

Bluetooth® Low Energy (BLE) SoC

Features

- Bluetooth smart 4.2 Bluetooth Low-Energy (BLE) compliant
- 256K bytes embedded Flash memory
- UART/SPI/I²C interface supported
- Integrated crystal oscillator, operates with 32 MHz external crystal
- · Temperature sensor supported
- Flexible 31 GPIO pins for IS1870 and 16 GPIO pins for IS1871 configuration
- 4-channel PWM support (IS1870), 1-channel PWM support (IS1871)
- 12 bits ADC support for battery and voltage detection. 16-channel (IS1870)/6-channel (IS1871)
- · AES-CMAC hardware engine
- · Beacon support
- · Low-power consumption
- Peak current: Tx 13 mA, Rx 13 mA at VBAT=3.0V, buck power
- Compact size: 4x4 mm 32QFN (IS1871) and 6x6mm 48QFN (IS1870) packages

Radio Frequency (RF)/Analog Features

- ISM band 2.402 GHz to 2.480 GHz operation
- · Channels: 0-39
- Rx sensitivity: -90 dBm in BLE mode
- Tx power: +2 dBm (max)
- Received Signal Strength Indicator (RSSI) monitor

Operating Conditions

Operating voltage: 1.9V to 3.6V
 Operating voltage: 1.9V to 3.6V

• Operating temperature: -20°C to 70°C

Packages

Туре	IS1870	IS1871
Pin Count	48	32
I/O Pins (up to)	31	16
Contact/Lead Pitch	0.4	0.4
Dimensions	6x6x0.9	4x4x0.9
Package	QFN48	QFN32

Note: All dimensions are in millimeters (mm) unless specified otherwise.

Applications

- · Internet of Things (IoT)
- · Wearable/Fitness/Healthcare
- · Weight Scale
- · Proximity/Find Me services
- · Payment/Security
- · Digital Beacons
- · Consumer Appliances/Home Automation
- Industrial

Table of Contents

1.0 Device Overview	5
2.0 System Block Details	
3.0 Electrical Characteristics	
4.0 Package Information	
5.0 Reflow Profile and Storage Condition	29
6.0 Ordering Guide	
Appendix A: Reference Circuit	
Appendix B. Layout, Guidelines	37
Appendix C: Bill of Material	38
Appendix D: Revision History	39

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

Microchip Technology IS1870/71 embedded 2.4 GHz Bluetooth version 4.2 (BLE) SoC incorporates, 2.4 GHz transceiver, Power Management Unit (PMU), Bluetooth LE stack and RF power amplifier. The user can embed the Bluetooth functionality to IoT applications.

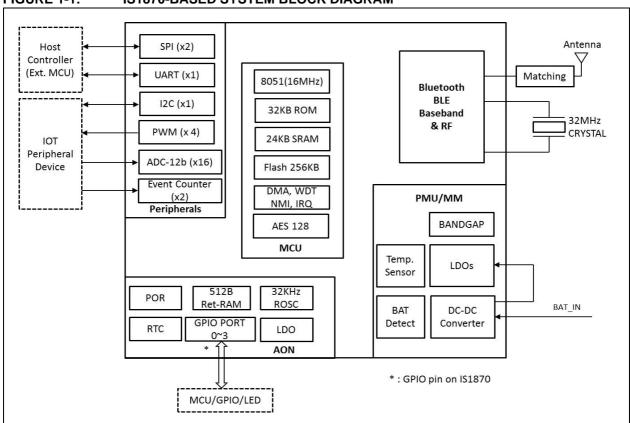
The IS1870/71 is cost effective and designed to provide developers a simple Bluetooth solution with the following features:

- · Ease of integration by UART transparent service
- Reduced development time for Bluetooth LE stacks
- · Integrated solution, thus reducing the cost
- Inter-operability with Apple[®] iOS and Android™ OS
- · Maximum value in the range of applications

The IS1870/71 provides support for the Beacon technology and improves user experiences in IoT applications, such as auto connection/control and cloud connectivity.

The IS1870/71 can maintain a low-power wireless connection. The low-power consumption and flexible power management maximizes the IS1870/71 lifetime in battery operated devices. A wide operating temperature range allows use in indoor and outdoor environments (industrial temperature range).

The small-form factor package size of the IS1870/71 is designed for wearable applications. The solution providers can minimize the module size to meet the market requirement. The IS187x SoC is designed for the application-enabled accessories and IoT applications.


Operating in the 2.4 GHz ISM band radio, the IS1870/71 is certified for the Bluetooth core specification version 4.2 including support for the enhanced throughput, and the Federal Information Processing Standard (FIPS) compliant encryption support for secure data connections.

The IS1870/71 integrates transceiver and baseband functions to decrease the external components. Therefore, users can complete their design easily and efficiently. A free Bluetooth stack firmware is provided for building embedded BLE solutions that use the IS1870/71 SoC.

For portable and wearable applications, the IS1870/71 SoC's optimized power design helps to minimize current consumption for extended battery life and it minimizes the package size to as small as possible.

Figure 1-1 and Figure 1-2 illustrate a typical example of the IS1870 and IS1871-based system. Table 1-1 provides key features of the IS1870/71 module.

