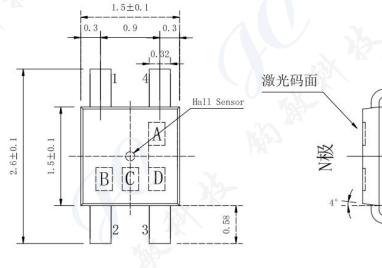


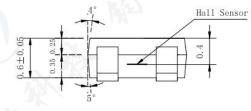
JM8630 GaAs Hall Element

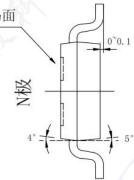
具有高线性度与优异温度特性的砷化镓霍尔元件

Linear GaAs Hall element with excellent thermal characteristics

薄型 SSOT-4 封装


Thin-type SSOT-4 package

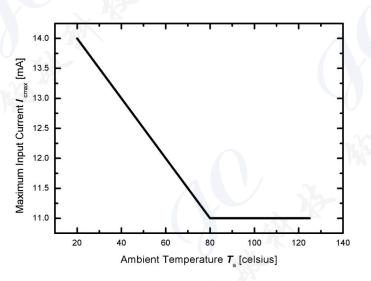

编带包装(每卷4,000颗)


Shipped in Packet-tape Reel (4000pcs devices per Reel)

外形尺寸图

Dimensional Drawing (Unit: mm)

引脚気	宦义 (Pinr	ning)
输入 Input	1 (±)	3 (∓)
输出 Output	2 (±)	4 (∓)


Copy Right Reserved

JZWI-DS-003 Version 1.0

绝对最大额定值 Absolute Maximum Rating

项目	符号	条件	范围	单位
Item	Symbol	Conditions	Limit	Unit
最大输入电流		T _a = 25 °C	1.4	mA
Maximum Input Current	I _{cmax}		14	
工作温度			40 425	°C
Operating Temperature Range	Topr		-40 ~ +125	
保存温度	+	4	40	°C
Storage Temperature Range	T STG		-40 ~ +150	

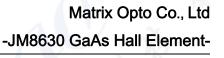


Figure 1. 最大输入电流-环境温度

Maximum input current I_{cmax}-Ambient Temperature T_a

Copy Right Reserved

电气特性 Electrical Characteristics (RT=25℃)

						1
「 项目	符号	测试环境	最小	标准	最大	标准
Item	Symbol	Test Condi.	Min.	Тур.	Max.	Unit
霍尔电压		B = 50mT, I _C = 5mA	80		110	mV
Hall Voltage	V _H	T _a = RT			110	
输入电阻		B = 0mT, I _C = 0.1mA	1000	1250	1500	Ω
Input Resist.	R in	T _a = RT				
输出电阻		B = 0mT, I _C = 0.1mA	1000	2500	2000	0
Output Resist.	Rout	T _a = RT	1800	2500	3000	Ω
非平衡电压		B = 0mT, I _C = 5mA	-8		+8	mV
Offset Voltage	Vos	T _a = RT				
霍尔电压温度系数		B = 50mT, I _C = 1mA,			0.00	0110
Temp. Coeffi. of V_H	α // _H	T _a =25℃ ~ 125℃			0.06	%/ ℃
输入电阻温度系数		B = 0mT, I _C = 0.1mA,		U	0.2	N/1°C
Temp. Coeffi. of R _{in}	α R in	T _a = 25°C ∼ 125°C			0.3	%/ ℃
霍尔电压线性度	^ K	B = 0.1 - 0.5T, I _C = 1mA	2		2	0/
Linearity of V_{H}	∆ <i>K</i>	7 _a = RT	-2		+2	%

Table 1. JM8630 电气特性表 Electrical Characteristics of JM8630

Note:

 $1. \quad \boldsymbol{V}_{\rm H} = \boldsymbol{V}_{\rm H-M} - \boldsymbol{V}_{\rm os}$

In which $V_{\text{H-M}}$ is the Output Hall Voltage, V_{H} is the Hall Voltage and V_{os} is the offset Voltage

under the identical electrical stimuli.

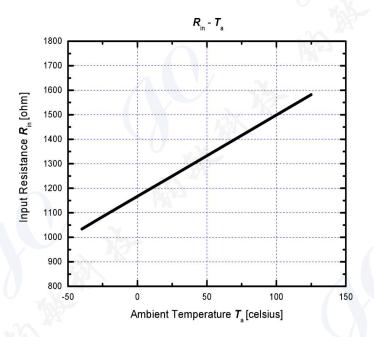
2.
$$\alpha V_{\rm H} = \frac{1}{v_{\rm H} (T_{a1})} \times \frac{v_{\rm H} (T_{a2}) - v_{\rm H} (T_{a1})}{T_{a2} - T_{a1}} \times 100$$

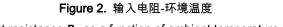
 $T_{a1} = 25^{\circ}\text{C}, \ T_{a2} = 125^{\circ}\text{C}$

3.
$$\alpha R_{\text{in}} = \frac{1}{R_{\text{in}}(T_{a1})} \times \frac{R_{\text{in}}(T_{a2}) - R_{\text{in}}(T_{a1})}{T_{a2} - T_{a1}} \times 100$$

$$T_{a1} = 25^{\circ}$$
C, $T_{a2} = 125^{\circ}$ C

4.
$$\Delta K = \frac{K(B_1) - K(B_2)}{\frac{K(B_1) + K(B_2)}{2}} \times 100 \quad K = \frac{V_{\rm H}}{I_c \times B}$$

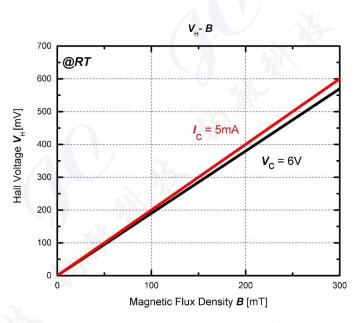
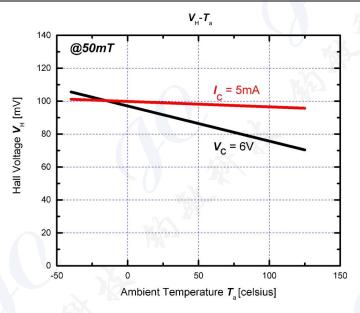

 $B_1 = 0.5 \text{T}, \quad B_2 = 0.1 \text{T}$

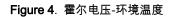

Copy Right Reserved

JZWI-DS-003 Version 1.0

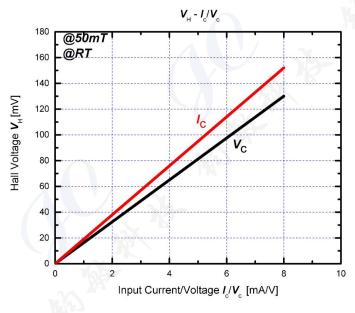
特性曲线图 Characteristic Curves

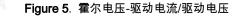
Input resistance R_{in} as a function of ambient temperature T_a


Figure 3. 霍尔电压-磁感应强度 Hall voltage V_H as a function of magnetic flux density **B**

Copy Right Reserved


JZWI-DS-003 Version 1.0



Hall voltage V_{H} as a function of electrical stimuli $I_{\text{c}}/V_{\text{c}}$

Copy Right Reserved

JZWI-DS-003 Version 1.0

可靠性测试项目 Reliability Test Terms

Table 2. 可靠性测试项目,条件和持续时间 Reliability Test Terms, Conditions and Duration

	项目	测试条件	
No.	Terms	Conditions	Duration
1	高温存储试验 High Temperature Storage (HTS)	Temperature Storage $T_a = 150 (0 \sim +10) ^{\circ}C$	
2	太循环试验 【JEITA EIAJ ED-4701】 热循环试验 \mathcal{T}_a =-55°C~150°C Heat Cycle (HC) high temp normal temp low temp. 30 min - 5 min - 30 min 30 min		50 cycles
3	高温高湿存储试验 Temp. Humidity Storage (THS)	【JEITA EIAJ ED-4701】 <i>T_a</i> =85±3 °C, <i>R_H</i> =85±5%	1000 hr
4	回流焊试验 Reflow Soldering (RS)	[JEITA EIAJ ED-4701] 260±5°C	10 sec
5	高温带电老化试验 High Temp. Operating (HTO)	7 _a =125 °C , I _c =8mA	1000 hr

判定基准:

- 霍尔电压V_H和输入/输出电阻 **R**_{in/out}的数值变化幅度小于±20%
- 非平衡电压 Vos 的数值变化幅度小于±8mV
- 在表 1 中的其他参数仍然在表 1 的规定范围内

Criteria:

- Variation of Hall Voltage V_H and input/output resistances R_{in/out} are less than ±20% of initial value.
- Variation of offset voltage V_{os} is within ±8mV.
- Other parameters in Table 1. are still within their ranges stated in Table 1.

焊接条件

助焊剂材料

- 使用树脂基助焊剂,避免使用有机或无机酸基及水溶性助焊剂。

助焊剂的清洗条件

- 使用乙醇或异丙醇作为清洁材料。
- 工艺温度≤50℃。
- 持续时间不超过5分钟。

焊接方法

	焊接方法	焊接方法说明	焊接温度
	回流法	在高温下进行焊接的方法	最高 260℃,10 秒以内
	波峰焊	在镀锡缸中完成焊接的方法	最高 260℃,10 秒以内
K	烙铁法	使用烙铁修正引脚焊接部分的方法	最高 350℃,3 秒以内

焊接温度范围

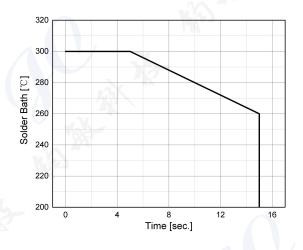


Figure 6. (参考) 浸入焊接条件

Copy Right Reserved

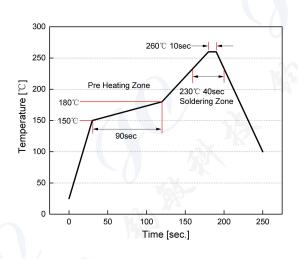


Figure 7. (参考)回流焊条件

ESD防护

本产品对 ESD(静电放电)敏感,接触带有 ESD-Caution 标记的霍尔元件时,环境要求如下:

- 环境不太可能出现静电荷(例如,相对湿度超过 40%RH)。
- 接触产品时应该穿戴防静电服和腕带。
- 对直接接触产品的设备或容器实施防静电措施。

存储防护

- 产品应储存在适当的温度和湿度环境下(5 至 35°C,40%至 85%RH),且使产品远离氯和腐蚀性气体。

- 即使在适当的条件下,长期存放也可能导致产品的可焊接性和电气性能降低。针对长期存放的产品,应

该在使用前应检查其可焊性。

- 如果储存超过 2 年,建议储存在氮气环境中。大气中的氧气会氧化产品的引线,导致引线可焊接性变差。

安全防护

- 请勿通过燃烧,粉碎或化学处理等方式将本产品变成气体,粉末或液体。

- 丢弃本产品时,请遵守法律和公司规定。

Copy Right Reserved

Soldering Conditions

The following conditions should be preserved. Solder ability should be checked by yourself, because it is

depend on solder paste material and other parameters.

Material of solder flux

- Use the resin based flux and refrain from using organic or inorganic acid based and water-soluble one.

Cleansing of solder flux conditions

- Use Ethanol or Isopropyl alcohol as cleansing material.

- Process temperature should be 50°C or less.

- Duration should be 5min or less.

Hand-Soldering

- Solder the leads to PC board at the point(part from the body) at 260°C for 10 seconds or 350°C for less

than 3 seconds.

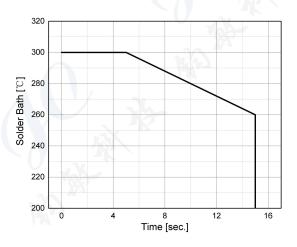


Figure 6. (Reference) Conditions of Dip Soldering

Copy Right Reserved

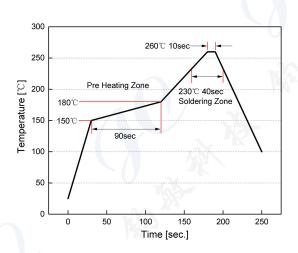


Figure 7. (Reference) Conditions of Reflow Profile

Precautions for ESD

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with

the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise. (Ex; Relative Humidity; over 40% RH).
- Wearing the antistatic suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

Precautions for Storage

- Products should be stored at an appropriate temperature and humidity (5 to 35°C, 40 to 85%RH).

Keep products away from chlorine and corrosive gas.

- Long-term storage may result in poor lead solder ability and degraded electrical performance even

under proper conditions. For those parts, which stored long -term shall be check solder ability before it

is used.

Copy Right Reserved

- For storage longer than 2 years, it is recommended to store in nitrogen atmosphere. Oxygen of

atmosphere oxidizes leads of products and lead solder ability get worse.

Precautions for Safety

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical

processing.

- Observe laws and company regulations when discarding this product.

Copy Right Reserved