
INTERNATIONAL RECTIFIER

T-39-19

HEXFET® TRANSISTORS

P-CHANNEL 50 VOLT POWER MOSFETs

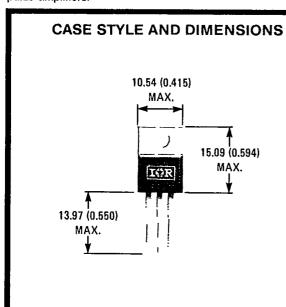
IRF9Z20 IRF9Z22

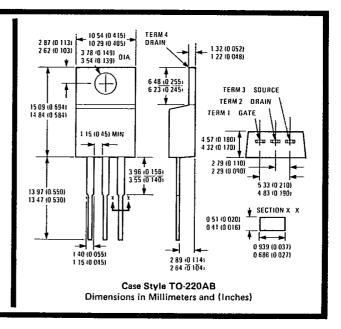
-50 Volt, 0.28 Ohm, HEXFET TO-220AB Plastic Package

The HEXFET® technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry and unique processing of the HEXFET design achieve very low on-state resistance combined with high transconductance and extreme device ruggedness.

The P-Channel HEXFETs are designed for application which require the convenience of reverse polarity operation. They retain all of the features of the more common N-Channel HEXFETs such as voltage control, very fast switching, ease of paralleling, and excellent temperature stability.

P-Channel HEXFETs are intended for use in power stages where complementary symmetry with N-Channel devices offers circuit simplification. They are also very useful in drive stages because of the circuit versatility offered by the reverse polarity connection. Applications include motor control, audio amplifiers, switched mode converters, control circuits and pulse amplifiers.


Product Summary


Part Number	VDS	RDS(on)	ID
IRF9Z20	-50V	0.28Ω	-9.7A
IRF9Z22	-50V	0.33Ω	-8.9A

10-220

Features:

- P-Channel Versatility
- Compact Plastic Package
- Fast Switching
- Low Drive Current
- Ease of Paralleling
- Excellent Temperature Stability

IRF9Z20, IRF9Z22 Devices

INTERNATIONAL RECTIFIER

T-39-19

Absolute Maximum Ratings

	Parameter	IRF9Z20	IRF9Z22	Units
V _{DS}	Drain - Source Voltage ①	-60	-50	V
V _{DGR}	Drain - Gate Voltage (R _{GS} = 20 KΩ) ①	-50	-50	V
D @ T _C = 25°C	Continuous Drain Current	-9.7	-8.9	Α
D @ T _C = 100°C	Continuous Drain Current	6.1	-5.6	Α
DM	Pulsed Drain Current ②	-39	-36	A
/ _{GS}	Gate - Source Voltage	•	±20	V
PD @ TC = 25°C	Max, Power Dissipation		W	
	Linear Derating Factor		0.32	W/K ®
LM	Inductive Current, Clamped	-39 (See Fig. 1	14), L = 100μH -36	A
L	Unclamped Inductive Current (Avalanche Current) ③	(See	Α	
TJ Operating Junction and T _{stg} Storage Temperature Range		-5	°C	
	Lead Temperature	300 (0.063 in. (1.6r	°C	

Electrical Characteristics @ T_C = 25°C (Unless Otherwise Specified)

	Parameter	Туре	Min.	Тур.	Max.	Units	Test Conditions
BVDSS	Drain - Source Breakdown Voltage	IRF9Z20	-50	_	_	V	V _{GS} = 0V
		IRF9Z22					$I_{D} = -250 \mu\text{A}$
V _{GS(th)}	Gate Threshold Voltage	ALL	-2.0	_	-4.0	V	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$
IGSS	Gate-Source Leakage Forward	ALL	_	-	-500	nΑ	$V_{GS} = -20V$
IGSS	Gate-Source Leakage Reverse	ALL	_		500	nΑ	V _{GS} = 20V
IDSS	Zero Gate Voltage Drain Current	ALL	-	_	-250	μΑ	V _{DS} = Max. Rating, V _{GS} = 0V
		ALL	_		-1000	μA	V _{DS} = Max. Rating × 0.8, V _{GS} = 0V, T _C = 125°C
ID(on)	On-State Drain Current	1RF9Z20	-9.7	-	-	A	$V_{DS} > I_{D(on)} \times R_{DS(on)max}, V_{GS} = -10V$
		IRF9Z22	-8.9	_	_	A	VDS / ID(on) / IIDS(on)max., VGS IOV
RDS(on)	Static Drain-Source On-State Resistance @	IRF9Z20	1	0.20	0.28	Ω	$V_{GS} = -10V, I_{D} = -5.6A$
D 0(0.1.)		IRF9Z22	-	0.28	0.33	Ω	VGS = -104, ID = -5.0A
9fs	Forward Transconductance	ALL	2.3	3.5	-	S(0)	V _{DS} = 2 × V _{GS} , I _{DS} = -5.6A
Ciss	Input Capacitance	ALL	_	480		pF	$V_{GS} = 0V$, $V_{DS} = -25V$, $f = 1.0 \text{ MHz}$
Coss	Output Capacitance	ALL	-	320		pF	See Fig. 10
Crss	Reverse Transfer Capacitance	ALL	_	58		pF	
td(on)	Turn-On Delay Time	ALL	_	8.2	12	ns	$V_{DD} = -25V$, $I_{D} \approx -9.7A$, $R_{G} = 18\Omega$, $R_{D} = 2.4\Omega$
tr	Rise Time	ALL		57	86	ns	See Fig. 16
td(off)	Turn-Off Delay Time	ALL	-	12	18	ns	(MOSFET switching times are essentially independent of
tf	Fall Time	ALL	-	25	38	ns	operating temperature.)
Q _g	Total Gate Charge (Gate-Source Plus Gate-Drain)	ALL	-	17	26	nC	$V_{GS} = -10V$, $I_D = -9.7A$, $V_{DS} = 0.8$ Max. Rating. See Fig. 17 for test circuit. (Gate charge is essentially
Qgs	Gate-Source Charge	ALL	1	4.1	6.2	пC	independent of operating temperature)
O _{gd}	Gate-Drain ("Miller") Charge	ALL	_	5.7	8.6	пС	
LD	Internal Drain Inductance	ALL		4.5	-	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die. Modified MOSFET symbol showing the internal inductances. device
LS	Internal Source Inductance	ALL	_	7.5		nH	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.

