

JW18288B/JW18288C

PWM Dimmable

Non-isolated Buck LED Regulator

Parameters Subject to Change Without Notice

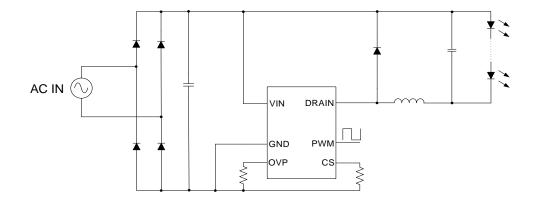
DESCRIPTION

JW®18288B/JW18288C/JW18288D/JW18288E (JW18288X series) is a non-isolated PWM dimmable constant current LED regulator with high current accuracy which applies to single stage step-down LED drivers.

JW18288X series is supplied from the line directly without auxiliary winding or external capacitor, which can lower the system BOM cost. Patented algorithms ensure good current accuracy and excellent line/load regulations.

With unique sampling techniques, JW18288X series has multi-protection functions which can largely enhance the safety and reliability of the system, including LED short protection, LED open protection and over-temperature protection.

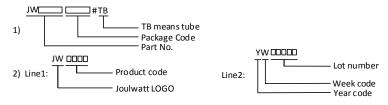
Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of JoulWatt technology Inc.


FEATURES

- No Auxiliary Winding
- **Excellent Line/load Regulation**
- Internal PWM to Analog Dimming
- High Efficiency
- **LED Short Protection**
- **LED Open Protection**
- **DIP7** Package

APPLICATIONS

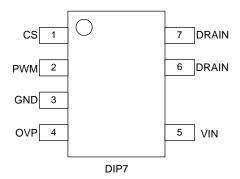
LED Driver


TYPICAL APPLICATION

ORDER INFORMATION

DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾	ENVIRONMENTAL ³⁾	
	DID7	JW18288B	Croon	
JW18288BDIPA#TB	/18288BDIPA#TB DIP7		Green	
	DIP7	JW18288C	Green	
JW18288CDIPA#TB	5 7	YW□□□□	Green	
JW18288DDIPA#TB	DIP7	JW18288D	Green	
JW 10200DDIFA#1B	DIP7	YW□□□□	dreen	
INVACAGOED IDA UTD	DIP7	JW18288E	Connection	
JW18288EDIPA#TB	DIF /	YW□□□□□	Green	

Note:


3) All Joulwatt products are packaged with Pb-free and Halogen-free materials and compliant to RoHS standards.

DEVICE INFORMATION

DEVICE	MOS BV	MOS RDSON
JW18288BDIPA#TB	500V	6Ω
JW18288CDIPA#TB	500V	2.9Ω
JW18288DDIPA#TB	500V	2.2Ω
JW18288EDIPA#TB	500V	1.8Ω

PIN CONFIGURATION

TOP VIEW

ABSOLUTE MAXIMUM RATING¹⁾

VIN Voltage	700V
VIN Voltage DRAIN Voltage	500V
Other Pins	-0.3V to 8V
Junction	
Temperature ²⁾³⁾	150°C
Storage Temperature	65°C to +150°C
RECOMMENDED OPERATING CONDITIONS	
VIN Voltage	500V
DRAIN Voltage	400V
Other Pins	-0.3V to 5V
PWM Dimming Signal Frequency	500HZ to 10KHZ
Operating Junction Temperature	25°C to 125°C
RECOMMENDED OUTPUT VOLTAGE	
JW18288X series	>10V

Note:

1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMENDED OPERATING CONDITIONS.

DIP7......80...45°C/W

- 2) The JW18288X series includes thermal protection that is intended to protect the device in overload conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

