
Микросхема IN93AA86AN/AD, IN93AA86BN/BD, IN93AA86CN/CD (аналог CAT93C86 ф.Catalyst) –

электрически стираемое перепрограммируемое ПЗУ с информационной емкостью 16К (2048х8 и/или 1024х16) с 3-х проводным интерфейсом. Для микросхем IN93AA86CN, IN93AA86CD при подключении вывода ORG к общему выводу выбирается организация 2048х8 бит. Если вывод ORG подключен к выводу питания от источника напряжения или остается свободным, то выбирается организация 1024х16 бит. Для микросхем типономиналов А и В вывод ORG не подключается. При этом микросхема IN93AA86AN, IN93AA86AD имеет организацию 2048х8 бит, а микросхема IN93AA86BN, IN93AA86BD – организацию 1024х16 бит.

Микросхема предназначена для записи, считывания и длительного энергонезависимого неразрушаемого хранения информации в системах с 3-х проводным интерфейсом. Используется в телевизионных приемниках, в технике связи, контрольно-измерительной аппаратуре, изделиях бытовой электроники.

Отличительные особенности:

- неразрушаемое хранение 16 Кбит информации в течение 100 лет при Та = 25 °C;
- один источник питания ($U_{CC} = 1.8 B 6.0 B$);
- встроенный в кристалл умножитель напряжения;
- возможность образования общей шины ввода/вывода;
- автоматическое приращение адреса слова;
- внутренний таймер для записи;
- 1 000 000 циклов стирания/записи на байт;
- установка внутренней логики по включению питания;
- неограниченное количество циклов считывания;
- низкая потребляемая мощность;
- температурный диапазон от минус 40 до плюс 85 °C

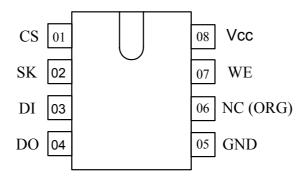


Рисунок 2 — Обозначение выводов в корпусе микросхем IN93AA86AN/AD, IN93AA86BN/BD, (IN93AA86CN/CD)

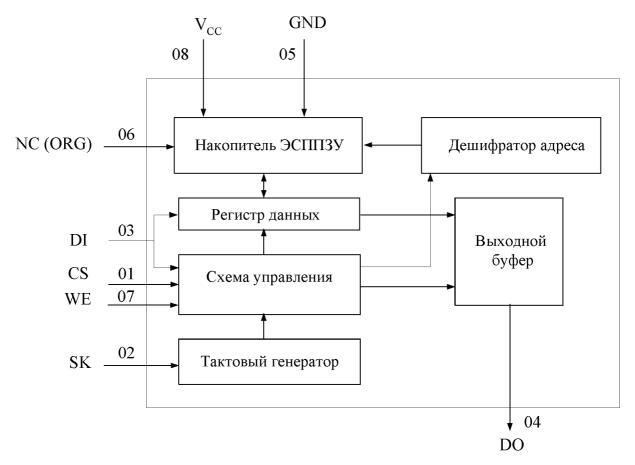


Рисунок 3 – Структурная схема микросхем IN93AA86AN/AD, IN93AA86BN/ BD, (IN93AA86CN/CD)

Таблица 1 - Назначение выводов микросхем IN93AA86AN/AD, IN93AA86BN/BD

Обозначение	Вывод	Назначение
CS	01	Вход сигнала "Выбор кристалла"
SK	02	Вход тактового сигнала
DI	03	Вход последовательных данных
DO	04	Вход последовательных данных
GND	05	Общий вывод
NC	06	Вывод свободный
WE	07	Вход сигнала «Разрешение записи»
Vcc	08	Вывод питания от источника напряжения

Таблица 2 - Назначение выводов микросхем IN93AA86CN/CD

Обозначение	Вывод	Назначение
CS	01	Вход сигнала "Выбор кристалла"
SK	02	Вход тактового сигнала
DI	03	Вход последовательных данных
DO	04	Вход последовательных данных
GND	05	Общий вывод
ORG	06	Вход сигнала "Выбор конфигурации памяти"
WE	07	Вход сигнала «Разрешение записи»
Vcc	08	Вывод питания от источника напряжения

Таблица 3 – Предельно-допустимые и предельные режимы эксплуатации

	Буквен-	Предельно-	допустимый	Преде	ельный		
	ное	реж	ким	pex	режим		
	обозна-	Но	рма	Но	рма		
	чение	не менее	не более	не менее	не более		
Напряжение питания, В	U_{CC}	1,8	6,0	- 0,5	7,0		
Входное напряжение высокого							
уровня, В	U_{IH}						
при 4,5 В ≤ Ucc ≤ 5,5 В		2,0	$U_{CC} + 1,0$	- 0,5	$U_{CC} + 1,0$		
при 1,8 B ≤ Ucc < 4,5 B		$0.7U_{CC}$	$U_{CC} + 1,0$	- 0,5	$U_{CC} + 1,0$ $U_{CC} + 1,0$		
Входное напряжение низкого							
уровня, В	U_{IL}						
при 4,0 В ≤ Ucc ≤ 5,5 В		-0,1	0,8	-	-		
при 1,8 B ≤ Ucc < 4,0 B		0	$0.2U_{CC}$	-	-		
Выходной ток короткого замыка-	$I_{OS}^{1)}$			_	100		
ния, мА		-					
Температура среды	Ta	-40	85	-60	150		
1) 5	•						

¹⁾ Время воздействия не более 1 с

Микросхемы устойчивы к воздействию статического электричества с потенциалом 2000 В. Входная емкость микросхем не более 5 п Φ .