FIGURE 1-1: IS1870-BASED SYSTEM BLOCK DIAGRAM

Antenna SPI (x1) Host Controller (Ext. MCU) UART (x1) Matching 8051(16MHz) Bluetooth BLE 12C (x1) 32KB ROM Baseband 32MHz IOT & RF PWM (x 1) CRYSTAL Peripheral 24KB SRAM Device ADC-12b (x6) Flash 256KB DMA, WDT Counter PMU/MM NMI, IRQ Peripherals BANDGAP **AES 128** MCU Temp. LDOs Sensor 512B 32KHz POR Ret-RAM **ROSC** DC-DC BAT BAT_IN PORT Converter Detect RTC LDO 0~3 AON *: GPIO pin on IS1871 MCU/GPIO/LED

FIGURE 1-2: IS1871-BASED SYSTEM BLOCK DIAGRAM

TABLE 1-1: KEY FEATURES

Feature/Modules	IS1870	IS1871
UART	1	1
GPIO	31	15
12-bit ADC Channels	16	6
PWM	4	1
SPI	2	1
I ² C	1	1
Total Pins	48	32
Size (mm)	6x6x0.9	4x4x0.9
Event Counter	2	0
AES-CMAC H/W Engine	Yes	Yes

Pin Description

Figure 1-3 and Figure 1-4 illustrate the IS1870 and IS1871 pin assignment details, and Table 1-2 lists the functions of the various pins.

FIGURE 1-3: IS1870 PIN ASSIGNMENT

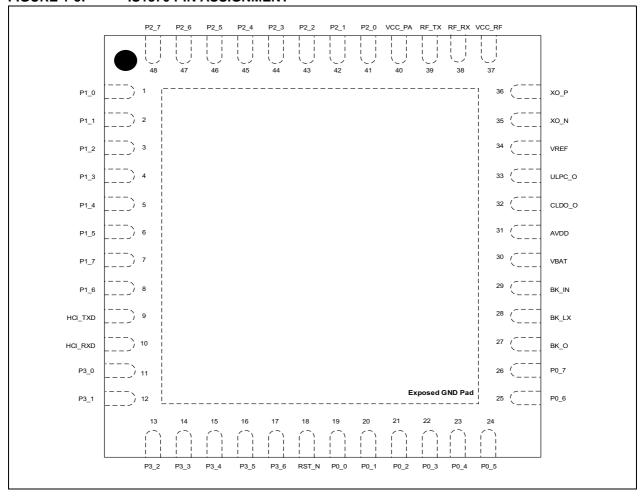


FIGURE 1-4: IS1871 PIN ASSIGNMENT

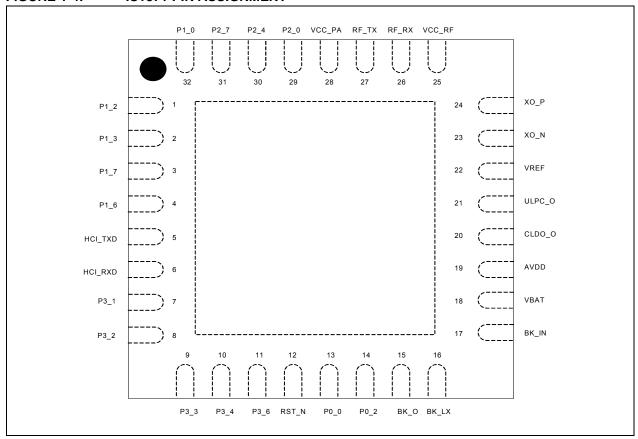


TABLE 1-2: PIN DESCRIPTION

IS1870 Pin No.	IS1871 Pin No.	Pin Name	Туре	Description
1	32	P1_0	DIO Al	GPIO: P1_0 ADC input: AD8
2	_	P1_1	DIO AI DI	GPIO: P11 ADC input: AD9 SPI bus: MISO2: 2 nd SPI bus (Master Mode)
3	1	P1_2	DIO AI I/O	GPIO: P1_2 ADC input: AD10 I ² C SCL
4	2	P1_3	DIO AI DIO	GPIO: P1_3 ADC input: AD11 I ² C SDA
5	_	P1_4	DIO AI DI	GPIO: P1_4 ADC input: AD12 Event Counter
6	_	P1_5	DIO AI DI	GPIO: P1_5 ADC input: AD13 Event Counter
7	3	P1_7	DIO AO	GPIO: P1_7 External 32.768 KHz Crystal Output: XO32K
8	4	P1_6	DIO Al	GPIO: P1_6 External 32.768 KHz Crystal input: XI32K
9	5	IOA HCI_TXD	DIO DO	GPIO HCI UART TXD
10	6	IOB HCI_RXD	DIO DI	GPIO HCI UART RXD
11	_	P3_0	DIO	GPIO: P3_0
12	7	P3_1	DIO DO	GPIO: P3_1 SPI bus: NCS, SPI Flash: CSN
13	8	P3_2	DIO DI	GPIO: P3_2 SPI bus: MISO, SPI Flash: SDO
14	9	P3_3	DIO DO	GPIO: P3_3 SPI bus: MOSI, SPI Flash: SDI
15	10	P3_4	DIO DO	GPIO: P3_4 SPI bus: SCLK, SPI Flash: SCK
16	_	P3_5	DIO Al	GPIO: P3_5 LED1
17	11	P3_6	DIO DO DO	GPIO: P3_6 UART flow-control RTS PWM0
18	12	RST_N	DI	External Reset
19	13	P0_0	DIO AI DI	GPIO: P0_0 ADC input: AD0 UART flow-control CTS
20	_	P0_1	DIO AI	GPIO: P0_1 ADC input: AD1

