms deviation of a multi-sampled pixel measured in the dark including amplifier and system noise sources.

7. 20log (0.95 * Vsat/VN). Specified at T = 60°C.

8. Gradual variations in hue (red with respect to green pixels and blue with respect to green pixels) in regions of interest (148 x 148 blocks) within the sensor.

9. Measured per transfer at Vsat min. Typically, no degradation in CTE is observed up to 24 MHz.

10. Xab is the number of times above the Vsat illumination level that the sensor will bloom by spot size doubling. The spot size is 10% of the imager height. Xab is measured at 4 ms.

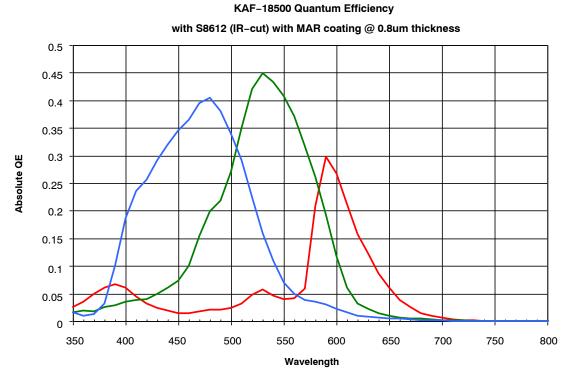
11. Video level offset with respect to ground.

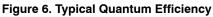
12. Last stage only. Assumes 5 pF off-chip load.

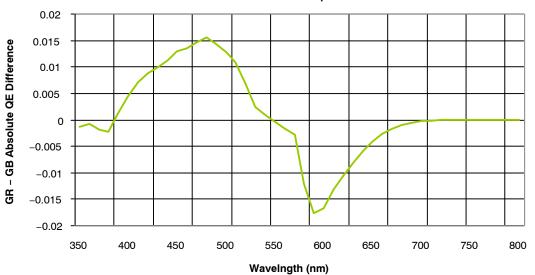
13. Amount of artificial signal due to H1 coupling.

14. Amplitude of feedthrough pulse in VOUT due to RG coupling.

15. T = 60°C. Average non-illuminated signal collected due to the read out time.


16. Total dark signal = (Vdark,int x t_{int}) + (Vdark,read x t_{readout}).


17. A parameter that is measured on every sensor during production testing.


18. A parameter that is quantified during the design verification activity.

19. Specified at $T = 60^{\circ}$ C.

TYPICAL PERFORMANCE CURVES

KAF-18500 Green Pixel Response Difference

0.9 0.8 Normalized QE 0.7 0.6 0.6 0.4 0.3 -LB 0.2 CC 0. - RT -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 Slash Angle

Angle QE about diagonal (BLUE light BLUE pixel)

Figure 8. Typical Normalized Angle QE

KAF-18500 Anti-blooming Performance

Figure 9. Typical Anti Blooming Performance

DEFECT DEFINITIONS

Operating Conditions

All defect tests performed at:

Table 9. OPERATING CONDITIONS

Description	Condition	Notes
Integration time (tint)	Varies per test: Bright Field 250 ms, Dark Field 1 sec, Saturation 250 ms, Low light 33 ms	
Horizontal clock frequency	24 MHz	
Temperature	20 – 25°C	Room temperature

Table 10. SPECIFICATIONS

Classification	Points	Clusters, small and large	Clusters, large	Columns	Includes Dead Columns
Standard Grade	≤ 4400	≤ 50	≤5	≤ 15	yes

Point Defects

A pixel that deviates by more than 9 mV above neighboring pixels under non-illuminated conditions.

-or-

A pixel that deviates by more than 7% above or 11% below neighboring pixels under illuminated conditions.

Cluster Defect

Small clusters: A grouping of adjacent point defects that can number in size from 2 to 10 pixels.

Large clusters: A grouping of more than 10 pixels but not larger than 20 adjacent point defects. A single large cluster is not to exceed 5 adjacent pixels within the same color plane.

Cluster Separation

Cluster defects are separated by no less than 4 good pixels in any direction.

Column Defect

A grouping of more than 10 point defects along a single column

-or-

A column that deviates by more than 0.9 mV above or below neighboring columns under non-illuminated conditions.

-or-

A column that deviates by more than 1.5% above or below neighboring columns under illuminated conditions.

Column and cluster defects are separated by at least 4 good columns in the x direction. No multiple column defects (double or more) will be permitted.

Dead Columns

A column that deviates by more than 50% below neighboring columns under illuminated conditions.

Saturated Columns

A column that deviates by more than 100 mV above neighboring columns under non–illuminated conditions. No saturated columns are allowed.

