IRFP2907PbF

V _{(BR)DSS}	75V
R _{DS(on)} max.	4.5mΩ
ID	209A©

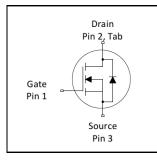
Typical Applications

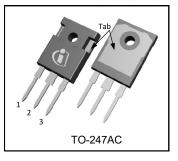
• Telecom applications requiring soft start

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free

Description


This Stripe Planar design of HEXFET Power MOSFETs utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in a wide variety of applications


Bass part number	Baakaga Tupa	Standard Pack		Orderable Part Number
Base part number	Package Type	Form Quantity		Orderable Part Nulliber
IRFP2907PbF	TO-247AC	Tube	25	IRFP2907PbF

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	2096	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	1486	А
I _{DM}	Pulsed Drain Current ①	840	
P _D @T _C = 25°C	Power Dissipation	470	W
	Linear Derating Factor	3.1	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy ②	1970	mJ
I _{AR} Avalanche Current			А
E _{AR}	Repetitive Avalanche Energy Ø	— See Fig.12a, 12b, 15,16	mJ
dv/dt	Peak Diode Recovery dv/dt3	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JC}$	Junction-to-Case		0.32	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{ ext{ heta}JA}$	Junction-to-Ambient		40	

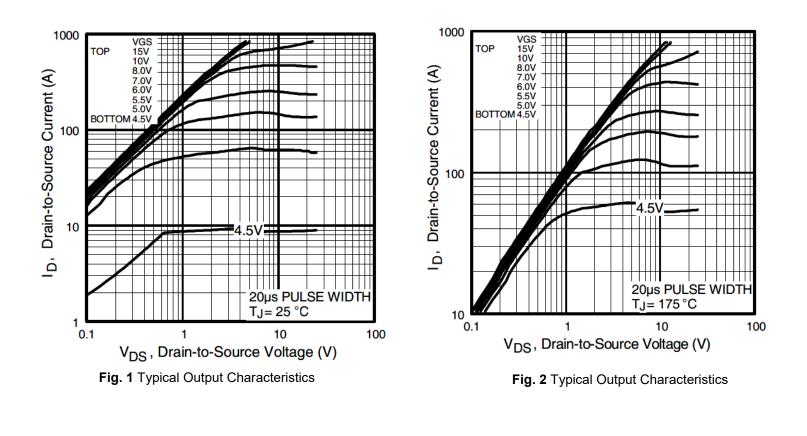
Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	75			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.085		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.6	4.5	mΩ	V _{GS} = 10V, I _D = 125A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
gfs	Forward Trans conductance	130			S	V _{DS} = 25V, I _D = 125A
I _{DSS}	Drain-to-Source Leakage Current			20		V _{DS} = 75V, V _{GS} = 0V
				250	μΑ	V _{DS} = 60V,V _{GS} = 0V,T _J =150°C
	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200	IIA	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Tvp.	Max	Units	Conditions
Diode Cha	aracteristics					
C _{oss eff.}	Effective Output Capacitance⑤		2320			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 60V$
C _{oss}	Output Capacitance		1360			$V_{GS} = 0V, V_{DS} = 60V, f = 1.0MHz$
C _{oss}	Output Capacitance		9780		pF	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{rss}	Reverse Transfer Capacitance		500			<i>f</i> = 1.0MHz, See Fig 5
C _{oss}	Output Capacitance		2100			V _{DS} = 25V
C _{iss}	Input Capacitance		13000			V _{GS} = 0V
Ls	Internal Source Inductance		13			from package and center of die contact
L _D	Internal Drain Inductance		5.0			Between lead, 6mm (0.25in.)
t _f	Fall Time		130			V _{GS} = 10V ④
t _{d(off)}	Turn-Off Delay Time		130		ns	R _G = 1.2Ω
t _r	Rise Time		190			I _D = 125A
t _{d(on)}	Turn-On Delay Time		23			V _{DD} = 38V
Q_{gd}	Gate-to-Drain Charge		140	210		V _{GS} = 10V ④
Q_{gs}	Gate-to-Source Charge		92	140	nC	V _{DS} = 60V
Q _g	Total Gate Charge		410	620		I _D = 125A

	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current			209©		MOSFET symbol
_	(Body Diode)	(Body Diode)		- A	showing the	
lou	Pulsed Source Current			840		integral reverse
ISM	(Body Diode) ①			040		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C,I _S = 125A,V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time		140	210	ns	T _J = 25°C ,I _F = 125A
Q _{rr}	Reverse Recovery Charge		880	1320	nC	di/dt = 100A/µs ④


Notes:

- ${\rm }\odot{\rm }$ Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11)
- @ Starting T_J = 25°C, L = 0.25mH, R_G = 25\Omega, I_{AS} = 125A.(See Fig. 12)

 $\label{eq:ISD} \textcircled{3} \quad I_{SD} \leq 125A, \ di/dt \leq 260A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^\circ C.$

- ④ Pulse width \leq 400µs; duty cycle \leq 2%.
- \odot C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 90A.
- $\oslash~$ Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.

