FAIRCHILD

SEMICONDUCTOR®

November 2009

ISL9V5045S3ST EcoSPARK® N-Channel Ignition IGBT

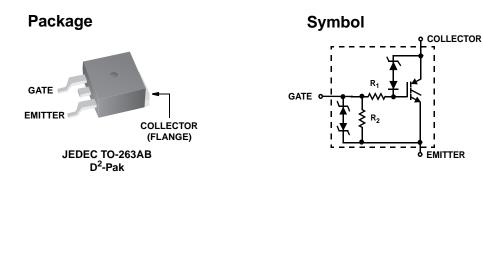
500mJ, 450V

Features

- SCIS Energy = 500mJ at T_J = 25°C
- Logic Level Gate Drive
- Qualified to AEC Q101
- RoHS Compliant

Applications

- Automotive Ignition Coil Driver Circuits
- Coil On Plug Applications


General Description

The ISL9V5045S3ST is next generation ignition IGBT that offer outstanding SCIS capability in the industry standard D2-Pak (TO-263) plastic package. This device is intended for use in automotive ignition circuits, specifically as a coil drivers. Internal diodes provide voltage clamping without the need for external components.

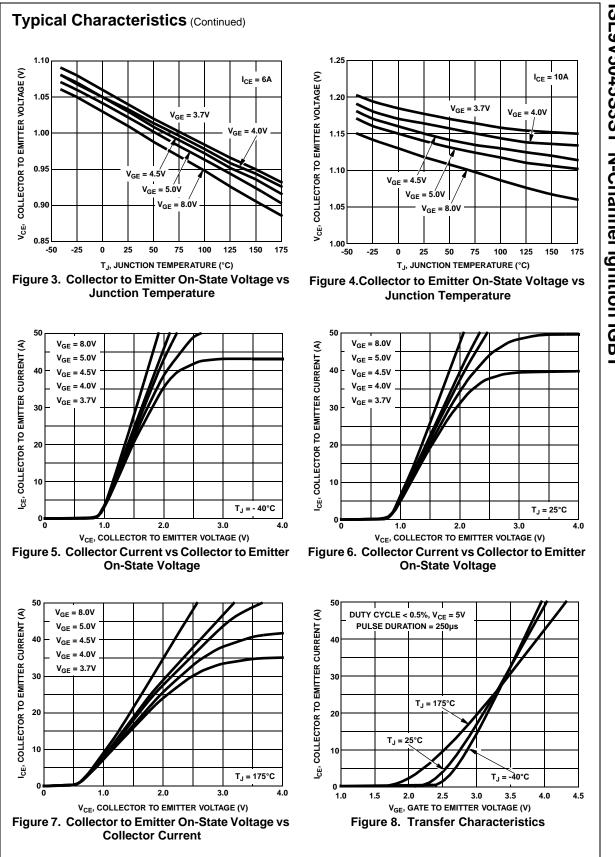
EcoSPARK® devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.