Thermal Resistance

R _{th} JC	Junction-to-Case	ALL	1	1	3.1	K/W ^⑤	
RthCS	Case-to-Sink	ALL	-	1.0	-	KW®	Mounting surface flat, smooth, and greased.
R _{thJA}	Junction-to-Ambient	ALL	_	-	80	KW®	Typical socket mount

INTERNATIONAL RECTIFIER

T-39-19

Source-Drain Diode Ratings and Characteristics

ls	S Continuous Source Current (Body Diode)	IRF9Z20	_	_	-9.7	Α	Modified MOSFET symbol showing the integral reverse
		IRF9Z20	_	_	8.9	Α	PN junction rectifier.
Ism	Pulse Source Current	IRF9Z22		_	-39	Α	
	(Body Diode) ③	IRF9Z22		_	-36	Α	
V _{SD}	Diode Forward Voltage ②	ALL	_	-	-6.3	٧	$T_C = 25^{\circ}C$, $l_S = -9.7A$, $V_{GS} = 0V$
t _{rr}	Reverse Recovery Time	ALL	56	110	280	ns	$T_J = 25^{\circ}\text{C}, I_F = -9.7\text{A}, dI_F kft = 100 Al \mu s$
ORR	Reverse Recovered Charge	ALL	0.17	0.34	0.85	μC	$T_J = 25^{\circ}\text{C}$, $I_F = -9.7\text{A}$, $di_F klt = 100 \text{A}/\mu\text{s}$
ton	Forward Turn-on Time	ALL	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by L _S + L _D .				

①T_J = 25°C to 150°C ③K/W = °C/W W/K = W/°C ② Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). ③ @ $V_{dd} = -25V$, $T_j = 25^{\circ}C$ L = 100 μ H, $R_G = 25\Omega$ Pulse Test: Pulse width ≤ 300 μs,
 Duty Cycle ≤ 2%