Legend: A = Analog D = Digital I = Input O = Output P = Power

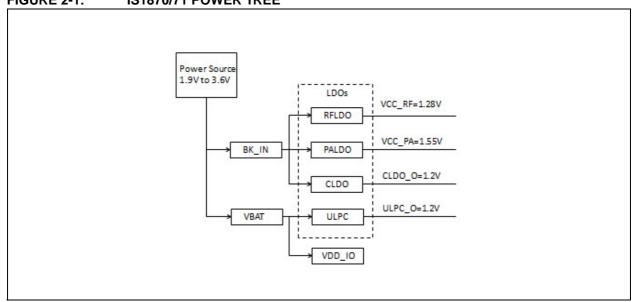
IS1870 Pin No.	IS1871 Pin No.	Pin Name	Туре	Description
21	14	P0_2	DIO AI AI	GPIO: P0_2 ADC input: AD2 LED0
22		P0_3	DIO Al	GPIO:P0_3 ADC input: AD3
23		P0_4	DIO Al	GPIO:P0_4 ADC input: AD4
24		P0_5	DIO Al	GPIO:P0_5 ADC input: AD5
25	_	P0_6	DIO Al	GPIO:P0_6 ADC input: AD6
26	_	P0_7	DIO Al	GPIO:P0_7 ADC input: AD7
27	15	BK_O	Р	1.5V (for internal use, do not connect to external devices)
28	16	BK_LX	Р	Buck output (1.55V). For internal use, do not connect to external devices
29	17	BK_IN	Р	Buck input. Voltage Range: 1.9V~3.6V
30	18	VBAT	Р	Battery input. Voltage Range: 1.9V~3.6V. For internal use, do not connect to external devices
31	19	AVDD	Р	input of LDOs: CLDO, PALDO, and RFLDO
32	20	CLDO_O	Р	1.2V CLDO Output: Core-logic and memories supply, connect to 1uF (X5R/X7R) capacitor
33	21	ULPC_O	Р	1.2V Programmable ULPC Output: Always On-logic and retention memory supply (for internal use, do not connect to external devices)
34	22	VREF	Р	PMU band-gap reference voltage output for LDOs and buck (for internal use, do not connect to external devices)
35	23	XO_N	Α	32 MHz crystal input negative
36	24	XO_P	Α	32 MHz crystal input positive
37	25	VCC_RF	Р	Power input for VCO and RF (1.28V). Connect to 1uF (X5R/X7R) capacitor
38	26	RX	Al	RF receive path
39	27	TX	AO	RF transmit path
40	28	VCC_PA	Р	Power supply for Power Amplifier (1.55V). Connect to 0.22uF X5R/X7R
41	29	P2_0	DIO	Mode Configuration H: Application mode L: Test mode
42	_	P2_1	DIO DO	GPIO: P2_1 PWM0
43	_	P2_2	DIO DO	GPIO: P2_2 PWM1
44	_	P2_3	DIO DO	GPIO: P2_3 PWM2
45	30	P2_4	DIO	GPIO: P2_4

Legend: A = Analog D = Digital I = Input O = Output P = Power

IS1870 Pin No.	IS1871 Pin No.	Pin Name	Туре	Description
46	_	P2_5	DIO AI DO	GPIO: P2_5 ADC input: AD15 PWM3
47	_	P2_6	DIO	P26
48	31	P2_7	DIO AI DO	GPIO: P27 ADC input: AD14 SPI bus: NCS2, 2 nd SPI bus (Master mode)

Legend: A = Analog D = Digital I = Input O = Output P = Power

2.0 SYSTEM BLOCK DETAILS


2.1 System Block Descriptions

Each system block of the IS1870/71 is described in this section.

FIGURE 2-1: IS1870/71 POWER TREE

2.1.1 PMU

The IS1870/71 includes a DC-DC converter and four LDOs. These LDOs can be configured for various operating modes and applications to suppress the peak current and maximize battery life, see Figure 2-1.

2.1.2 AON

AON is the hardware-based state machine that controls the power-up and power sequence. It includes a RTC timer and an I/O detector, which can wake-up the system from Standby mode or Power-Saving mode using time-out or I/O transition.

2.1.3 RF

The IS1870/71 has an on-chip RF circuit, a controller, and a modulator (Tx)/demodulator (Rx). The Tx is used to control the synthesizer's phase and output power, and modulate the data based on the BLE specifications. The Rx is used to decode the Bluetooth signal and optimize the performance, such as IQ-imbalance, suppress DC, and flick noise. It is also used to compensate the frequency drift and offset, filter out interference to maximize receiver sensitivity.

2.1.4 PERIPHERALS

The IS1870/71 interface is built-in to connect external MCU and sensors.

2.1.5 MCU

The IS1870/71 has an 8051 core ROM, RAM, embedded Flash to schedule the BLE tasks, process BLE protocol stacks, and profiles.

2.2 System Block Specification

The following are system block specifications:

2.2.1 RF

- · Bluetooth BT4.2 LE compliant SoC
- Frequency: 2.402 GHz to 2.480 GHz
- Programmable transmit output power up to +2 dBm maximum
- -25 dBm minimum Tx power to search near-by devices.
- · -90 dBm typical receiver power sensitivity
- Digital RSSI indicator (-50 dBm~-90 dBm)
- · -20°C to 70°C BLE RF certified

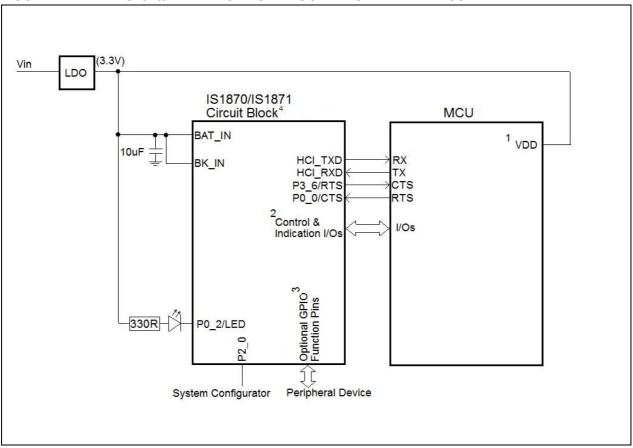
2.2.2 PMU

- Operating battery input voltage range: 1.9V~3.6V
- · 1.28V RFLDO: RF IP power supply
- 1.55V PALDO: RF Tx power amplify supply
- · 1.2V CLDO: Core-logic and memories supply
- · 1.55V DC-DC switching buck converter
- 1.2V programmable ULPC to supply AON-logic and retention memory
- AON-logic to control power-up, power-down and wake up procedures
- Internal 32 kHz(+/-250 ppm) ultra low-power oscillator
- · Power-on Reset