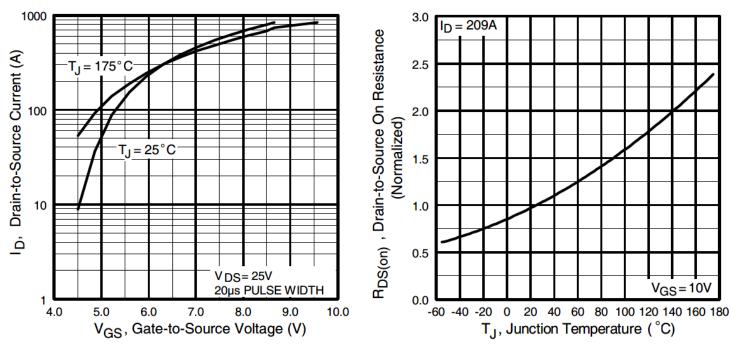
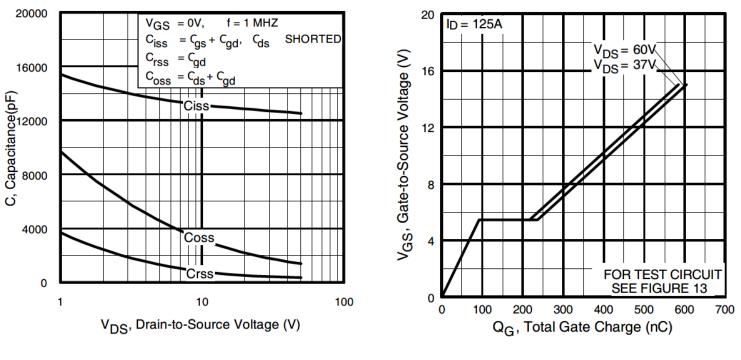
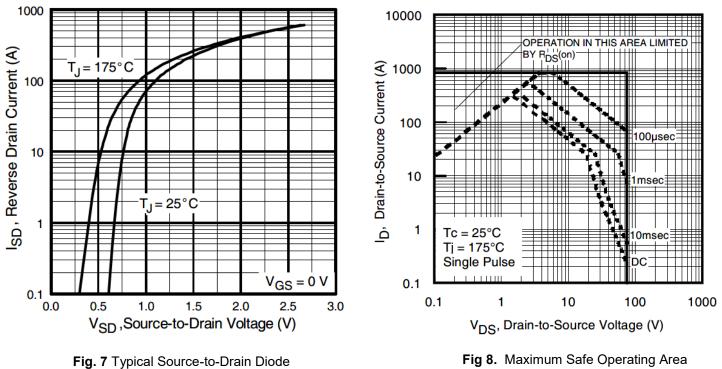