OPERATION

Table 11. ABSOLUTE MAXIMUM RATINGS

Description	Symbol	Minimum	Maximum	Units	Notes
Diode Pin Voltages	V _{diode}	-0.5	+17.5	V	1, 2
Gate Pin Voltages	V _{gate1}	-13.5	+13.5	V	1, 3
Gate-Gate Voltages	V ₁₋₂	-13.5	+13.5	V	4, 5
Output Bias Current	l _{out}		-30	mA	6
LOD Diode Voltage	V _{LODT}	-0.5	+13.0	V	7
Operating Temperature	T _{OP}	0	60	°C	8

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Referenced to pin SUB.

2. Includes pins: RD, VDD, VSS, VOUT.

3. Includes pins: V1, V2, H1, H1L, H2, RG, OG.

4. Voltage difference between overlapping gates. Includes: V1 to V2; H1, H1L to H2; H1L to OG; V1 to H2. These inputs contain an ESD protection circuit. Exceeding the maximum voltages will cause an uncontrolled current to flow in these circuits and may damage the input pin.

5. Voltage difference between non-overlapping gates. Includes: V1 to H1, H1L; V2, OG to H2. These inputs contain an ESD protection circuit. Exceeding the maximum voltages will cause an uncontrolled current to flow in these circuits and may damage the input pin.

 Avoid shorting output pins to ground or any low impedance source during operation. Amplifier bandwidth increases at higher currents and lower load capacitance at the expense of reduced gain (sensitivity). Operation at the maximum values will reduce Mean Time to Failure (MTTF).

7. V1, H1, V2, H2, H1L, OG, and RD are tied to 0 V.

8. Noise performance will degrade at higher temperatures.

9. Absolute maximum rating is defined as a level or condition that should not be exceeded at any time per the description. If the level or condition is exceeded, the device will be degraded and may be damaged.

Power-up Sequence

The sequence chosen to perform an initial power-up is not critical for device reliability. A coordinated sequence may minimize noise and the following sequence is recommended:

- 1. Connect the ground pins (SUB).
- 2. Supply the appropriate biases and clocks to the remaining pins.

Description	Symbol	Minimum	Nominal	Maximum	Units	Maximum DC Current (mA)	Notes
Reset Drain	RD	11.3	11.5	11.7	V	I _{RD} = 0.01	
Output Amplifier Return	VSS	0.5	0.7	1.0	V	I _{SS} = 3.0	
Output Amplifier Supply	VDD	14.5	15.0	15.5	V	I _{OUT} + I _{SS}	
Substrate	SUB		0		V	0.01	
Output Gate	OG	-2.2	-2.0	-1.8	V	0.01	
Lateral Overflow Drain	LOD	9.8	10.0	10.2	V	0.01	
Video Output Current	I _{OUT}		-5	-10	mA		1

Table 12. DC BIAS OPERATING CONDITIONS

1. An output load sink must be applied to VOUT to activate output amplifier – see Figure 4.

AC Operating Conditions

Table 13. CLOCK LEVELS

Description	Symbol	Level	Minimum	Nominal	Maximum	Units	Effective Capacitance	Notes
V1 Low Level	V1L	Low	-9.2	-9.0	-8.8	V	245 nF	1, 2
V1 High Level	V1H	High	2.3	2.5	2.7	V	245 nF	1, 2
V2 Low Level	V2L	Low	-9.2	-9.0	-8.8	V	303 nF	1, 2
V2 High Level	V2H	High	2.3	2.5	2.7	V	303 nF	1, 2
H1, H2 (amplitude)	H1amp H2amp	Amplitude	6.5	6.75	7.0	V	See below	
H1 Low Level	H1Low	Low	-4.7	-4.5	-4.3	V	460 pF	1
H2 Low Level	H2Low	Low	-5.2	-5.0	-4.8	V	302 pF	1
H1L Low Level	H1Llow	Low	-6.7	-6.5	-6.3	V	15 pF	1
H1L High Level	H1Lhigh	High	1.3	1.5	1.7	V	15 pF	1
RG Low Level	RGL	Low	0.3	0.5	0.7	V	21 pF	1
RG High Level	RGH	High	7.8	8.0	8.2	V	21 pF	1

All pins draw less than 10 μA DC current. Capacitance values relative to SUB (substrate).
 Clock capacitance is the effective capacitance extrapolated from the rise and fall time measured while operating the sensor.

