2Mb(128K x 16 bit) Low Power SRAM

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROP-ERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY.

ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.

1. For updates or additional information about Samsung products, contact your nearest Samsung office.

2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

* Samsung Electronics reserves the right to change products or specification without notice.

Document Title

128Kx16 bit Super Low Power and Low Voltage Full CMOS Static RAM

Revision History

Revision	No.	History
	110.	11101017

0.0 Initial Draft

Draft Date April 25, 2005 Remark Preliminary

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

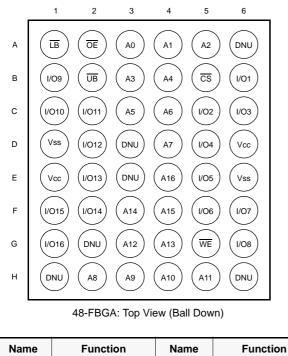
128K x 16 bit Super Low Power and Low Voltage Full CMOS Static RAM

FEATURES

- Process Technology: Full CMOS
- Organization: 128K x16 bit
- Power Supply Voltage: 2.7~3.3V
- Low Data Retention Voltage: 1.5V(Min)
- Three State Outputs
- Package Type: 48-FBGA-6.00x7.00

GENERAL DESCRIPTION

The K6F2016U4G families are fabricated by SAMSUNG's advanced full CMOS process technology. The families support industrial temperature range and 48 ball Chip Scale Package for user flexibility of system design. The family also supports low data retention voltage for battery back-up operation with low data retention current.


PRODUCT FAMILY

				Power Di	ssipation		
Product Family	Operating Temperature	Vcc Range	Speed	Standby (Isв1, Typ.)	Operating (Icc1, Max)	PKG Type	
K6F2016U4G-F	Industrial(-40~85°C)	2.7~3.3V	551)/70ns	3μA ²⁾	4mA	48-FBGA-6.00x7.00	

1. The parameter is measured with 30pF test load.

2. Typical value is measured at Vcc=3.0V, TA=25°C and not 100% tested.

PIN DESCRIPTION

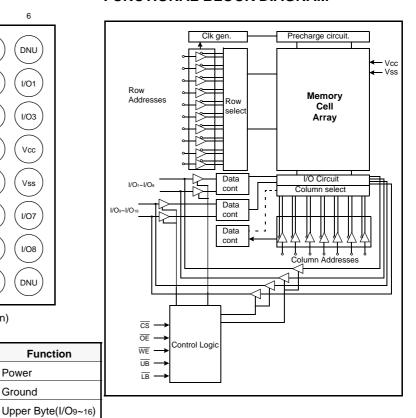
Vcc

Vss

UB

LB

DNU


Power

Ground

Do Not Use

Lower Byte(I/O1~8)

FUNCTIONAL	BLOCK	DIAGRAM

CS

OE

WE

A0~A16

Chip Select Inputs

Write Enable Input

Address Inputs

I/O1~I/O16 Data Inputs/Outputs

Output Enable Input

PRODUCT LIST

Industrial Temperature Products(-40~85°C)					
Function					
48-FBGA, 55ns, 3.0V					
48-FBGA, 55ns, 3.0V, LF ¹⁾					
48-FBGA, 70ns, 3.0V					
48-FBGA, 70ns, 3.0V, LF ¹⁾					

1. LF : Lead Free Product

FUNCTIONAL DESCRIPTION

CS	OE	WE	LB	UB	I/O 1~8	I/O 9~16	Mode	Power
Н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
X ¹⁾	X ¹⁾	X ¹⁾	н	н	High-Z	High-Z	Deselected	Standby
L	н	н	L	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	н	Н	X ¹⁾	L	High-Z	High-Z	Output Disabled	Active
L	L	Н	L	н	Dout	High-Z	Lower Byte Read	Active
L	L	Н	н	L	High-Z	Dout	Upper Byte Read	Active
L	L	н	L	L	Dout	Dout	Word Read	Active
L	X ¹⁾	L	L	н	Din	High-Z	Lower Byte Write	Active
L	X ¹⁾	L	н	L	High-Z	Din	Upper Byte Write	Active
L	X ¹⁾	L	L	L	Din	Din	Word Write	Active

1. X means don't care. (Must be low or high state)

ABSOLUTE MAXIMUM RATINGS¹⁾

Item	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	Vin, Vout	-0.3 to Vcc+0.3V(Max. 3.6V)	V
Voltage on Vcc supply relative to Vss	Vcc	-0.3 to 3.6	V
Power Dissipation	PD	1.0	W
Storage temperature	Тѕтс	-65 to 150	°C
Operating Temperature	TA	-40 to 85	°C

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted within recommended operating condition. Exposure to absolute maximum rating conditions for extended period may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS¹⁾

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	2.7	3.0	3.3	V
Ground	Vss	0	0	0	V
Input high voltage	Vін	2.2	-	Vcc+0.32)	V
Input low voltage	VIL	-0.3 ³⁾	-	0.6	V

Note:

1. Industrial Product: TA=-40 to 85°C, otherwise specified.

2. Overshoot: Vcc+2.0V in case of pulse width \leq 20ns.

Undershoot: -2.0V in case of pulse width ≤20ns.
Overshoot and undershoot are sampled, not 100% tested.