Fig. 3 Typical Transfer Characteristics


Fig. 4 Normalized On-Resistance vs. Temperature

Forward Voltage

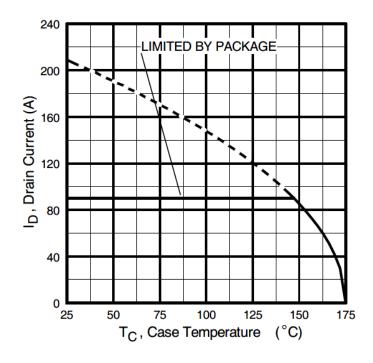


Fig 9. Maximum Drain Current vs. Case Temperature

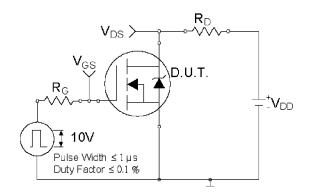


Fig 10a. Switching Time Test Circuit

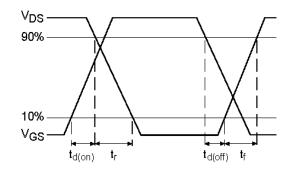


Fig 10a. Switching Time Waveforms

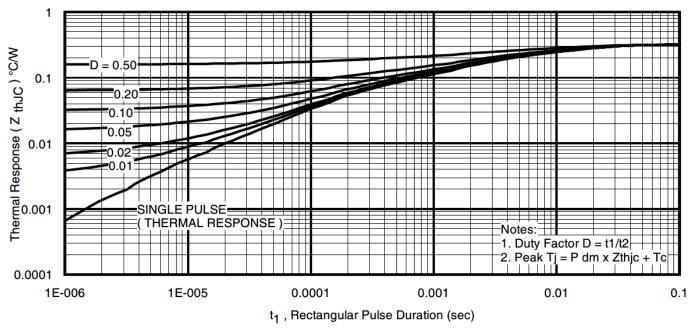


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

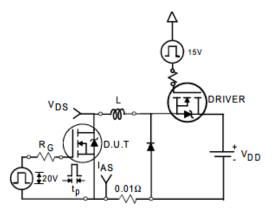


Fig. 12a. Unclamped Inductive Test Circuit

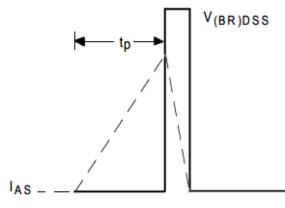
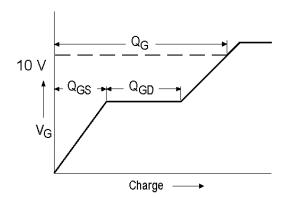
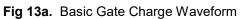




Fig. 12b. Unclamped Inductive Waveforms

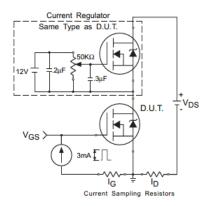


Fig 13b. Gate Charge Test Circuit

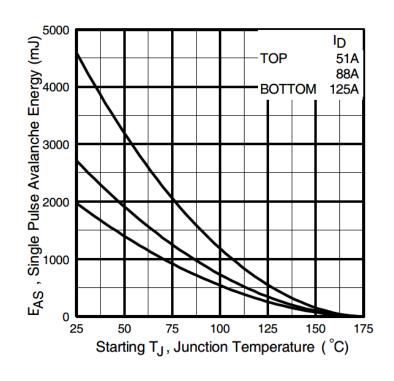


Fig 12c. Maximum Avalanche Energy vs. Drain Current

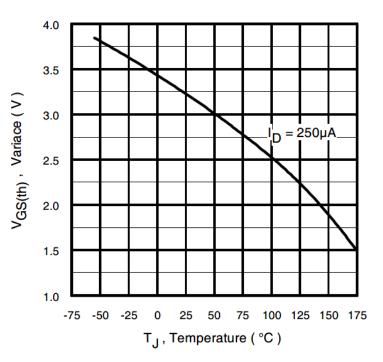


Fig 14 Threshold Voltage Vs. Temperature

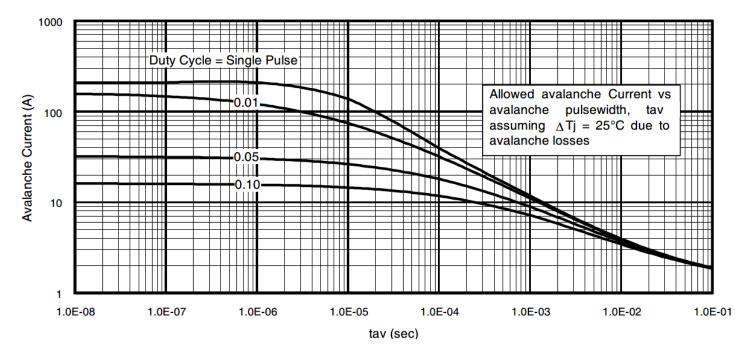
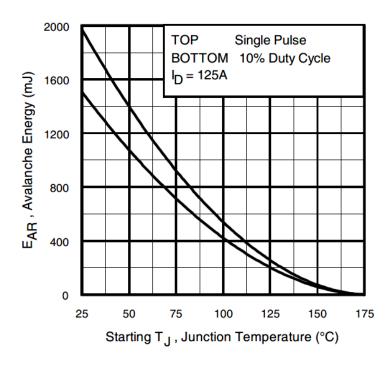
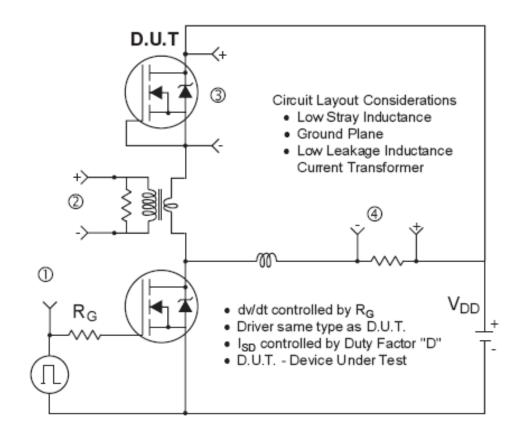
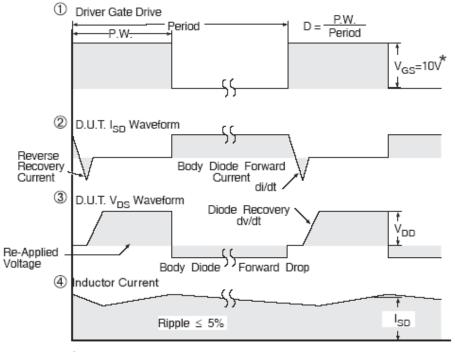



