2400-2500MHz, 280W, High Power RF LDMOS FETs

Description

The ITCH25280D4 is a 280-watt, internally matched LDMOS FETs, designed for Multiple use especially RF Energy application including cooking, heating and medical with frequencies from 2400 to 2500 MHz.

It is qualified up to 32V operation.

•Typical Performance (on Innogration fixture with device soldered):

Idq=20mA Tcase=25 Degree C

Freq(MHz)	Pout (W)	Vdd(V)	lds(A)	Gp (dB)	Eff(%)
2450	310	32	17	13.5	57

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

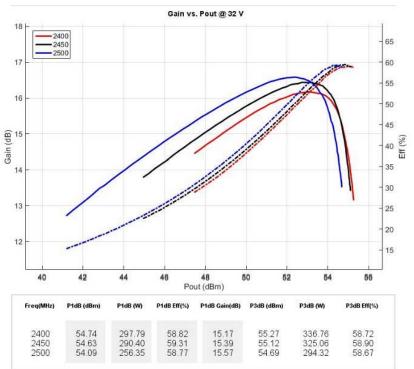
Rating	Sy	rmbol		Value			
DrainSource Voltage	\	/ _{DSS}		65			
GateSource Voltage	GateSource Voltage			-10 to +10			
Operating Voltage		V _{DD}		+32		Vdc	
Storage Temperature Range		Гstg	-(65 to +150		°C	
Case Operating Temperature		T _c		+150		°C	
Operating Junction Temperature		T,		+225		°C	
Table 2. Thermal Characteristics		·			·		
Characteristic	Sy	rmbol		Value			
Thermal Resistance, Junction to Case	-				°C 11/		
Tcase= 85°C, Pout=300W CW	F	Rejc	0.2			°C/W	
Table 3. ESD Protection Characteristics							
Test Methodology	Class						
Human Body Model (per JESD22A114)		Class 2					
Table 4. Electrical Characteristics (TA = 25 C unless of	herwise	noted)					
Characteristic		Symbol	Min	Тур	Max	Unit	
DC Characteristics							
Drain-Source Breakdown Voltage		N/	GE			V	
(V _{GS} =0V; I _D =100uA)	V _{DSS}	65			V		
Zero Gate Voltage Drain Leakage Current					10		
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$		DSS				μΑ	

GateSource Leakage Current			1	^
$(V_{GS} = 6 V, V_{DS} = 0 V)$	I _{GSS}	 	I	μΑ
Gate Threshold Voltage	V _{GS} (th)	 1.6		V
$(V_{DS} = 28V, I_{D} = 600 \text{ uA})$	V _{GS} (III)	1.0		v
Gate Quiescent Voltage	V	2.25		V
(V_{DD} = 32 V, I_{DQ} = 20 mA, Measured in Functional Test)	$V_{GS(Q)}$	2.20		v


Functional Tests (In Innogration Test Fixture, 50 ohm system) :V_{DD} = 32 Vdc, I_{DQ} = 20 mA, f = 2450 MHz, CW Signal Measurements., Pin=14W,

Power Gain	Gp		13.5		dB		
Drain Efficiency@Pout	η_{D}	55	57	59	%		
Output Power	P-3dB	290	310	320	W		
Input Return Loss	IRL		-7		dB		
Load Mismatch (In Innogration Test Fixture, 50 ohm system): V _{DD} = 32 Vdc, I _{DQ} = 20 mA, f = 2450MHz							
VSWR 10:1 at 350W pulse CW Output Power	No Device D	egradation					

Figure 1


Signal: Pulse width 20us, duty cycle 10%,

Vgs= 2.26V,Vdd= 28V,Idq=20mA

Figure 2

Signal: Pulse width20us, duty cycle 10% Vgs= 2.25V,Vds= 32V,Idq=20mA

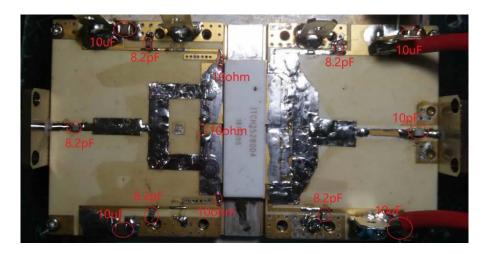


Figure3:

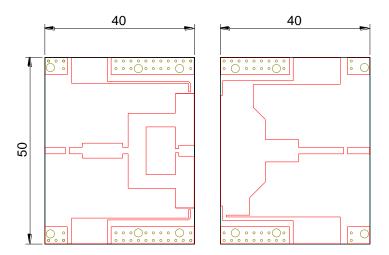
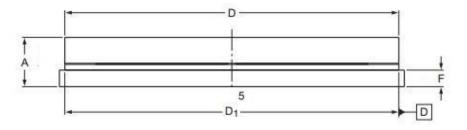
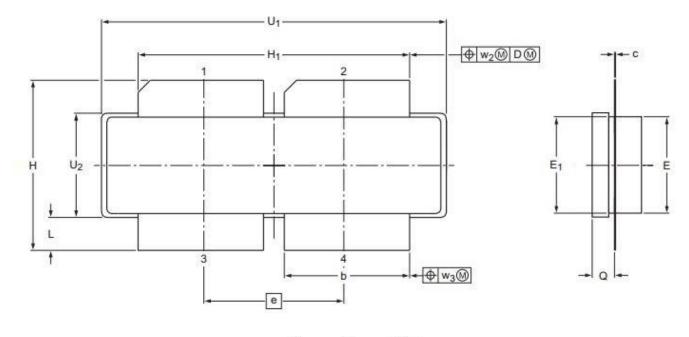
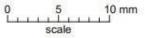

Network Analyzer S11 and S22 (Vds=32V, Idq=1.5A)

Figure 4: Fixture circuit photo




Figure 5: PCB Layout info (Drawing file upon request) Rogers 4350, Thickness:30 mil



Package Outline

Earless flanged ceramic package; 4 leads (1, 2—DRAIN, 3, 4—GATE, 5—SOURCE)

UNIT	A	b	с	D	D_1	е	Е	E1	F	н	H1	L	Q	U1	U ₂	W ₂	W ₂
mm	4.7	11.81	0.18	31.55	31.52	13.72	9.50	9.53	1.75	17.12	25.53	3.48	2.26	32.39	10.29	0.25	0.25
	4.2	11.56	0.10	30.94	30.96		9.30	9.27	1.50	16.10	25.27	2.97	2.01	32.13	10.03		
inches	0.185	0.465	0.007	1.242	1.241	0.540	0.374	0.375	0.069	0.674	1.005	0.137	0.089	1.275	0.405	0.01	0.01
inches	0.165	0.455	0.004	1.218	1.219	0.540	0.366	0.365	0.059	0.634	0.995	0.117	0.079	1.265	0.395	0.01	0.01

OUTLINE		REFERENCE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ICCOL DATE
PKG-D4					03/12/2013

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2018/5/16	V1	Preliminary Datasheet Creation

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.