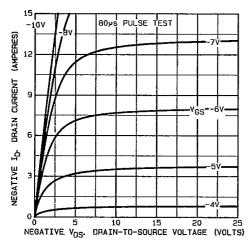


Fig. 1 — Typical Output Characteristics

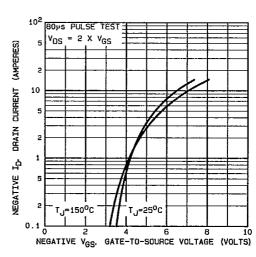


Fig. 2 — Typical Transfer Characteristics

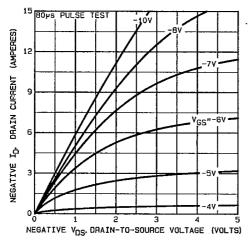


Fig. 3 — Typical Saturation Characteristics

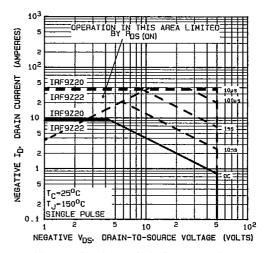


Fig. 4 — Maximum Safe Operating Area

INTERNATIONAL RECTIFIER

T-39-19

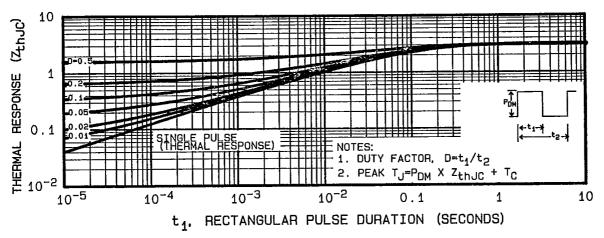


Fig. 5 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

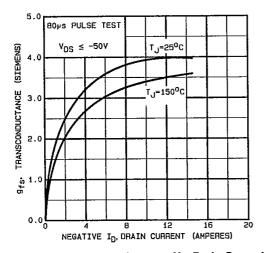


Fig. 6 — Typical Transconductance Vs. Drain Current

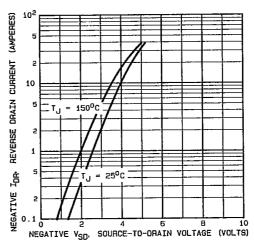


Fig. 7 — Typical Source-Drain Diode Forward Voltage

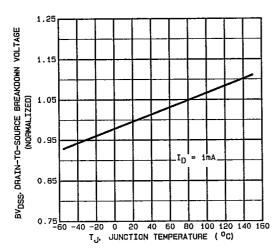


Fig. 8 — Breakdown Voltage Vs. Temperature

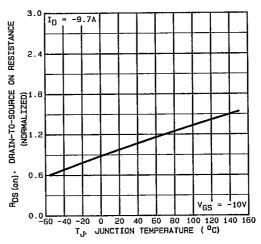


Fig. 9 — Normalized On-Resistance Vs. Temperature

11E D 4855452 0008634 0

INTERNATIONAL RECTIFIER

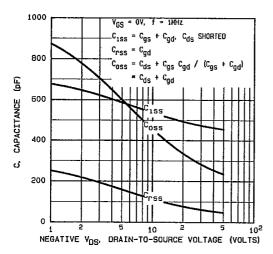


Fig. 10 — Typical Capacitance Vs. Drain-to-Source Voltage

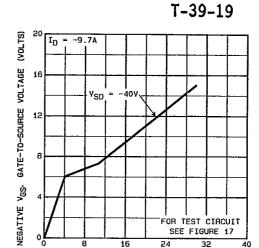


Fig. 11 — Typical Gate Charge Vs. Gate-to-Source Voltage

TOTAL GATE CHARGE (nC)

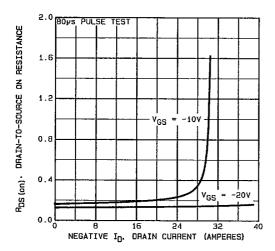


Fig. 12 — Typical On-Resistance Vs. Drain Current

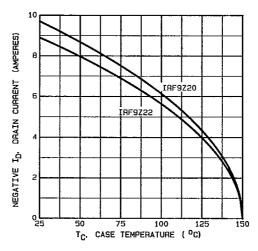


Fig. 13 — Maximum Drain Current Vs. Case Temperature

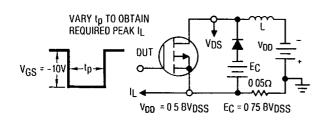


Fig. 14a — Clamped Inductive Test Circuit

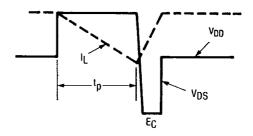


Fig. 14b — Clamped Inductive Waveforms

IRF9Z20, IRF9Z22 Devices

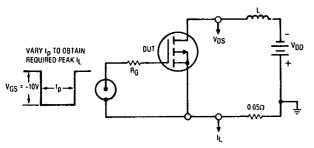


Fig. 15a — Unclamped Inductive Test Circuit

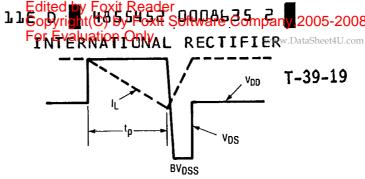


Fig. 15b — Unclamped Inductive Load Test Waveforms

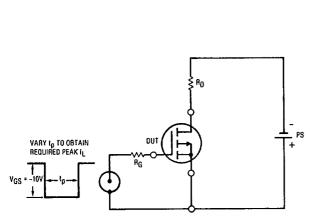


Fig. 16 — Switching Time Test Circuit

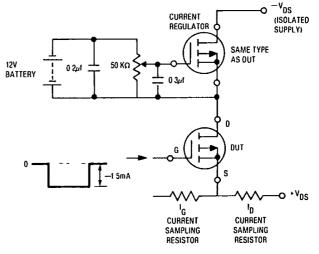
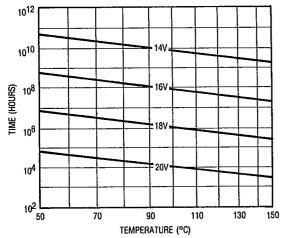
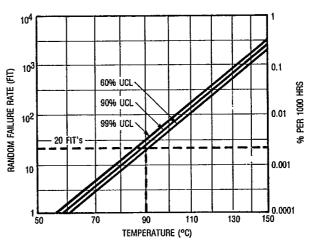




Fig. 17 — Gate Charge Test Circuit

TEMPERATURE (°C)
*Fig. 18 — Typical Time to Accumulated 1% Gate Failure

*Fig. 19 — Typical High Temperature Reverse Blas (HTRB) Failure Rate

^{*}The data shown in correct as of April 15, 1987. This information is updated on a quarterly basis; for the latest reliability data, please contact your local IR field office.