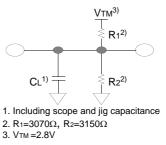
CAPACITANCE¹) (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	VIO=0V	-	10	pF

1. Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

ltem	Symbol	Test Conditions			Typ ¹⁾	Max	Unit
Input leakage current	Iц	VIN=Vss to Vcc		-1	-	1	μA
Output leakage current	Ilo	CS=Viн or OE=Viн or WE=Vi∟ or LB=UB=Viн, Vio=Vss to Vcc	-1	-	1	μΑ	
A	ICC1	2ycle time=1μs, <u>10</u> 0%duty, lio=0mA, CS≤0.2V, B≤0.2V or/and UB≤0.2V, Vin≤0.2V or Vin≥Vcc-0.2V		-	-	4	mA
Average operating current	loca	CC2 Cycle time=Min, IIo=0mA, 100% duty, CS=VIL, LB=VIL or/and UB=VIL, VIN=VIL or VIH 70 55 55		-	-	22	mA
	1002			-	-	27	
Output low voltage	Vol	IOL = 2.1mA		-	-	0.4	V
Output high voltage	Vон	юн = -1.0mA		2.4	-	-	V
Standby Current (CMOS)	ISB1	Other input =0~Vcc 1) $\underline{CS} \ge Vcc$ -0.2V(CS controlled) or 2) $\underline{LB} = \underline{UB} \ge Vcc$ -0.2V, $\overline{CS} \le 0.2V(\underline{LB}/\underline{UB}$ controlled)		-	3	10	μΑ


1. Typical values are measured at Vcc=3.0V, TA=25°C and not 100% tested.

Preliminary CMOS SRAM

AC OPERATING CONDITIONS

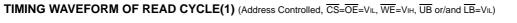
TEST CONDITIONS(Test Load and Test Input/Output Reference) Input pulse level: 0.4 to 2.2V Input rising and falling time: 5ns Input and output reference voltage: 1.5V Output load (See right): CL= 100pF+1TTL CL= 30pF+1TTL

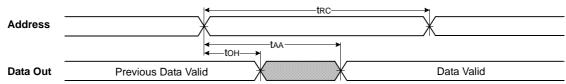
AC CHARACTERISTICS (Vcc=2.7~3.3V, Industrial product:TA=-40 to 85°C)

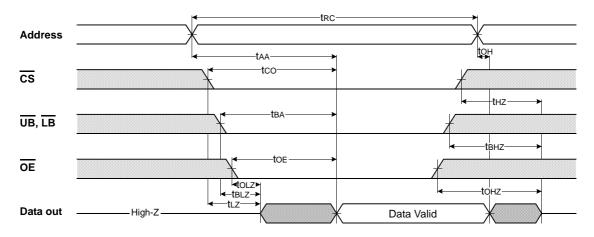
				Sp	eed		
	Parameter List	Symbol	Symbol 55ns		70	Ons	Units
			Min	Max	Min	Max	
	Read cycle time	tRC	55	-	70	-	ns
	Address access time	taa	-	55	-	70	ns
	Chip select to output	tco	-	55	-	70	ns
	Output enable to valid output	tOE	-	25	-	35	ns
	UB, LB Access Time	tвА	-	55	-	70	ns
Read	Chip select to low-Z output	t∟z	10	-	10	-	ns
Read	UB, LB enable to low-Z output	tBLZ	10	-	10	-	ns
	Output enable to low-Z output	tolz	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	20	0	25	ns
	UB, LB disable to high-Z output	tвнz	0	20	0	25	ns
	Output disable to high-Z output	tонz	0	20	0	25	ns
	Output hold from address change	tон	10	-	10	-	ns
	Write cycle time	twc	55	-	70	-	ns
	Chip select to end of write	tcw	45	-	60	-	ns
	Address set-up time	tAS	0	-	0	-	ns
	Address valid to end of write	taw	45	-	60	-	ns
	UB, LB Valid to End of Write	tBW	45	-	60	-	ns
Write	Write pulse width	tWP	40	-	50	-	ns
	Write recovery time	twR	0	-	0	-	ns
	Write to output high-Z	twнz	0	20	0	20	ns
	Data to write time overlap	tDW	25	-	30	-	ns
	Data hold from write time	tdн	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	ns