2.2.3 MCU

- 1T 8051 with scalable clock
- ROM: 32 KB
- · Main SRAM: 24 KB
- · Patch-RAM: 8KB
- Retention SRAM: 512B for RF coefficients and system information backup
- Embedded Flash: 256 KB for Device Firmware Upgrade (DFU) and run-time data storage

2.2.4 PERIPHERALS


- · Flexible GPIO pin configuration
- ADC:
 - 0V~3.6V, 12-bit SDM-ADC with 16-channel (IS1870)/6-Channel (IS1871) hybrid-I/O (Multi-Function). It can be configured as ADC or GPIO input
- Internal 1.9V~3.6V battery voltage monitor
- Precision Temperature Sensor (PTS) (-20°C ~70°C, +/-3°C accuracy)
- 4 MHz clock-rate full duplex 4-wire master/slave SPI with 256 bytes buffer DMA
- HCl over UART up to 921600 bps with flow-control
- 2 wire serial interface (compatible to I²C)

- General-purpose I/O pins with input internal pullup /Hi-Z selectable
- 24-bit low-power Real Time Counter (RTC) for background timer in standby mode
- · Watchdog timer
- Event Counter option (P1_4,P1_5) provides capture/counter function to external events for frequency calculation. Provides 1K/32K/1M/16M clock rate option to count the frequency range from 60 Hz to 1 MHz. Continuous/One shot count mode can be selected.
- Specific GPIO pins (P1_6, P1_7) support external 32.768 KHz crystal option for RTC.
- PWM:
 - 16 bits PWM design
 - 4 Individual frequency and individual duty cycle channel outputs multiplexed with GPIO pin (P2_1, P2_2, P2_3, P2_5)
 - Three clock source (32K, 1M, 16M) selection to program frequency range from 0.488 Hz to 8 MHz
 - Double buffers output compare registers and top register to avoid glitch
 - Two pair output configurable as inverse channel.

2.3 Host MCU Interface Over UART

Figure 2-2 illustrates a block diagram of the IS1870/71 SoC with MCU BLE application circuit. In the diagram the power supply (3.3V), UART interface, and GPIO control and indication are listed.

FIGURE 2-2: IS1870/71 APPLICATION BLOCK DIAGRAM WITH MCU

- Note 1: Ensure VDD_I/O and MCU VDD voltages are compatible.
 - 2: Control and indication ports are configurable in UI tool.
 - 3: Optional GPIO function includes ADC, PWM, I²C and SPI functions.
 - **4:** The GPIO applications of the IS1871 depend on the existed pin out. Some of the GPIO pins are not supported in the IS1871.

3.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the IS1870/71 electrical characteristics. Additional information will be provided in future revisions of this document.

Absolute maximum ratings for the IS1870/71 devices are listed below. Exposure to the maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

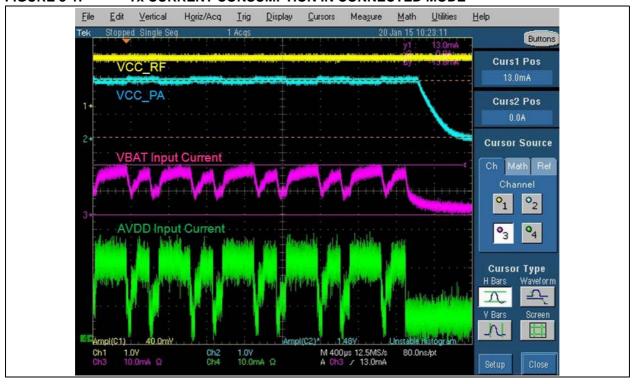
Ambient temperature under bias	20°C to +70°C
Storage temperature	40°C to +125°C
Voltage on VDD with respect to Vss	0.3V to +3.6V
Voltage on any pin with respect to Vss	0.3V to (VDD + 0.3V)
Maximum output current sunk by any I/O pin	12 mA
Maximum output current sourced by any I/O pin	12 mA

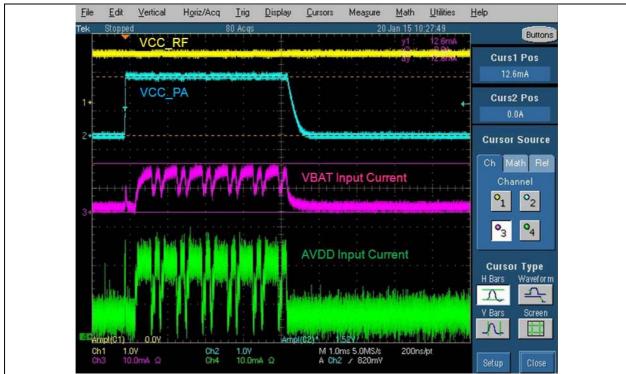
Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 3-1: ABSOLUTE MAXIMUM RATING

Symbol	Condition	Min.	Max.	UNIT
Supply voltage (VDD)	_	-0.3	3.6	V
Voltage on any digital pin	_	-0.3	V _{DD} + 0.3 ≤ 3.9	V
Storage temperature range	_	-40	125	°C
	All pins, excluding RF TX pin, according to machine model, JEDEC EIA/JESD22-A115-C	_	±200	V
ESD	All Pins, according to machine model, JEDEC EIA/JESD22-A115-C	_	±150	V
	According to human-body model, EDEC EIA/JESD22-A114-F	_	±2	kV
	According to charged-device model, JESD22-C101-C	_	±150	V