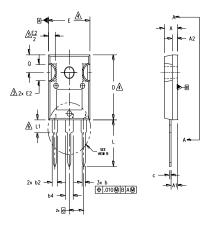
Fig 15. Typical Avalanche Current vs. Pulsewidth

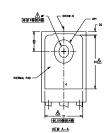

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

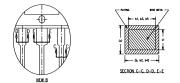

- 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16).
 - t_{av} = Average time in avalanche.
 - D = Duty cycle in avalanche = tav $\cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 11)

$$\begin{split} \textbf{P}_{D (ave)} &= 1/2 \text{ (} \textbf{1.3} \cdot \textbf{BV} \cdot \textbf{I}_{av} \text{)} = \Delta T / \textbf{Z}_{thJC} \\ \textbf{I}_{av} &= 2 \Delta T / \text{ [} \textbf{1.3} \cdot \textbf{BV} \cdot \textbf{Z}_{th} \text{]} \\ \textbf{E}_{AS (AR)} &= \textbf{P}_{D (ave)} \cdot \textbf{t}_{av} \end{split}$$




* V_{GS} = 5V for Logic Level Devices


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

TO-247AC Package Outline (Dimensions are

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994. 1.
- DIMENSIONS ARE SHOWN IN INCHES.
- 3 CONTOUR OF SLOT OPTIONAL.
- 4 DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.
- LEAD FINISH UNCONTROLLED IN L1.
- OP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 ' TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

		SIONS	DIMEN		
	eters	MILLIM	HES	INCI	SYMBOL
NOTES	MAX.	MIN.	MAX.	MIN.	
	5.31	4.65	.209	.183	A
	2.59	2.21	.102	.087	A1
	2.49	1.50	.098	.059	A2
	1.40	0.99	.055	.039	b
	1.35	0.99	.053	.039	b1
	2.39	1.65	.094	.065	b2
	2.34	1.65	.092	.065	b3
	3.43	2.59	.135	.102	b4
	3.38	2.59	.133	.102	b5
	0.89	0.38	.035	.015	с
	0.84	0.38	.033	.015	c1
4	20.70	19.71	.815	.776	D
5	-	13.08	-	.515	D1
	1.35	0.51	.053	.020	D2
4	15.87	15.29	.625	.602	Ε
	-	13.46	-	.530	E1
	5.49	4.52	.216	.178	E2
	BSC	5.46	.215 BSC		е
	25	0.1	10	.0	Øk
	16.10	14.20	.634	.559	L
	4.29	3.71	.169	.146	L1
	3.66	3.56	.144	.140	øP
	7.39	-	.291	-	øP1
	5.69	5.31	.224	.209	Q
	BSC	5.51	BSC	.217	S

LEAD ASSIGNMENTS

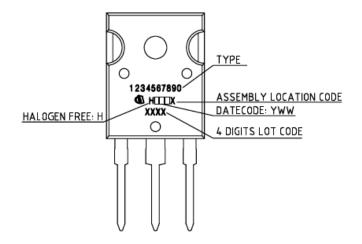
infineon

<u>HEXFET</u>

1.- GATE 2.- DRAIN 3.- SOURCE

4.- DRAIN

IGBTs, CoPACK


1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

DIODES

1.- ANODE/OPEN 2.- CATHODE

3.- ANODE

TO-247AC Part Marking Information

TO-247AC package is not recommended for Surface Mount Application.

IRFP2907PbF

Revision History

Date	Rev.	Comments	
2024-10-15 2.1		 Update datasheet to Infineon format Updated Part marking –page 9 	
2024-10-13	2.1	 Added disclaimer on last page. 	

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: **erratum@infineon.com**

Published by Infineon Technologies AG 81726 München, Germany © 2024 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics

("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

The Infineon Technologies component described in this Data Sheet may be used in life support devices or systems and or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.