DATA RETENTION CHARACTERISTICS

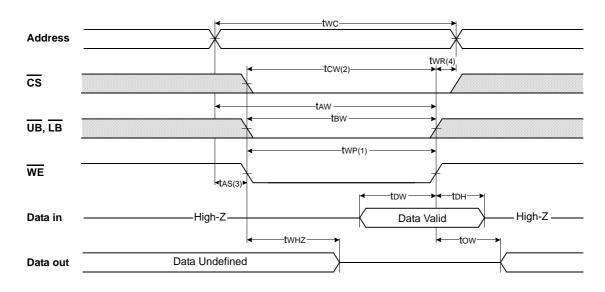
Item	Symbol	Test Condition	Min	Тур	Max	Unit
Vcc for data retention	VDR	$\overline{CS} \ge Vcc-0.2V^{1)}, VIN \ge 0V$	1.5	-	3.3	V
Data retention current	IDR	Vcc=1.5V, CS≥Vcc-0.2V ¹), VIN≥0V	-	-	3	μA
Data retention set-up time	tSDR	See data retention waveform	0	-	-	20
Recovery time	tRDR		tRC	-	-	ns


1. 1) $\overline{CS} \ge Vcc-0.2V(\overline{CS} \text{ controlled})$ or

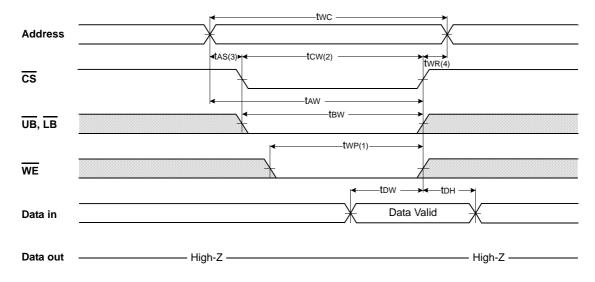

2) $\overline{LB}=\overline{UB}\geq Vcc-0.2V$, $\overline{CS}\leq 0.2V(\overline{LB}/\overline{UB} \text{ controlled})$

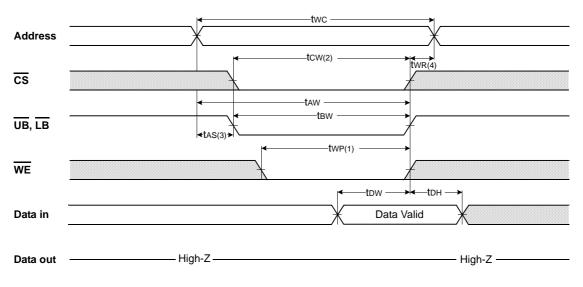


TIMING DIAGRAMS


TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

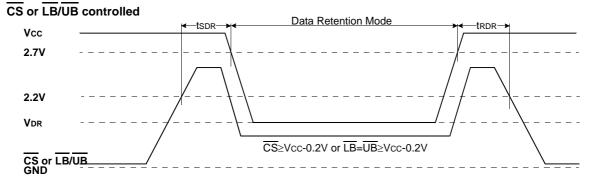
NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.


TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

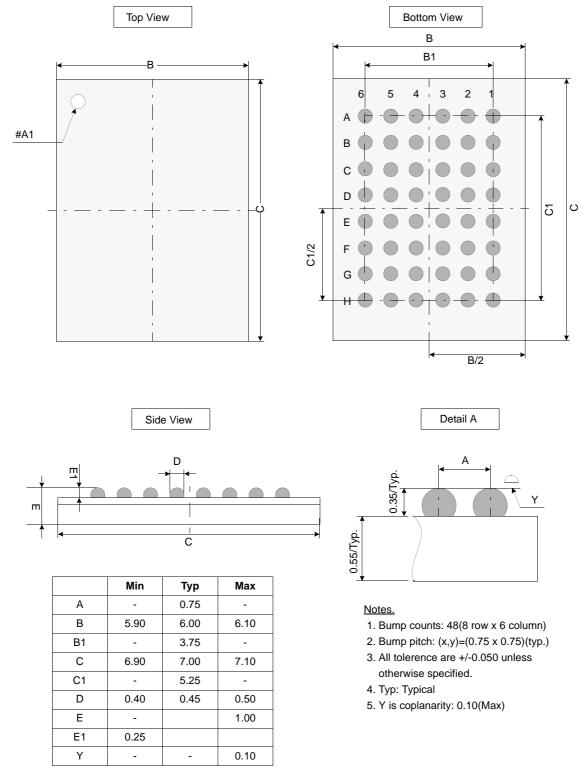
TIMING WAVEFORM OF WRITE CYCLE(3) (UB, LB Controlled)



NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(twp) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition when \overline{CS} goes high and \overline{WE} goes high. The twp is measured from the beginning of write to the end of write.
- 2. tcw is measured from the \overline{CS} going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.

4. twe is measured from the end of write to the address change. twe applied in case a write ends as CS or WE going high.


DATA RETENTION WAVE FORM

PACKAGE DIMENSION

48 TAPE BALL GRID ARRAY(0.75mm ball pitch)

Unit: millimeters