TABLE 3-2: RECOMMENDED OPERATING CONDITIONS


Symbol	Min.	Тур.	Max.
Ambient operating temperature range	–20°C	+25°C	+70°C
	PMU		
VDD(VBAT, BK_IN), AVDD	1.9V	3.0V	3.6V
VCC_RF	1.22V	1.28V	1.34V
VCC_PA	1.5V	1.55V	1.98V
CLDO_O, VREF	1.1V	1.2V	1.32V
ULPC_O	1.1V	1.2V	1.32V
RST_N	1.9V	3.0V	3.6V
Other I/O	1.9V	_	3.6V
	GPIO		
VIH (Input High Voltage)	0.7 VDD	_	VDD
VIL (Input Low Voltage)	VSS	_	0.3 VDD
VOH (Output High Voltage) (High drive, 12 mA)	0.8 VDD	_	VDD
VOL (Output Low Voltage) (High drive, 12 mA)	VSS	_	0.2 VDD
Pull-up Resistance	34K	48K	74K
Pull-down Resistance	29K	47K	86K
	Supply Current		
Tx mode peak current at VDD=3V, Tx=0 dBm, Buck mode	_	_	13 mA
Rx mode peak current at VDD=3V, Buck mode	_	_	13 mA
Link static current		60 uA	
Standby current	1.9 uA	_	2.9 uA
Power-Saving	1 uA	_	1.7 uA
Analo	g-to-Digital Converte	er (ADC)	
Full scale (BAT_IN)	0V	3.0V	3.6V
Full scale (AD0~AD15)	0V	_	3.6V
Conversion time (ENOB 8-bit)	_	131 uS	_
Conversion time (ENOB 10-bit)	_	387 uS	_
Operating current	_	_	500 uA
DNL	-1.12 LSB	_	+1.12 LSB
INL	-4.38 LSB	_	+4.38 LSB
Precise Temp	erature Sensor (PTS))	
Detect range	-20°C	_	70°C
Digital Output	1387	_	2448
Resolution	-	12 bits/°C	_
Accuracy	-3°C	_	+3°C
Conversion time (ENOB 10-bit)	_	12.35 mS	_
Operating current		_	200 uA


3.1 Current Consumption Details

3.1.1 Tx/Rx MODE PEAK CURRENT CONSUMPTION DETAILS

Figure 3-1 and Figure 3-2 illustrate the Tx/Rx mode peak current consumption in connected mode. In both the modes, the peak current of the VBAT input is about 13 mA.

FIGURE 3-1: TX CURRENT CONSUMPTION IN CONNECTED MODE

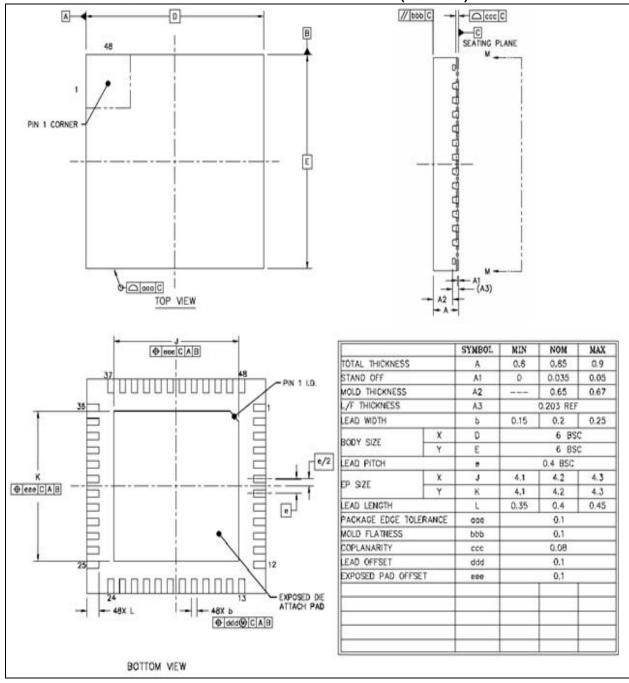
FIGURE 3-2: Rx CURRENT CONSUMPTION IN CONNECTED MODE

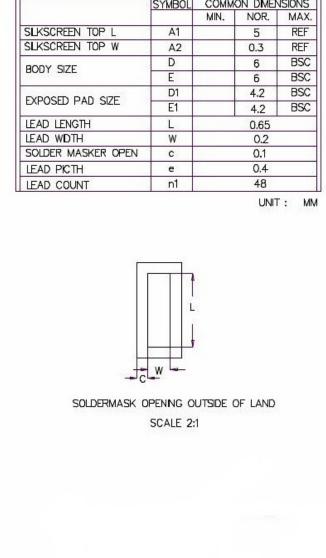
For additional information related to the current consumption measurements, test condition, and test environment setup, refer to the "BM70 BLEDK3 Application Note". This Application Note covers the testing of the Tx/Rx data transfer in connected mode and four basic modes of BLE devices.

Table 3-3. provides status definition of the BLEDK3 application.

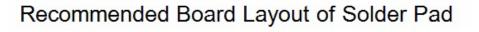
TABLE 3-3: STATUS DEFINITION OF BLEDK3 APPLICATION

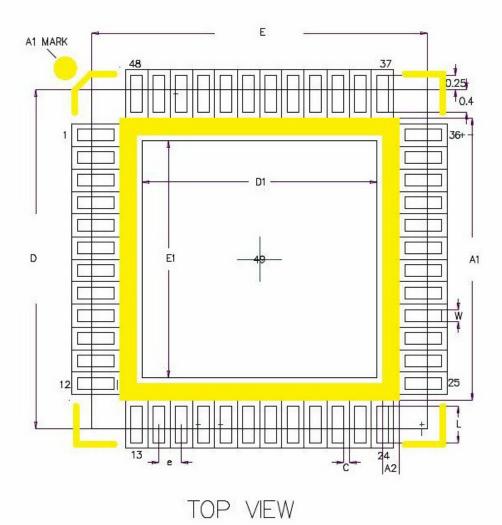
Status	Description
Shutdown Mode	BLEDK3 is shutdown.
Standby Mode	BLEDK3 sends advertising packets and wait for connection. BLEDK3 is discoverable and connectible.
BLE Connected Mode	BLE link is established and CCCD of ISSC_Transparent_Tx characteristic is disabled (see Note 1).
Transparent Service Enabled Mode	BLE link is established and CCCD of ISSC_Transparent_Tx characteristic is enabled (see Note 1).