THERMAL PERFORMANCE⁴⁾

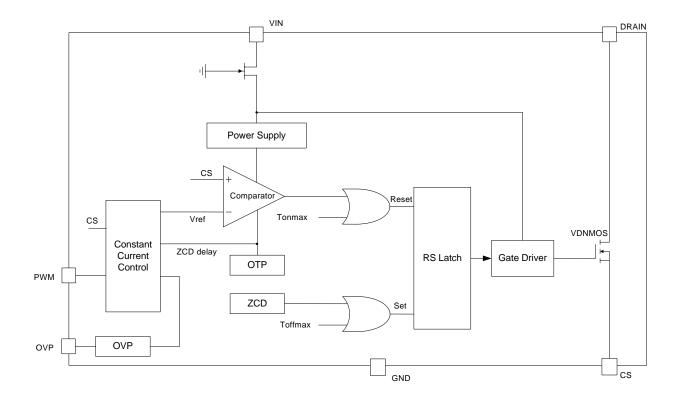
 θ_{JA}

 θ_{JC}

ELECTRICAL CHARACTERISTICS

T_A =25 $^{\circ}$ C, unless of	otherwise stated						
lte	:m	Symbol	Condition	Min.	Тур.	Max.	Units
Power Supply							
VIN Breakdown Volta	age	BV		700			V
Threshold of VIN Po	ower On ⁵⁾	V _{INST}	V _{IN} rising		12.5		V
VIN Quiescent Curre		I _Q			250	320	μA
Iq at Standby Mode		I _{SB}	VIN=300V		32	42	μΑ
Reference and Curr	rent Control						
Maximum Peak Volta	age	V _{PKMX}		680	725	760	mV
Minimum Peak Volta	age	V _{PKMN}			150		mV
Output Current Refe	rence	Vref	PWM =100%	291	300	309	mV
Dimming Output Cur	rrent Reference ⁵⁾	Vrefd	PWM =3%	8	9	10	mV
Other Parameters							
CS Minimum Voltage	e for Neon Switch	CSmin			50		mV
Neon Switch VIN Sir	nk Current	I _{NNSK}			1	1.25	mA
MOS Max On Time		T _{ONMAX}		28	40	52	μs
MOS Min On Time ⁵⁾		T _{ONMIN}		0.4	0.6	0.8	μs
MOS Max Off Time		T _{OFFMAX}		280	400	520	μs
MOS Min Off Time ⁵⁾		Toffmin		0.5	0.7	0.9	μs
Protections							
		V _{OVP1}	Rovp = Float	198	220	232	V
OVP Threshold		V _{OVP2}	R _{OVP} = Short	108	120	132	V
		V _{OVP3}	R _{OVP} = 510K	81	90	99	V
OVP Hic-cup Time ⁵⁾		T _{OVP_HC}			560	620	ms
Thermal Protection 1		OTP		140	150	160	°C
PWM Dimming							
PWM High Level		VPH		1.6			V
PWM Low Level		VPL				0.8	V
Maximum Switching Period		Tsw			1.2	1.6	ms
Power MOSFET							
Drain-source Voltage	JW18288X series	BV _{DSS}	Vg=0V Ids=250µA	500			V
MOS R _{DSON}	JW18288B	Rds_on	Vg=15V		6	7	ohm

	JW18288C		Ids=0.5A		2.9	3.5	
	JW18288D				2.2	2.6	
	JW18288E				1.8		
DS Leakage	IM/19299V porios	I _{DSS}	Vg=0V		1	5	μА
Current	JW18288X series		Vds=500V				


Notes:

5) Guaranteed by design.

PIN DESCRIPTION

Pin	Name	Description	
1	CS	Current sensing pin	
2	PWM	PWM dimming signal input	
3	GND	Ground pin	
4	OVP	OVP set pin	
5	VIN	Power supply	
6,7	DRAIN	The drain of internal power MOSFET	

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The JW18288X series is a constant current LED regulator, which applies to non-isolation PWM dimmable step-down LED system. JW18288X series can achieve excellent line and load regulation, high efficiency and low system cost with few peripheral components.

Start Up

When the VIN exceeds the turn-on threshold, the gate driver will start to switch after a 5mS' delay.

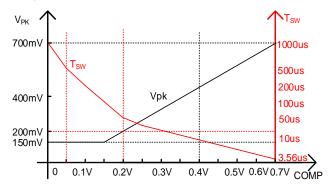
PWM Dimming

JW18288X series controls the output current from the information of the current sensing resistor and the injected PWM dimming signal.

The output LED average current can be calculated as:

$$I_{LED} = Duty*V_{REF}/R_S$$

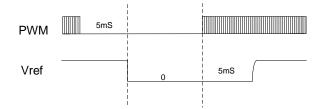
Where,


Duty – duty of the PWM dimming signal.

V_{REF} – the reference voltage.

 $\ensuremath{\mathsf{R}}_{\ensuremath{\mathsf{S}}}-$ the sensing resistor connected between the pin CS and chip GND.

JW18288X series incorporates a frequency foldback and variable peak current control strategy to regulate the output current according to the duty of PWM dimming signal.