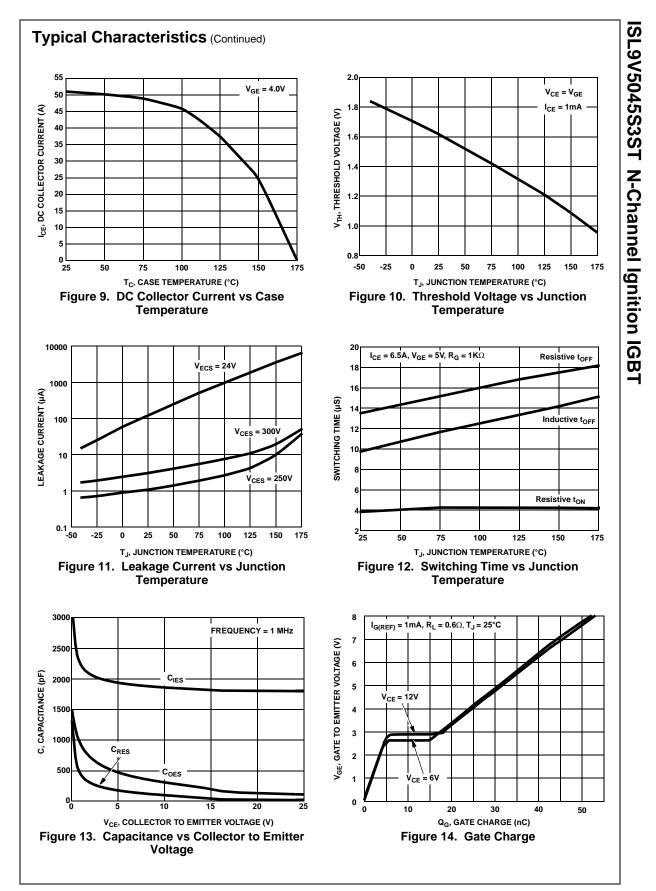
Symbol	Parameter	Ratings	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	480	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V
E _{SCIS25}	At Starting $T_J = 25^{\circ}$ C, $I_{SCIS} = 39.2$ A, L = 650 μ Hy	500	mJ
E _{SCIS150}	At Starting $T_J = 150^{\circ}$ C, $I_{SCIS} = 31.1$ A, $L = 650 \mu$ Hy	315	mJ
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	51	Α
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	43	Α
V _{GEM}	Gate to Emitter Voltage Continuous	±10	V
PD	Power Dissipation Total $T_C = 25^{\circ}C$	300	W
	Power Dissipation Derating T _C > 25°C	2	W/°C
Τ _J	Operating Junction Temperature Range	-40 to 175	°C
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C
ΤL	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C
ESD	Electrostatic Discharge Voltage at 100pF, 1500 Ω	4	kV

ISL9V5045S3ST N-Channel Ignition IGBT

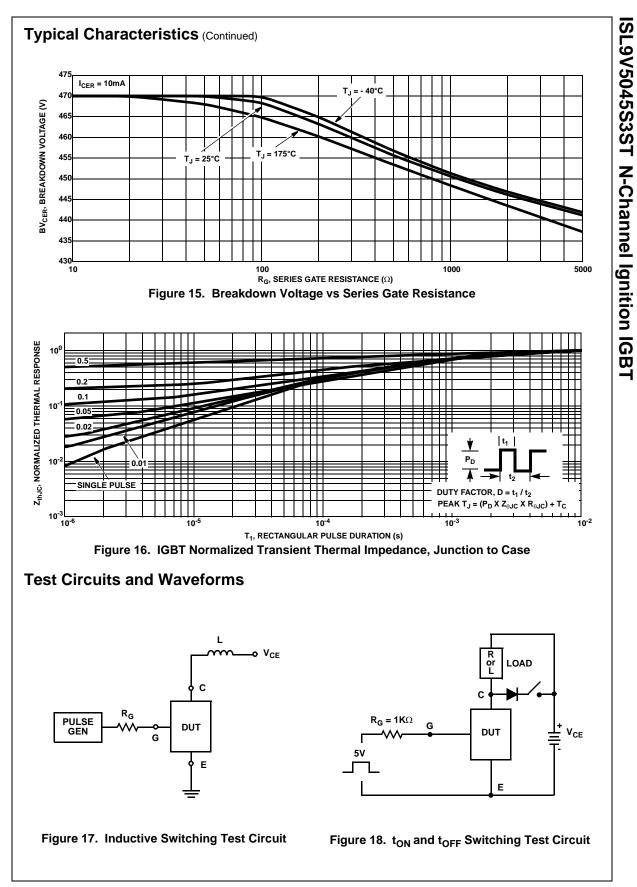
Package Marking and Ordering Information