Note 1: CCCD stands for Client Characteristic Configuration in GATT service characteristics.


4.0 PACKAGE INFORMATION

The following are package marking information of the IS1870SF module.


4.1 QFN48 6x6 Chip Outline (IS1870SF)


FIGURE 4-1: QFN48 6X6 PACKAGE SIZE INFORMATION (IS1870SF)

	SYMBOL	COMM	ON DIMEN	SIONS
		MIN.	NOR.	MAX.
SLKSCREEN TOP L	A1		5	REF
SLKSCREEN TOP W	A2		0.3	REF
BODY SIZE	D		6	BSC
BOUT SIZE	E		6	BSC
D/DAGED DAD GIZE	D1		4.2	BSC
EXPOSED PAD SIZE	E1		4.2	BSC
LEAD LENGTH	L		0.65	
LEAD WIDTH	W		0.2	
SOLDER MASKER OPEN	С	0.1		
LEAD PICTH	е		0.4	
LEAD COUNT	n1		48	

4.2 QFN32 4x4 Chip Outline (IS1871SF)

FIGURE 4-3: QFN32 4X4 PACKAGE SIZE INFORMATION (IS1871SF)

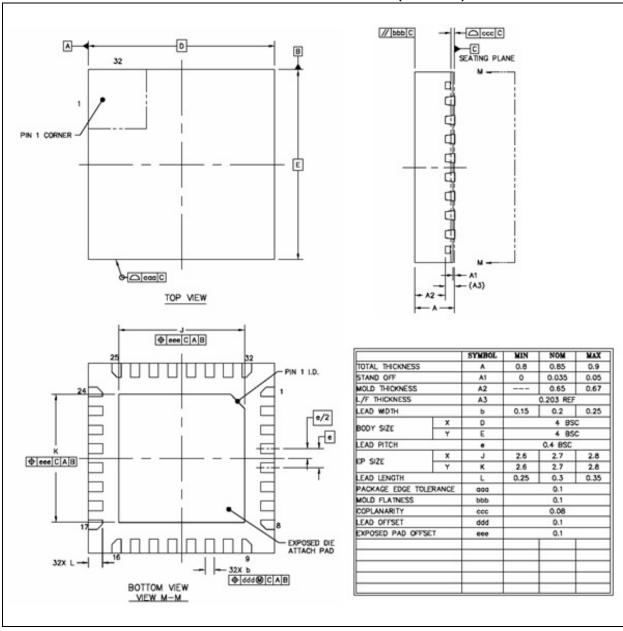
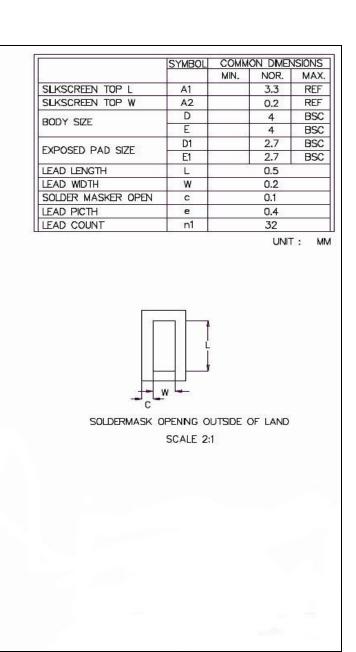
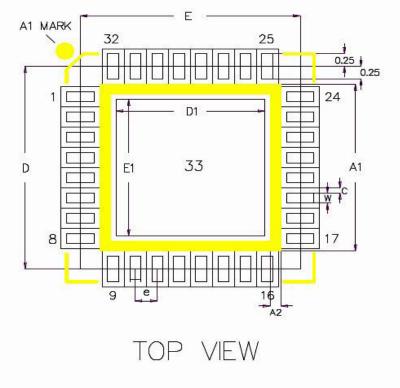




FIGURE 4-4:

Recommended Board Layout of Solder Pad

QFN32 FOOTPRINT INFORMATION (IS1871SF)

4.3 Package Marking Information

48-Lead QFN (6x6x0.9 mm)

O iSSC

XXXXXXXXXX

XXXXXXXXXX

YYWWNNN

issc Is1870SF 102 (63) 1527B9S

32-Lead QFN (4x4x0.9 mm)

O iSSC

XXXXXXXXXX

XXXXXXXXXX

YYWWNNN

O **iSSC**IS1871SF
102 (3)
1525Q0P

Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (@3)
can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

5.0 REFLOW PROFILE AND STORAGE CONDITION

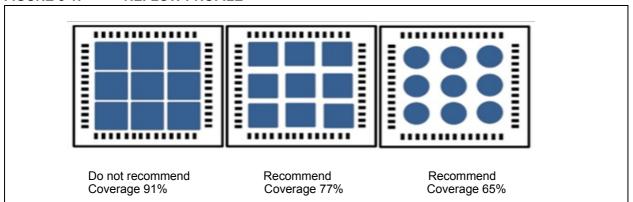
This chapter describes reflow profiles and stencil information of the IS1870/71 SoC, see Figure 5-1 and Figure 5-2.