The frequency foldback and variable peak current control all relies on the internal COMP voltage as the figure shows below.

To minimize the audible noise, the peak current decreases to lower than one-third of the maximum peak voltage.

Standby Mode

When the PWM duty equals 0 for continuous 5mS in typical, the chip works at standby mode, in which there is no switching and the quiescent current of the chip decreases to its minimum.

Over Temperature Protection

When the junction temperature is higher than OTP, JW18288X series decreases the output current by decreasing the output current to help the chip cooling.

LED Open Protection

In the LED open condition, the output voltage increases and the duty of each cycles increases accordingly. When the VIN*D is larger than V_{O_OVP} (Setup by R_{OVP} connected to OVP pin), the power MOSFET is shut down and restarts after T_{OVP_HC} (560ms typical). The following table shows the V_{O_OVP} design guide:

OVP Pin	$V_{O_OVP}(V)$		
R _{OVP} =510K	90V		
R _{OVP} = short	120V		
R _{OVP} = open	220V		

LED Short Protection

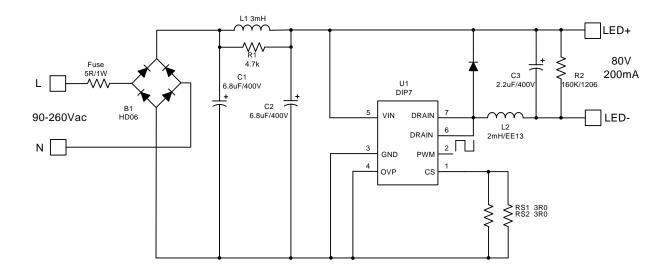
When the output is shorted, JW18288X series stops switching for T_{OFFMAX} until the next pulse.

PCB Layout Guidelines

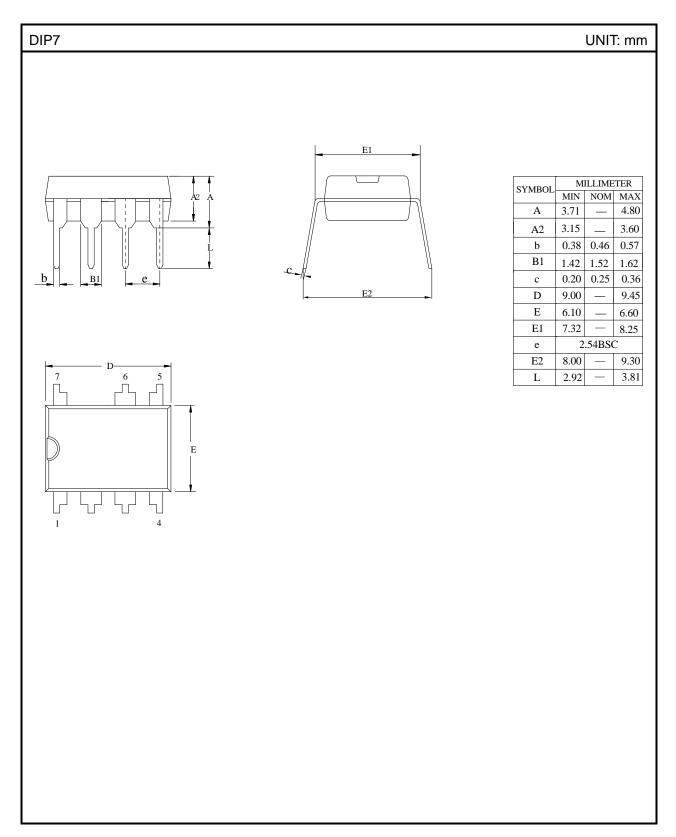
1. Make the area of the power loop as small as possible in order to reduce the EMI radiation.

2. JW18288X series should be kept away from

noisy and heating components, such as power inductor and freewheel diode.


APPLICATION REFERENCE

This reference design is suitable for 10~20W non-isolated step-down LED driver, using JW18288B, with high efficiency, excellent line regulation.


Reference:

V_{IN}: 90VAC~260VAC

 V_{OUT} : 80V I_{OUT} : 200mA PF: >0.5

PACKAGE OUTLINE

IMPORTANT NOTICE

Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements,
 corrections or other changes without further notice to this document and any product described herein.

- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2021 JW18288X series Incorporated.

All rights are reserved by Joulwatt Technology Inc.