TIMING

Table 14. REQUIREMENTS AND CHARACTERISTICS

Description	Symbol	Minimum	Nominal	Maximum	Units	Notes
H1, H2 Clock Frequency	f _H			24	MHz	1, 2
V1, V2 Clock Frequency	f _V			45.5	kHz	1, 2
H1, H2 Rise, Fall Times	t _{H1r} , t _{H1f}	5		10	%	3, 7
V1, V2 Rise, Fall Times	t _{V1r} , t _{V1f}	5		10	%	3
V1 – V2 Cross–over	V _{VCR}	1			V	
H1 – H2 Cross–over	V _{HCR}	-3.0	-1.5	0	V	
H1L Rise – H2 Fall Crossover	V _{H1LCR}	-2.0		1.0	V	9
H1, H2 Setup Time	t _{HS}	1	5		μs	
RG Clock Pulse Width	t _{RGw}	5			ns	4
RG Rise, Fall Times	t _{RGr} , t _{RGf}	5		10	%	3
V1, V2 Clock Pulse Width	t _{Vw}	11			μs	2, 6
Flush Clock Off Time	t _{off}	4			μs	2, 6
Pixel Period (1 Count)	t _e	42			ns	2
H1L - VOUT Delay	t _{HV}		5		ns	
RG - VOUT Delay	t _{RV}		5		ns	
Readout Time	t _{readout}	505			ms	6, 8
Integration Time	t _{int}					5, 6
Line Time	t _{line}	140			μs	6
Fast Flush Time	t _{flush}	88			ms	

1. 50% duty cycle values.

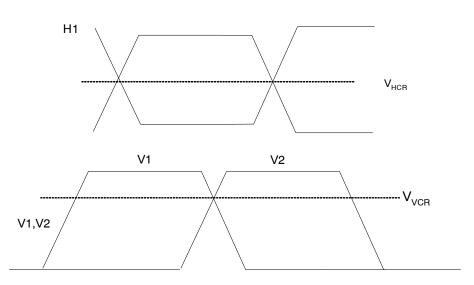
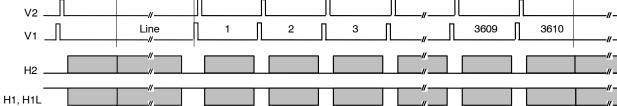
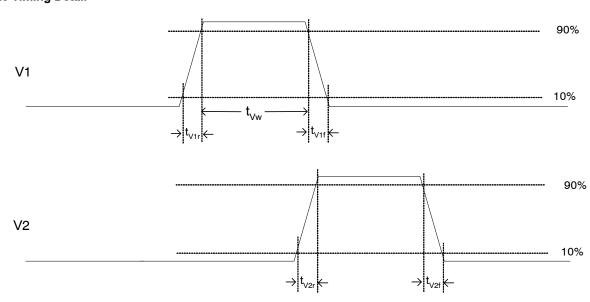
CTE will degrade above the nominal frequency.
 Relative to the pulse width (based on 50% of high/low levels).

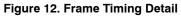
RG should be clocked continuously.
 Integration time is user specified.

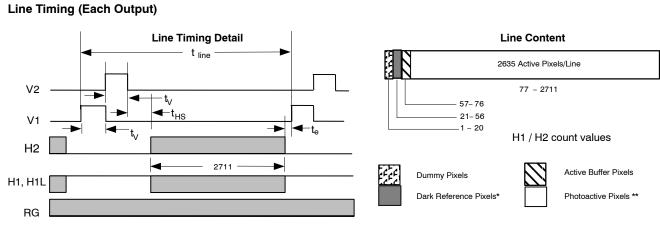
6. Longer times will degrade noise performance.

7. The maximum specification or 10 nsec whichever is greater based on the frequency of the horizontal clocks.
8. t_{readout} = t_{line} * 3610 lines
9. The charge capacity near the output could be degraded if the voltage at the clock cross over point is outside this range.