5.1 Stencil of SMT Assembly Suggestion

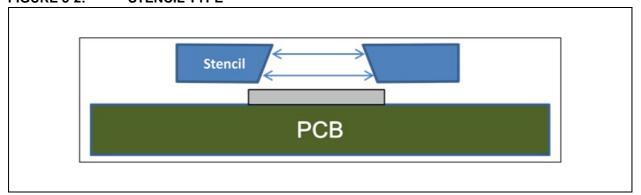
5.1.1 STENCIL TYPE & THICKNESS

- · Laser cutting
- · Stainless steel
- Thickness: 0.5 mm Pitch, thickness < 0.15 mm

5.1.2 APERTURE SIZE AND SHAPE FOR TERMINAL PAD


- Aspect ratio (width/thickness) >1.5
- · Aperture shape

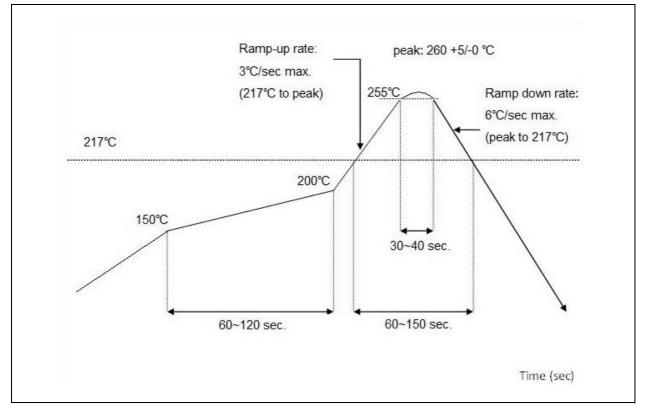
- The stencil aperture is designed to match the pad size on the PCB.
- Oval-shape opening should be used to get the optimum paste release.
- Rounded corners to minimize clogging.
- Positive taper walls (5° tapering) with bottom opening larger than the top.


5.1.3 APERTURE DESIGN FOR THERMAL PAD

- Small multiple openings should be used instead of one big opening.
- 60~80% solder paste coverage
- · Rounded corners to minimize clogging
- Positive taper walls (5° tapering) with bottom opening larger than the top

FIGURE 5-1: REFLOW PROFILE

FIGURE 5-2: STENCIL TYPE



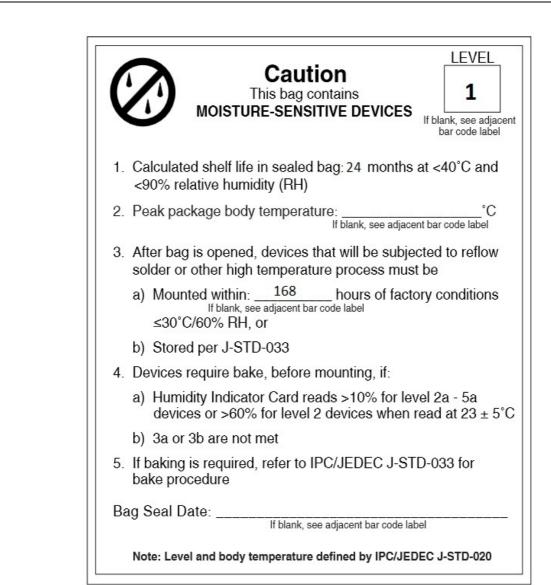
5.2 260 °C Reflow Profile

Figure 5-3 illustrates the reflow profile and the following are its specific features:

- Standard Condition: IPC/JEDEC J-STD-020
- Preheat: 150~200 °C ~60~120 seconds
- Average ramp-up rate (217 °C to peak): 3 °C /sec max.
- Temperature maintained above 217: 60~150 seconds
- Time within 5 °C of peak temperature: 30 ~ 40 seconds.
- Peak temperature:260 +5/-0 °C
- Ramp-down rate (peak to 217 °C): 6 °C /sec. max.
- Time 25 °C to peak temperature: 8 minutes max.
- · Cycle interval: 5 minutes

FIGURE 5-3: REFLOW PROFILE

5.3 Storage Condition


Users need to follow these specific storage conditions for the IS1870x SoC.

- Calculated shelf life in the sealed bag: 24 months at <40 °C and <90% Relative Humidity (RH).
- After the bag is opened, devices that are subjected to reflow solder or other high temperature process must be mounted within 168 hours of fac-

tory conditions, i.e <30 °C /60% RH.

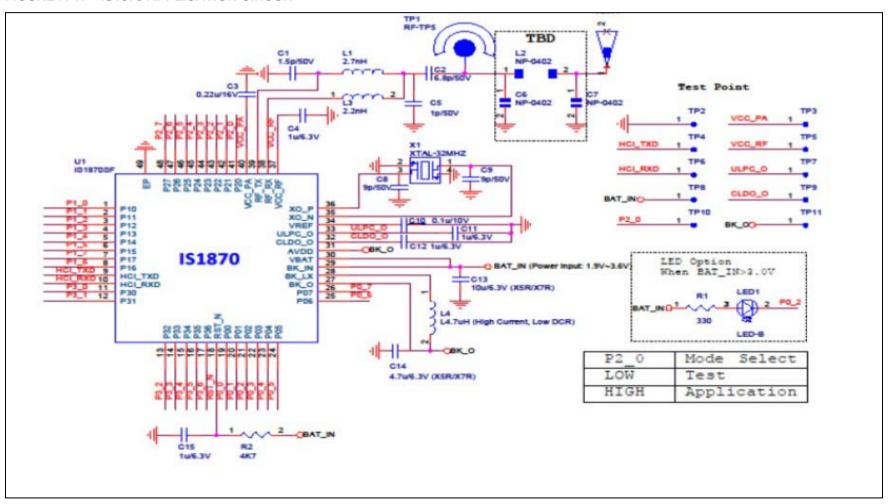
Figure 5-4 shows chip bag labeling details. Please note only point no. 1, 3, and 4 are applicable for the 1870x.

FIGURE 5-4: CHIP BAG LABEL

6.0 ORDERING GUIDE

Table 6-1 describes the ordering information for the IS1870/71.

TABLE 6-1: ORDERING GUIDE


Device	Bluetooth Version	Package	Part No.
IS1870	Bluetooth Low Energy SoC, BLE 4.2 compliant	48-lead QFN, 6x6x0.9mm, 0.4 mm pitch	IS1870SF
IS1871	Bluetooth Low Energy SoC, BLE 4.2 compliant	32-lead QFN, 4x4x0.9mm, 0.4 mm pitch	IS1871SF

DS60001371B-Page

APPENDIX A: REFERENCE CIRCUIT

A typical application circuit of the IS1870 and IS1871 are shown in Figure A-1 and Figure A-2., which lists the RF matching circuit, PMU power tree, LED option, test points, and configuration table. The GPIOs can be configured to general I/O functions or the function of ADC, PTS, PWM, and external 32.768 KHz crystal.

FIGURE A-1: IS1870 APPLICATION CIRCUIT

DS60001371B-Page 36

FIGURE A-2: IS1871 APPLICATION CIRCUIT ANTI TP1 TBD 01 1.5p/50V 2.7nH Test Point 1p/50V C5 1w/6.3V U1 IS1671SF CLDO_O XO_N VREF P13 C10 0.1w/10V P17 P15 ULPC_O HCL_TXD HCL_RXD CLDO_O AVDD C12 1w6.3V OBK_O LED Option P31 P32 VBAT When BAT_IN>3.0V BAT_IN (Power input: 1.9V~3.6V) BK_IN LED1 10u/6.3V (XSR/X7R) L4 L4.7uH (High Current, Low DCR) LED-B P2 Mode Select LOW Test HIGH Application 4.7w6.3V (X5R/X7R) R2 1W6.3V 4K7

APPENDIX B: LAYOUT GUIDELINES

B.1 RF Matching

The RF traces (including Tx, Rx, and antenna path) on the PCB should match 50Ω impedance. In Figure A-1, value of L1, L3, C1, C2, and C5 are fixed. The antenna matching components C6, C7, and L2 should be adjusted to match the 50Ω 2.4 GHz antenna.

B.2 PMU

PMU section (VBAT, BK_IN, BK_O, BK_LX, AVDD, ULP-C_O, CLDO_O, VREF) components should be kept close to the IS1870/71 as possible.

Table C-1 provides a detailed specification of L4. Layout trace of buck L&C to be given special consideration. For additional information on PCB Design Guidelines, please contact your local Microchip sales office.

The L4 and C14 of Buck section, shown in Figure A-1, should be selected carefully. Capacitor C14 is either 4.7 uF/6.3V, X5R, or X7R type. The inductor L4 need to be high current ($I_{DC}>300$ mA) and low DCR($<1\Omega$) type.

B.3 Crystal

The XI 32 MHz crystal specification should be within the +/-10 ppm range, see Figure A-1.

APPENDIX C: BILL OF MATERIAL

TABLE C-1: IS1870 CIRCUIT BILL OF MATERIAL

Item	Quantity	Specification	Part Number	Manufacturer	Note
1	1	ANT AT5020-B2R8HAA 2.4 GHZ L5.0 W2.0	ANT1	ACX	
2	1	CHIP CAP C 1.5P 50V C 0402 NPO	C1	WALSIN	_
3	1	CHIP CAP C 6.8P 50V C 0402 NPO	C2	WALSIN	_
4	1	CHIP CAP C 0.22U 16V K 0402 X5R	C3	WALSIN; TDK	_
5	4	CHIP CAP C 1U 6.3V K 0402 X5R	C4, C10, C11, C12	WALSIN; TDK	_
6	1	CHIP CAP C 1P 50V C 0402 NPO	C5	WALSIN	_
7	2	CHIP CAP C 9P 50V C 0402 NPO	C8, C9	WALSIN	_
8	1	CHIP CAP C 10U 6.3V M 0603 X5R	C13	WALSIN; TDK	_
9	1	CHIP CAP C 4.7U 6.3V K 0603 X5R	C14	WALSIN; TDK	_
10	1	LED BLUE HT-F194NB5 VF2.8V 5mA 0603 INGAN	LED1	HARVATEK	_
11	1	CHIP IND 2.7 nH S 0402	L1	ACX	_
12	1	CHIP IND 2.2 nH S 0402	L3	ACX	_
13	1	CHIP IND 4.7 uH K 420 mA 1.2*1.8*1.0	L4	ZenithTek	DCR: 0.97Ω IDC: 400 mA Irms: 420 mA
14	1	CHIP RES 330 5% 1/16W 0402	R1	EVER OHMS	_
15	1	IS1870/71	U1		<u> </u>
16	1	XTAL 32M 9 pF 3.2*2.5 10 ppm -40°C FUND. SMD	X1	SIWARD	

APPENDIX D: REVISION HISTORY

Revision A (October 2015)

This is the initial released version of this document.

Revision B (October 2015)

This revision includes the following changes as well as minor updates to text and formatting, which were incorporated throughout the document.

TABLE D-1: MAJOR SECTION UPDATES

Section	Update Description
Section "Features"	The section has been updated with new information.
Section "Packages"	The section is updated with the package information
Section 1.0 "Device Overview"	Updated Figure 1-1 and Figure 1-2. Added Table 1-1

191	87	'n	<i> </i> 71	
10 I	01	U		

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN:978-1-63277-900-7

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi. MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles
Mission Vieio

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286 Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340 Poland - Warsaw

Tel: 48-22-3325737 Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15