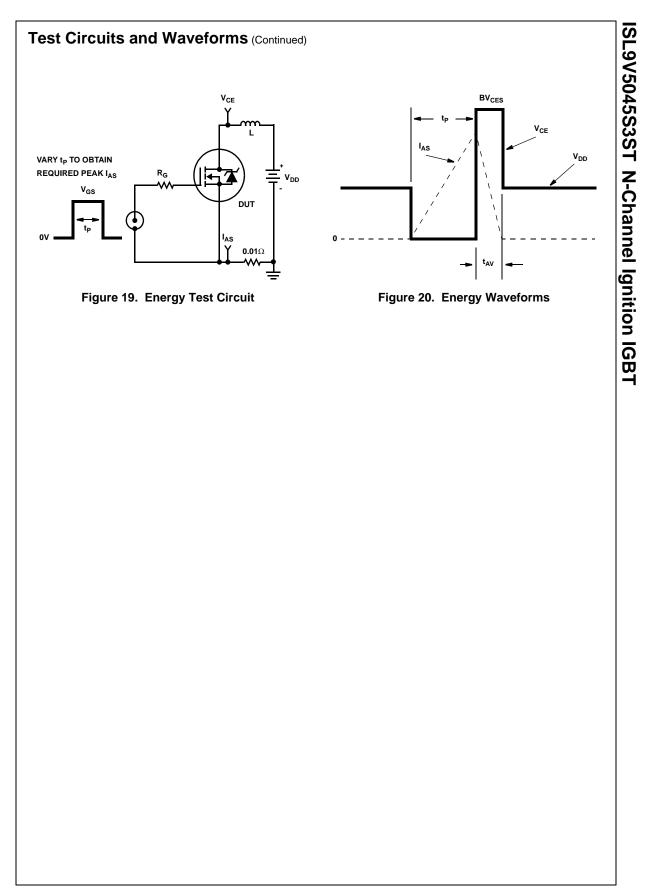
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
V5045S	ISL9V5045S3ST	TO-263AB	330mm	24mm	800