Edge Alignment


Figure 10. Timing Edge Alignment



Frame Timing Detail

Pixel Timing

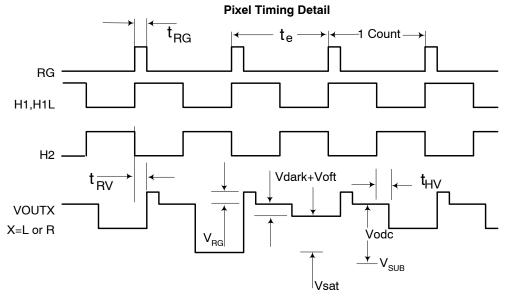


Figure 14. Pixel Timing

Pixel Timing Detail

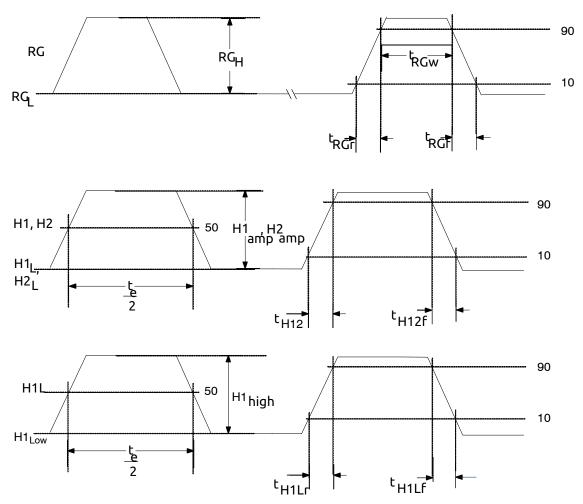
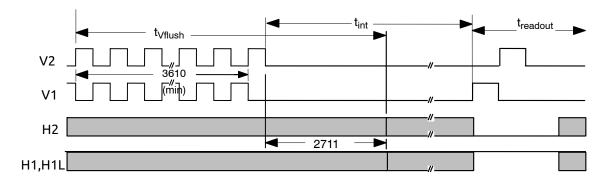
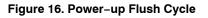




Figure 15. Pixel Timing Detail

MODE OF OPERATION

Power-up Flush Cycle

STORAGE AND HANDLING

For information on ESD and cover glass care and cleanliness, please download the *Image Sensor Handling and Best Practices* Application Note (AN52561/D) from www.onsemi.com.

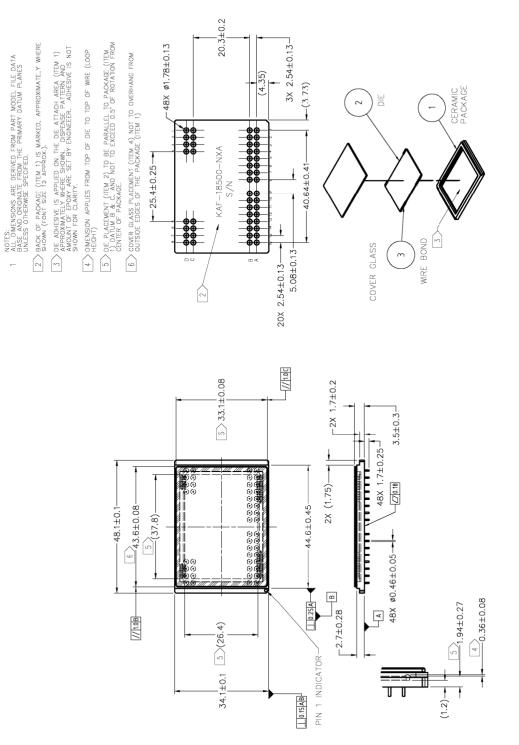
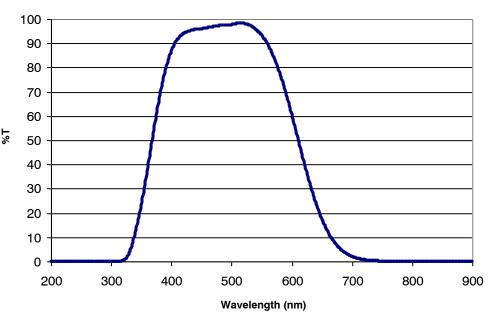
For information on soldering recommendations, please download the Soldering and Mounting Techniques Reference Manual (SOLDERRM/D) from www.onsemi.com. For quality and reliability information, please download the *Quality & Reliability* Handbook (HBD851/D) from www.onsemi.com.

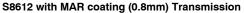
For information on device numbering and ordering codes, please download the *Device Nomenclature* technical note (TND310/D) from <u>www.onsemi.com</u>.

For information on Standard terms and Conditions of Sale, please download <u>Terms and Conditions</u> from <u>www.onsemi.com</u>.

MECHANICAL INFORMATION

Completed Assembly


Figure 17. Completed Assembly Drawing

Cover Glass Specification

MAR Coated-IR Absorbing Cover Glass

- 1. Dust/Scratch/Digs/Defects: 20 micron max
- 2. Substrate material: Schott S8612 whose performance is as published and specifications controlled by Schott, North America. The cover glass supplied for this device is as shown in Figure 17. Data supplied in the graph below is a typical transmission of the AR coated material at 0.8 mm thickness.

3. Multilayer anti-reflective coating on two sides: Two-sided reflectance:

Table 15.

Wavelength	Transmission
420 – 450 nm	< 2%
450 – 630 nm	< 1%
630 – 680 nm	< 2%

ON Semiconductor and the 🕡 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC bronducts for any such unintended or unauthorized application. Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regardi

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative