

1 Description

The iW1677 is a high performance AC/DC power supply controller which uses digital control technology to build peak current mode PWM flyback power supplies. The device together with an external active device (depletion mode NFET or NPN BJT) provides a fast start-up without compromising no-load power loss. The device directly drives a power BJT and operates in quasi-resonant mode to provide high efficiency along with a number of key built-in protection features while minimizing the external component count, simplifying EMI design and lowering the total bill of material cost. The iW1677 removes the need for secondary feedback circuitry while achieving excellent line and load regulation. It also eliminates the need for loop compensation components while maintaining stability over all operating conditions. Pulse-by-pulse waveform analysis allows for a loop response that is much faster than traditional solutions, resulting in improved dynamic load response for both one-time and repetitive load transients. The built-in power limit function enables optimized transformer design in universal off-line applications and allows for a wide input voltage range.

Dialog's innovative proprietary technology ensures that power supplies built with the iW1677 can achieve both highest average efficiency and less than 20mW no-load power consumption, and have fast dynamic load response in a compact form factor. The active start-up scheme enables shortest possible start-up time without sacrificing no-load power loss.

2 Features

- No-load power consumption < 20mW at 230 V_{AC} with typical application circuit (5 star rating)
- Fast dynamic load response for both one-time and repetitive load transients
- Very tight constant voltage and constant current regulation over entire operating range
- PrimAccurate[™] primary-side feedback eliminates opto-isolators and simplifies design
- Low EMI design enhances manufacturability
- Intrinsically low common mode noise
- Optimized 72kHz maximum PWM switching frequency achieves best size and efficiency
- Active start-up scheme enables fastest possible startup

- Adaptive multi-mode PWM/PFM control improves efficiency
- Quasi-resonant operation for highest overall efficiency
- Direct drive of low-cost BJT switch
- Dynamic base current control
- No external loop compensation components required
- Complies with EPA 2.0 energy-efficiency specifications with ample margin
- Built-in soft start
- Built-in short circuit protection and output overvoltage protection
- Built-in current sense resistor short circuit protection
- No audible noise over entire operating range

3 Applications

- Compact low power AC/DC adapter/chargers for cell phones, PDAs, digital still cameras
- Linear AC/DC replacement

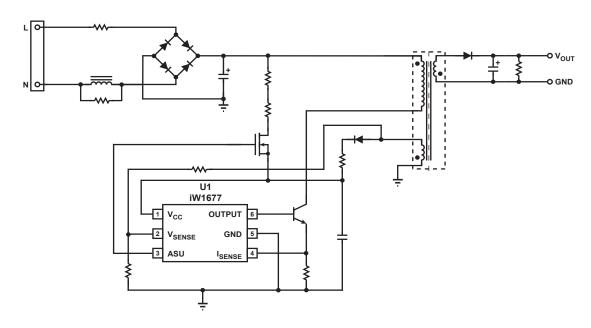


Figure 3.1 : iW1677 Typical Application Circuit (Achieving < 20mW No-load Power Consumption. Using Depletion Mode NFET as Active Start-up Device)

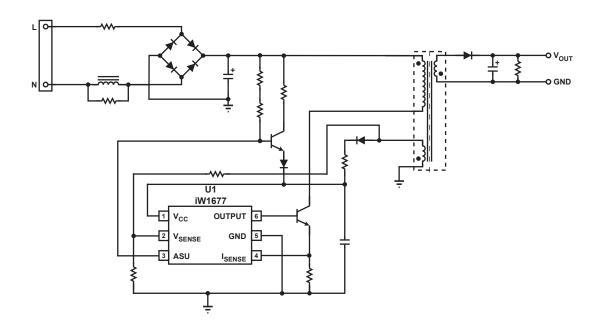


Figure 3.2 : iW1677 Typical Application Circuit (Achieving < 20mW No-Load Power Consumption. Using NPN BJT as Active Start-up Device)

4 Pinout Description

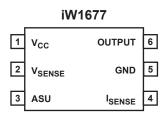


Figure 4.1: 6-Pin SOT23 Package

Pin No.	Pin Name	Туре	Pin Description
1	V _{cc}	Power Input	Power supply for control logic.
2	V_{SENSE}	Analog Input	Auxiliary voltage sense (used for primary regulation).
3	ASU	Output	Control signal for active start-up device (BJT or Depletion NFET).
4	I _{SENSE}	Analog Input	Primary current sense. Used for cycle-by-cycle peak current control and limit.
5	GND	Ground	Ground.
6	OUTPUT	Output	Base drive for BJT.

5 Absolute Maximum Ratings

Absolute maximum ratings are the parameter values or ranges which can cause permanent damage if exceeded. For maximum safe operating conditions, refer to Electrical Characteristics in Section 6.

Parameter	Symbol	Value	Units
DC supply voltage range (pin 1, I _{CC} = 20mA max)	V _{cc}	-0.3 to 18.0	V
Continuous DC supply current at V _{CC} pin (V _{CC} = 15V)	I _{CC}	20	mA
ASU output (pin 3)		-0.3 to 18.0	V
Output (pin 6)		-0.3 to 4.0	V
V _{SENSE} input (pin 2, I _{Vsense} ≤ 10mA)		-0.7 to 4.0	V
I _{SENSE} input (pin 4)		-0.3 to 4.0	V
Maximum junction temperature	T _{JMAX}	150	°C
Storage temperature	T _{STG}	-65 to 150	°C
Thermal resistance junction-to-ambient	θ_{JA}	190	°C/W
ESD rating per JEDEC JESD22-A114		2,000	V
Latch-up test per JEDEC 78		±100	mA

6 Electrical Characteristics

 V_{CC} = 12V, -40°C \leq T_A \leq 85°C, unless otherwise specified

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
V _{SENSE} SECTION (Pin 2)							
Input leakage current	I _{BVS}	V _{SENSE} = 2V			1	μA	
Nominal voltage threshold	V _{SENSE(NOM)}	T _A =25°C, negative edge	1.518	1.533	1.548	V	
Output OVP threshold -00 (Note 1)	V _{SENSE(MAX)}	T _A =25°C, negative edge	1.742	1.834	1.926	V	
Output OVP threshold -01 (Note 1)	V _{SENSE(MAX)}	T _A =25°C, negative edge, Load = 100 %	1.830	1.926	2.022	V	
Output OVP threshold -03 (Note 1)	V _{SENSE(MAX)}	T _A =25°C, negative edge, Load = 100 %	1.873	1.972	2.071	V	
Output OVP threshol -05 (Note 1)	V _{SENSE(MAX)}	T _A =25°C, negative edge, Load = 100 %	1.786	1.880	1.974	V	
I _{SENSE} SECTION (Pin 4)					·		
Overcurrent threshold	V _{OCP}		1.11	1.15	1.19	V	
I _{SENSE} regulation upper limit (Note 3)	$V_{IPK(HIGH)}$		0.97	1.00	1.03	V	
I _{SENSE} regulation lower limit (Note 3)	$V_{IPK(LOW)}$		0.22	0.23	0.24	V	
Input leakage current	I_{LK}	I _{SENSE} = 1.0 V			1	μΑ	
OUTPUT SECTION (Pin 6)			,	'		,	
Output low level ON-resistance	R _{DS(ON)LO}	I _{SINK} = 5mA		1	3	Ω	
Switching frequency (Note 2)	f _{SW}	> 50% load		72		kHz	
V _{cc} SECTION (Pin 1)				,		,	
Maximum operating voltage (Note 1)	$V_{CC(MAX)}$				16	V	
Start-up threshold	V _{CC(ST)}	V _{CC} rising	10.0	11.0	12.0	V	
Undervoltage lockout threshold	$V_{CC(UVL)}$	V _{CC} falling	3.8	4.0	4.2	V	
Start-up current	I _{IN(ST)}	V _{CC} = 10V	1.0	1.7	3.0	μΑ	
Quiescent current	I _{CCQ}	V _{CC} = 14V, without driver switching		2.7	4.0	mA	
No-load operating current (Note 1 & 4)	I _{CC_NL}	No-load operation in DDPWM mode	0.32	0.46	0.62	mA	
Zener breakdown voltage	V_{ZB}	Zener current = $5mA$ $T_A=25^{\circ}C$	18.5	19.5	20.5	V	
ASU SECTION (Pin 3)		1 1A 20 0	ı	ļ		<u>I</u>	
Maximum operating voltage (Note 1)	V _{ASU(MAX)}				16	V	
Resistance between V _{CC} and ASU	R _{Vcc_ASU}		600	830	1100	kΩ	

Notes:

- Note 1. These parameters are not 100% tested. They are guaranteed by design and characterization.
- Note 2. Operating frequency varies based on the load conditions, see Section 9.6 for more details.
- Note 3. These parameters are not 100% tested, guaranteed by design and characterization. Refer to Section 9.0 for operation details.
- Note 4. See Sections 9.6 and 9.7 for details.

7 Typical Performance Characteristics

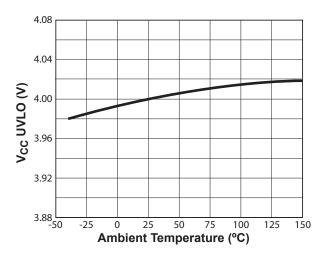


Figure 7.1 : V_{CC} UVLO vs. Temperature

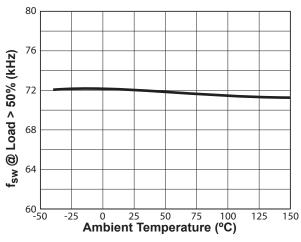


Figure 7.3: Switching Frequency vs. Temperature¹

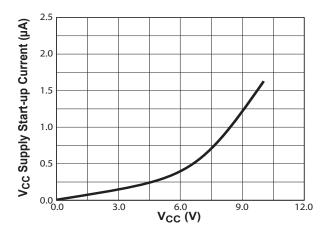


Figure 7.5 : V_{CC} vs. V_{CC} Supply Start-up Current

Datasheet

Note 1. Operating frequency varies based on the load conditions, see Section 9.6 for more details.

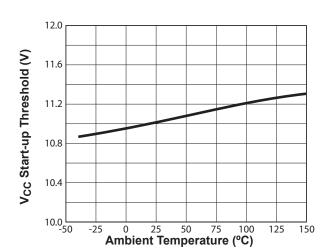


Figure 7.2 : Start-Up Threshold vs. Temperature

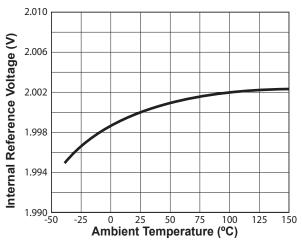


Figure 7.4: Internal Reference vs. Temperature

3-June-2016

8 Functional Block Diagram

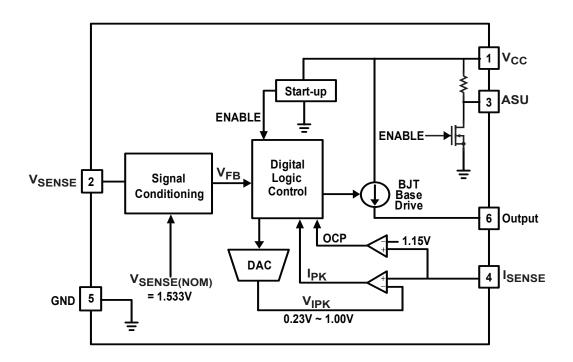


Figure 8.1: iW1677 Functional Block Diagram

9 Theory of Operation

The iW1677 is a digital controller which uses a new, proprietary primary-side control technology to eliminate the opto-isolated feedback and secondary regulation circuits required in traditional designs. This results in a low-cost solution for low power AC/DC adapters. The core PWM processor uses fixed-frequency Discontinuous Conduction Mode (DCM) operation at higher power levels and switches to variable frequency operation at light loads to maximize efficiency. Furthermore, Dialog's digital control technology enables fast dynamic response, tight output regulation, and full featured circuit protection with primary-side control.

Referring to the block diagram in Figure 8.1, the iW1677 operates in peak current mode control. The digital logic control block generates the switching on-time and off-time information based on the output voltage and current feedback signal and provides commands to dynamically control the external BJT base current. The I_{SENSE} is an analog input configured to sense the primary current in a voltage form. In order to achieve the peak current mode control and cycle-by-cycle current limit, the V_{IPK} sets the threshold for the I_{SENSE} to compare with, and it varies in the range of 0.23V (typical) and 1.00V (typical) under different line and load conditions. The system loop is automatically compensated internally by a digital error amplifier. Adequate system phase margin and gain margin are guaranteed by design and no external analog components are required for loop compensation. The iW1677 uses an advanced digital control algorithm to reduce system design time and increase reliability.

Furthermore, accurate secondary constant-current operation is achieved without the need for any secondary-side sense and control circuits.

The iW1677 uses adaptive multi-mode PWM/PFM control to dynamically change the BJT switching frequency for efficiency, EMI, and power consumption optimization. In addition, it achieves unique BJT quasi-resonant switching to further improve efficiency and reduce EMI. Built-in single-point fault protection features include overvoltage protection (OVP), output short circuit protection (SCP), over current protection (OCP), and I_{SENSE} fault detection. In particular, it ensures that power supplies built with the iW1677 can meet 5-star energy saving requirement and achieve fast dynamic load response.

Dialog's digital control scheme is specifically designed to address the challenges and trade-offs of power conversion design. This innovative technology is ideal for balancing new regulatory requirements for green mode operation with more practical design considerations such as lowest possible cost, smallest size and high performance output control.

9.1 Pin Detail

Pin 1 - V_{cc}

Power supply for the controller during normal operation. The controller will start up when V_{CC} reaches 11.0V (typical) and will shut-down when the V_{CC} voltage is 4.0V (typical). A decoupling capacitor of 0.1 μ F or so should be connected between the V_{CC} pin and GND.

Pin 2 - V_{SENSE}

Sense signal input from auxiliary winding. This provides the secondary voltage feedback used for output regulation.

Pin 3 - ASU

Control signal for active startup device. This signal is pulled low after start-up is finished to cut off the active device.

Pin 4 - I_{SENSE}

Primary current sense. Used for cycle-by-cycle peak current control and limit.

Pin 5 - GND

Ground.

Pin 6 - OUTPUT

Base drive for the external power BJT switch.

9.2 Start-up

Refer to Figure 3.1 and Figure 3.2 for active start-up circuits using external depletion NFET and BJT respectively. Prior to start-up, the depletion NFET or the BJT is turned on, allowing the start-up current to charge the V_{CC} bypass capacitor. When the V_{CC} bypass capacitor is charged to a voltage higher than the start-up threshold $V_{CC(ST)}$, the ENABLE signal becomes active and the iW1677 commences soft start function. During this start-up process an adaptive soft-start control algorithm is applied, where the initial output pulses will be small and gradually get larger until the full pulse width is achieved. The peak current is limited cycle by cycle by the I_{PEAK} comparator. If at any time the V_{CC} voltage drops below undervoltage lockout (UVLO) threshold $V_{CC(UVL)}$ then the iW1677 goes to shutdown. At this time ENABLE signal becomes low and the V_{CC} capacitor begins to charge up again towards the start-up threshold to initiate a new soft-start process.

While the ENABLE signal initiates the soft-start process, it also pulls down the ASU pin voltage at the same time, which turns off the depletion NFET or the BJT, thus minimizing the no-load standby power consumption. For the active start-up scheme in Figure 3.2, the start-up resistors connected between the base of the BJT and DC input still conduct current after start-up is finished. Their resistance needs to be large enough to minimize no-load power consumption, meanwhile the BJT with ample gain should be selected in order to obtain a sufficient charge current for a fast start-up.

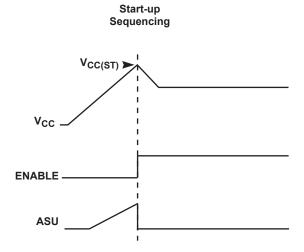


Figure 9.1 : Start-up Sequencing Diagram

9.3 Understanding Primary Feedback

Figure 9.2 illustrates a simplified flyback converter. When the switch Q1 conducts during $t_{ON}(t)$, the current $i_g(t)$ is directly drawn from rectified sinusoid $v_g(t)$. The energy $E_g(t)$ is stored in the magnetizing inductance L_M . The rectifying diode D1 is reverse biased and the load current I_O is supplied by the secondary capacitor C_O . When Q1 turns off, D1 conducts and the stored energy $E_g(t)$ is delivered to the output.

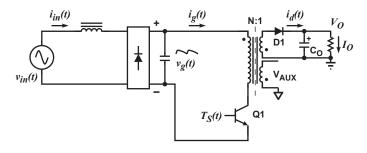


Figure 9.2: Simplified Flyback Converter

In order to tightly regulate the output voltage, the information about the output voltage and load current need to be accurately sensed. In the DCM flyback converter, this information can be read via the auxiliary winding or the primary magnetizing inductance (L_M). During the Q1 on-time, the load current is supplied from the output filter capacitor C_O . The voltage across L_M is $v_g(t)$, assuming the voltage dropped across Q1 is zero. The current in Q1 ramps up linearly at a rate of:

$$\frac{di_g(t)}{dt} = \frac{v_g(t)}{L_M} \tag{9.1}$$

At the end of on-time, the current has ramped up to:

$$i_{g_{peak}}(t) = \frac{v_g(t) \times t_{ON}}{L_M}$$
(9.2)

This current represents a stored energy of:

$$E_g = \frac{L_M}{2} \times i_{g_peak} \left(t\right)^2 \tag{9.3}$$

When Q1, turns off at t_O , $i_g(t)$ in L_M forces a reversal of polarities on all windings. Ignoring the communication-time caused by the leakage inductance L_K at the instant of turn-off t_O , the primary current transfers to the secondary at a peak amplitude of:

$$i_{d}(t) = \frac{N_{P}}{N_{S}} \times i_{g_{Peak}}(t)$$
(9.4)

Assuming the secondary winding is master, and the auxiliary winding is slave,

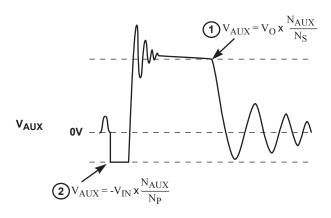


Figure 9.3: Auxiliary Voltage Waveforms

the auxiliary voltage is given by:

$$V_{AUX} = \frac{N_{AUX}}{N_S} (V_O + \Delta \mathbf{V})$$
(9.5)

and reflects the output voltage as shown in Figure 9.3.

The voltage at the load differs from the secondary voltage by a diode drop and IR losses. Thus, if the secondary voltage is always read at a constant secondary current, the difference between the output voltage and the secondary voltage will be a fixed ΔV . Furthermore, if the voltage can be read when the secondary current is small, ΔV will also be small. With the iW1677, ΔV can be ignored.

The real-time waveform analyzer in the iW1677 reads this information cycle by cycle. The part then generates a feedback voltage V_{FB} . The V_{FB} signal precisely represents the output voltage under most conditions and is used to regulate the output voltage.

9.4 Constant Voltage Operation

After soft-start has been completed, the digital control block measures the output conditions. It determines output power levels and adjusts the control system according to a light load or heavy load. If this is in the normal range, the device operates in the Constant Voltage (CV) mode, and changes the pulse width (T_{ON}) and off time (T_{OFF}) in order to meet the output voltage regulation requirements.

If no voltage is detected on V_{SENSE} it is assumed that the auxiliary winding of the transformer is either open or shorted and the iW1677 shuts down.

9.5 Constant Current Operation

The constant current (CC mode) is useful in battery charging applications. During this mode of operation the iW1677 will regulate the output current at a constant level regardless of the output voltage, while avoiding continuous conduction mode.

To achieve this regulation the iW1677 senses the load current indirectly through the primary current. The primary current is detected by the I_{SENSE} pin through a resistor from the BJT emitter to ground.

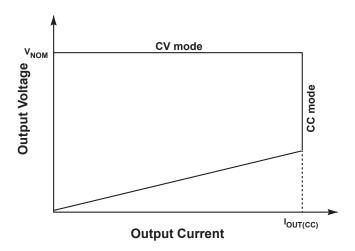


Figure 9.4: Power Envelope

9.6 Multi-Mode PWM/PFM Control and Quasi-Resonant Switching

The iW1677 uses a proprietary adaptive multi-mode PWM /PFM control to dramatically improve the light-load efficiency and thus the overall average efficiency.

During the constant voltage (CV) operation, the iW1677 normally operates in a pulse-width-modulation (PWM) mode during heavy load conditions. In the PWM mode, the switching frequency keeps around constant. As the output load I_{OUT} is reduced, the on-time t_{ON} is decreased, and the controller adaptively transitions to a pulse-frequency-modulation (PFM) mode. During the PFM mode, the BJT is turned on for a set duration under a given instantaneous rectified AC input voltage, but its off time is modulated by the load current. With a decreasing load current, the off time increases and thus the switching frequency decreases.

When the switching frequency approaches to human ear audio band, the iW1677 transitions to a second level of PWM mode, namely Deep PWM mode (DPWM). During the DPWM mode, the switching frequency keeps around 25 kHz in order to avoid audible noise. As the load current is further reduced, the iW1677 transitions to a second level of PFM

mode, namely Deep PFM mode (DPFM), which can reduce the switching frequency to a very low level. Although the switching frequency drops across the audible frequency range during the DPFM mode, the output current in the power converter has reduced to an insignificant level in the DPWM mode before transitioning to the DPFM mode. Therefore, the power converter practically produces no audible noise, while achieving high efficiency across varying load conditions.

As the load current reduces to very low or no-load condition, the iW1677 transitions from the DPFM to the third level of PWM mode, namely Deep-Deep PWM mode (DDPWM), where the switching frequency is fixed at around 2.1 kHz.

The iW1677 also incorporates a unique proprietary quasi-resonant switching scheme that achieves valley-mode turn on for every PWM/PFM switching cycle, during all PFM and PWM modes and in both CV and CC operations. This unique feature greatly reduces the switching loss and dv/dt across the entire operating range of the power supply. Due to the nature of quasi-resonant switching, the actual switching frequency can vary slightly cycle by cycle, providing the additional benefit of reducing EMI. Together these innovative digital control architecture and algorithms enable the iW1677 to achieve highest overall efficiency and lowest EMI, without causing audible noise over entire operating range.

9.7 Less Than 20mW No-Load Power with Fast Load Transient Response

The iW1677 features the distinctive DDPWM control at no-load conditions to help achieve super-low no-load power consumption (< 20mW for typical applications) and meanwhile to ensure fast dynamic load response. The power supply system designs including the pre-load resistor selection should ensure the power supply can stably operate in the DDPWM mode at the steady-state no-load condition. If the pre-load resistor is too small, the no-load power consumption will increase; on the other hand, if it is too large, the output voltage may increase and even cause overvoltage since the switching frequency is fixed at around 2.1kHz. For typical designs, the pre-load resistor is in the range of $5k\Omega$ to $8k\Omega$.

Aside from the appropriate use of pre-load resistor, the iW1677 enjoys a few other features to bring down no-load power consumption as well. First, the iW1677 implements an intelligent low-power management technique that achieves ultra-low chip operating current at the no-load, typically around 500µA. Second, the use of the power switch of BJT instead of MOSFET requires a lower driving voltage, enabling a low UVLO threshold as low as 4.0V (typical). The power supply system design can fully utilize this low UVLO feature to have a low Vcc voltage at the no-load operation in order to minimize the no-load power. In addition, the active start-up scheme with depletion NFET eliminates the startup resistor power consumption after the ENABLE signal becomes active. All together these features ensure with the lowest system cost power supplies built with the iW1677 can achieve less than 20mW no-load power consumption at 230V_{AC} input and very tight constant voltage and constant current regulation over the entire operating range including the no-load operation.

While achieving super-low no-load power consumption, the iW1677 implements innovative proprietary digital control technology to intelligently detect any load transient events, and achieve fast dynamic load response for both one-time and repetitive load transients. In particular, for load transients that are demanded in some applications as from absolutely no load to full load, the iW1677 can still guarantee a fast enough response to meet the most stringent requirements, with the no-load operating frequency designed at around 2.1kHz.

9.8 Variable Frequency Operation Mode

At each of the switching cycles, the falling edge of V_{SENSE} will be checked. If the falling edge of V_{SENSE} is not detected, the off-time will be extended until the falling edge of V_{SENSE} is detected. The maximum allowed transformer reset time is 110 μ s. When the transformer reset time reaches 125 μ s, the iW1677 shuts off.

9.9 Internal Loop Compensation

The iW1677 incorporates an internal Digital Error Amplifier with no requirement for external loop compensation. For a typical power supply design, the loop stability is guaranteed to provide at least 45 degrees of phase margin and -20dB of gain margin.

9.10 Voltage Protection Features

The secondary maximum output DC voltage is limited by the iW1677. When the V_{SENSE} signal exceeds the output OVP threshold at point 1 indicated in Figure 9.3 the iW1677 shuts down.

The iW1677 protects against input line undervoltage by setting a maximum T_{ON} time. Since output power is proportional to the squared $V_{IN}T_{ON}$ product then for a given output power as V_{IN} decreases the T_{ON} will increase. Thus by knowing when the maximum T_{ON} time occurs the iW1677 detects that the minimum VIN is reached, and shuts down. The maximum t_{ON} limit is set to 15.6 μ s. Also, the iW1677 monitors the voltage on the V_{CC} pin and when the voltage on this pin is below UVLO threshold the IC shuts down immediately.

When any of these faults are met the IC remains biased to discharge the V_{CC} supply. Once V_{CC} drops below UVLO threshold, the controller resets itself and then initiates a new soft-start cycle. The controller continues attempting start-up until the fault condition is removed.

9.11 PCL, OCP and SRS Protection

Peak-current limit (PCL), over-current protection (OCP) and sense-resistor short protection (SRSP) are features built-in to the iW1677. With the ISENSE pin the iW1677 is able to monitor the peak primary current. This allows for cycle by cycle peak current control and limit. When the primary peak current multiplied by the I_{SENSE} resistor is greater than 1.15V over current (OCP) is detected and the IC will immediately turn off the base driver until the next cycle. The output driver will send out a switching pulse in the next cycle, and the switching pulse will continue if the OCP threshold is not reached; or, the switching pulse will turn off again if the OCP threshold is reached. If the OCP occurs for several consecutive switching cycles, the iW1677 shuts down.

If the I_{SENSE} resistor is shorted there is a potential danger of the over current condition not being detected. Thus, the IC is designed to detect this sense-resistor-short fault after startup and shut down immediately. The V_{CC} will be discharged since the IC remains biased. Once V_{CC} drops below the UVLO threshold, the controller resets itself and then initiates a new soft-start cycle. The controller continues attempting to startup, but does not fully startup until the fault condition is removed.

9.12 Dynamic Base Current Control

One important feature of the iW1677 is that it directly drives a BJT switching device with dynamic base current control to optimize performance. The BJT base current ranges from 10mA to 31mA, and is dynamically controlled according to the power supply load change. The higher the output power, the higher the base current. Specifically, the base current is related to V_{IPK} , as shown in Figure 9.5.

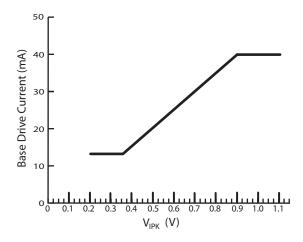
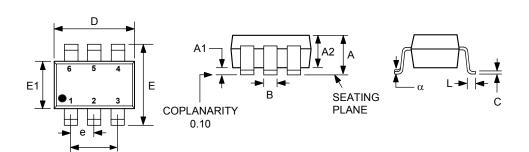


Figure 9.5 : Base Drive Current vs. VIPK

9.13 Cable Drop Compensation

The iW1677 incorporates an innovative method to compensate for any IR drop in the secondary circuitry including cable and cable connector. A 2.5-W adapter with 5V DC output has 3% deviation at 0.5 A load current due to the drop across a 24 AWG, 1.8 meter DC cable without cable compensation. The iW1677 compensates for this voltage drop by providing a voltage offset to the feedback signal based on the amount of load current detected.


The "Cable Comp" specified in the Table in Section 11.0 refers to the voltage increment at PCB end from no-load to full-load conditions in the CV mode, with the assumption that the secondary diode voltage drop can be ignored at the point when the secondary voltage is sensed. Also, the "Cable Comp" is specified based on the nominal output voltage of 5V. For different output voltage, the actual voltage increment needs to be scaled accordingly.

To calculate the amount of cable compensation needed, take the resistance of the cable and connector and multiply by the maximum output current.

10 Physical Dimensions

6-Lead SOT Package

Symbol	Millimeters			
Syr	MIN	MAX		
Α	-	1.45		
A1	0.00	0.15		
A2	0.90	1.30		
В	0.30	0.50		
С	80.0	0.22		
D	2.90 BSC			
Е	2.80 BSC			
E1	1.60 BSC			
е	0.95 BSC			
e1	1.90 BSC			
L	0.30	0.60		
α	0°	8°		

Compliant to JEDEC Standard MO-178AB

Controlling dimensions are in millimeters

This package is RoHS compliant and Halide free.

Soldering Temperature Resistance:

- [a] Package is IPC/JEDEC Std 020D Moisture Sensitivity Level 1
- [b] Package exceeds JEDEC Std No. 22-A111 for Solder Immersion Resistance; packages can withstand 10 s immersion < 260°C</p>

Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.25 mm per side.

The package top may be smaller than the package bottom. Dimensions D and E1 are are determined at the outermost extremes of the plastic body exclusive of mold flash, tie bar burrs and interlead flash, but including any mismatch between top and bottom of the plastic body.

11 Ordering Information

Part No.	Options	Package	Description
iW1677-00	Cable Comp = 0 mV	SOT-23	Tape & Reel ¹
iW1677-01	Cable Comp = 300 mV	SOT-23	Tape & Reel ¹
iW1677-03	Cable Comp = 450 mV	SOT-23	Tape & Reel ¹
iW1677-05	Cable Comp = 150 mV	SOT-23	Tape & Reel ¹

Note 1: Tape and reel packing quantity is 3,000/reel. Minimum ordering quantity is 3,000.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of their respective owners.

© Copyright 2016 Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU concerning Restriction of Hazardous Substances (RoHS/RoHS2).

Dialog Semiconductor's statement on RoHS can be found on the customer portal https://support.diasemi.com/. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom

Dialog Semiconductor (UK) Ltd Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 88 22

Email

info_pcbg@diasemi.com

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5425 4567

Taiwar

Dialog Semiconductor Taiwan Phone: +886 281 786 222

Web site:

www.dialog-semiconductor.com

Singapore

Dialog Semiconductor Singapore Phone: +65 648 499 29

Hong Kong

Dialog Semiconductor Hong Kong Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea Phone: +82 2 3469 8200

China

Dialog Semiconductor (Shenzhen) Phone: +86 755 2981 3669

1 110110. 100 100 2001 000

Dialog Semiconductor (Shanghai)

Phone: +86 21 5424 9058