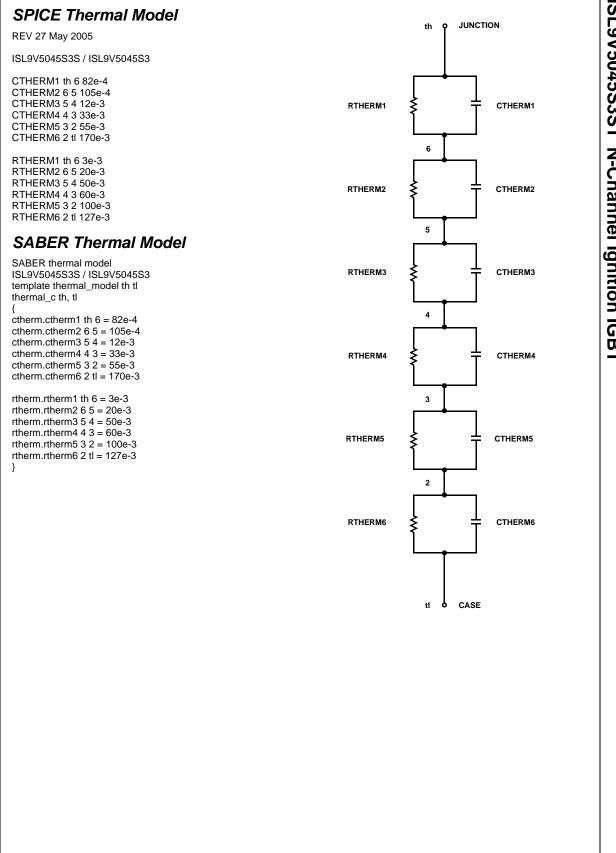

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

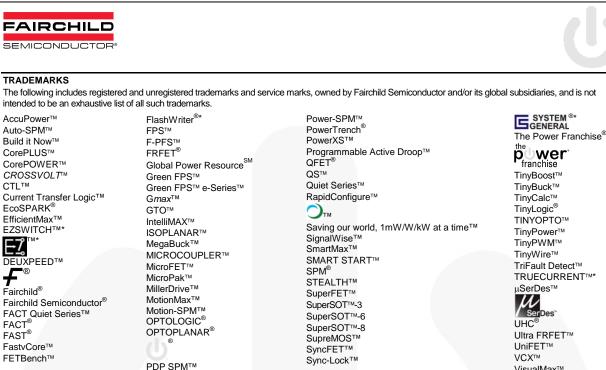

Symbol	Parameter Test Conditions		Min	Тур	Max	Units
ff State	Characteristics					
BV _{CER}	Collector to Emitter Breakdown Voltage	$I_{C} = 2mA, V_{GE} = 0,$ R _G = 1KΩ, See Fig. 15 T _J = -40 to 150°C	420	450	480	V
BV _{CES}	Collector to Emitter Breakdown Voltage	$I_{C} = 10$ mA, $V_{GE} = 0$, R _G = 0, See Fig. 15 T _J = -40 to 150°C	445	475	505	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	$I_{C} = -75$ mA, $V_{GE} = 0$ V, $T_{C} = 25$ °C	30	-	-	V
BV_{GES}	Gate to Emitter Breakdown Voltage	$I_{GES} = \pm 2mA$	±12	±14	-	V
I _{CER}	Collector to Emitter Leakage Current	$V_{CER} = 320V, T_{C} = 25^{\circ}$	C -	-	25	μA
		$R_G = 1K\Omega$, See $T_C = 150$ Fig. 11	•°C -	-	1	mA
I _{ECS}	Emitter to Collector Leakage Current	$V_{EC} = 24V$, See $T_C = 25^{\circ}$	C -	-	1	mA
		Fig. 11 T _C = 150°C	°C -	-	40	mA
R ₁	Series Gate Resistance		-	100	-	Ω
R_2	Gate to Emitter Resistance		10K	-	30K	Ω
v _{CE(SAT)}	Characteristics Collector to Emitter Saturation Voltage	I _C = 10A, T _C = 25°C V _{GE} = 4.0V See Fig. 4		1.25	1.60	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_{C} = 15A,$ $T_{C} = 150^{\circ}$ $V_{GE} = 4.5V$		1.47	1.80	V

2


Q _{G(ON)}	Gate Charge	$\label{eq:logithtarrow} \begin{array}{l} I_{C} = 10A, \ V_{CE} = 12V, \\ V_{GE} = 5V, \ See \ Fig. \ 14 \\ \end{array} \\ \begin{array}{l} I_{C} = 1.0mA, \\ V_{CE} = V_{GE}, \\ See \ Fig. \ 10 \end{array} \\ \begin{array}{l} T_{C} = 25^{\circ}C \\ T_{C} = 150^{\circ}C \\ \end{array} \\ \end{array}$		-	32	-	nC
				1.0			.,
√ _{GE(TH)}	Gate to Emitter Threshold Voltage			1.3 0.75	-	2.2 1.8	V V
V _{GEP}	Gate to Emitter Plateau Voltage	$I_{\rm C} = 10$ A,	V _{CE} = 12V	-	3.0	-	V
	g Characteristics	0	UL UL				I
t _{d(ON)R}	Current Turn-On Delay Time-Resistive	$V_{CE} = 14V, R_L = 1\Omega,$		-	0.7	4	μs
t _{rR}	$\label{eq:VGE} \begin{array}{l} \mbox{Current Rise Time-Resistive} & \mbox{V}_{GE} = 5 \mbox{V}, \mbox{R}_{G} = 1 \mbox{K} \Omega \\ \mbox{T}_{J} = 25 \mbox{°C}, \mbox{ See Fig. 12} \end{array}$		ə Fig. 12	-	2.1	7	μs
d(OFF)L	Current Turn-Off Delay Time-Inductive	$V_{CE} = 300V, L = 2mH,$		-	10.8	15	μs
t _{fL}	Current Fall Time-Inductive	V _{GE} = 5V, R _G = T _J = 25°C, See		-	2.8	15	μs
SCIS	Self Clamped Inductive Switching	$T_J = 25$ °C, L = 650 μH, R _G = 1KΩ, V _{GE} = 5V, See Fig. 1 & 2		-	-	500	mJ
ermal (Characteristics						
$R_{ ext{ heta}JC}$	Thermal Resistance Junction-Case	TO-263		-	-	0.5	°C/W
35 30 25	T _J = 25°C			= 25°C			= 14V
30 25 20 15 10 5 0 0	T _J = 25°C T _J = 25°C T _J = 150°C SCIS Curves valid for V _{clamp} Voltages of <480V 25 50 75 100 125 150 175 t _{CLP} TIME IN CLAMP (μ S) 1. Self Clamped Inductive Switchin Current vs Time in Clamp	30 25 20 15 15 10 10 10 0 200 0	SCIS Curve 0 1 2 ure 2. Self C	$F_J = 25^{\circ}C$ $F_J = 150^{\circ}C$ $F_J = 150^{\circ}C$	/ _{clamp} Voltag 5 6	jes of <480\ 7 8	9 10


ISL9V5045S3ST N-Channel Ignition IGBT





ISL9V5045S3ST Rev. A1

M ITTM*

VisualMax™ XS™ SL9V5045S3ST N-Channel Ignition IGB1

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS ON NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance
 with instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 143