Выходная емкость микросхем не более 5 пФ.

Таблица 4 - Электрические параметры микросхем при Та от минус 45 до 85 °C

Наименование параметра, единица	Буквен-		Норма		
измерения	ное обо- значение	Режим измерения	не менее	не более	
Выходное напряжение низкого уровня, В	U _{OL1}	$4.5 \text{ B} \le U_{CC} \le 5.5 \text{ B}$ $I_{OL} = 2.1 \text{ MA}$	_	0,4	
Выходное напряжение высокого уровня, В	U _{OH1}	$I_{OH} = -400 \text{ MKA}$	2,4	_	
Выходное напряжение низкого уровня, В	U _{OL2}	$1.8 \text{ B} \le U_{CC} < 4.5 \text{ B}$ $I_{OL} = 1.0 \text{ MA}$	_	0,2	
Выходное напряжение высокого уровня, В	U _{OH2}	$1.8 \text{ B} \le U_{CC} < 4.5 \text{ B}$ $I_{OH} = -100 \text{ MKA}$	U _{CC} -0,2	_	
Ток утечки низкого уровня на входе, мкА	I_{ILL}	$1.8 \text{ B} \le U_{CC} \le 6.0 \text{ B}$	_	-1,0	
Ток утечки высокого уровня на входе, мкА	I_{ILH}	$1.8 \text{ B} \le U_{CC} \le 6.0 \text{ B}$ $U_{I} = U_{CC}$	_	1,0	
Ток утечки низкого уровня на выходе, мкА	I _{OLL}	$1.8 \text{ B} \le U_{CC} \le 6.0 \text{ B}$ $U_{O} = 0 \text{ B}$ $U_{CS} = 0 \text{ B}$	_	-1,0	
Ток утечки высокого уровня на выходе, мкА	I _{OLH}	$1.8 \text{ B} \le U_{CC} \le 6.0 \text{ B}$ $U_{O} = U_{CC}$ $U_{CS} = 0 \text{ B}$	_	1,0	
Ток потребления (8-разрядный режим), мкА IN93AA86CN, IN93AA86CD	I _{CC1}	$U_{CC} = 5.5 B$ $U_{CS} = 0 B$ $U_{ORG} = 0 B$	_	10	
IN93AA86AN, IN93AA86AD		ORG свободный (NC)			
Ток потребления (16-разрядный режим), мкА	I _{CC2}	$U_{CC} = 5.5 B$ $U_{CS} = 0 B$	_	10	
IN93AA86CN, IN93AA86CD		U _{ORG} = U _{CC} или ORG не подключен ORG свободный (NC)			
IN93AA86BN, IN93AA86BD Динамический ток потребления в режиме считывания, мкА	I _{OCC R}	$U_{CC} = 5.0 B$ $f_C = 1 M\Gamma$ ц	_	500	
Динамический ток потребления в режиме стирания / записи, мА	I _{OCC E/W}	$U_{CC} = 5.0 \text{ B}$ $f_{C} = 1 \text{ M}\Gamma_{\text{II}}$	_	3,0	
Время установления выхода в состояние низкого уровня по сигналу	$t_{\rm PD0}$	$4.5 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $\text{f}_{\text{C}} = 3 \text{ M} \Gamma \text{μ}$	_	150	
SK, HC		$2.5 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 1.0 \text{ M}$ Γμ	_	500	
		$1.8 \text{ B} \le U_{CC} \le 6.0 \text{ B}$ $f_C = 0.5 \text{ M}\Gamma$ ц	_	1000	

Наименование параметра, единица	Буквен-		Норма		
измерения	ное обо- значение	Режим измерения	не менее	не более	
Время установления выхода в со- стояние высокого уровня по сигналу	t _{PD1}	$4,5 B \le U_{CC} \le 6,0 B$ $f_C = 3 MΓη$	_	150	
SK, нс		$2,5 \text{ B} \le \text{U}_{\text{CC}} \le 6,0 \text{ B}$ $f_{\text{C}} = 1,0 \text{ M}$ Γμ	_	500	
		$1.8 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 0.5 \text{ M}$ Γμ	-	1000	
Время перехода выхода в высокоим- педансное состояние, нс	t _{HZ}	$4.5 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 3 \text{ M} \Gamma \text{I}$	_	100	
		$2.5 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 1.0 \text{ M}\Gamma\text{u}$	-	200	
		$1.8 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 0.5 \text{ M}\Gamma\text{ц}$	-	400	
Время цикла стирание/ запись, мс	t_{CY}	$4.5 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 3 \text{ M}\Gamma\text{U}$	_	5	
		$2.5 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 1.0 \text{ M}\Gamma\text{u}$	_	5	
		$1.8 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 0.5 \text{ M}\Gamma\text{I}$	_	5	
Время перехода выхода в состояние «Проверка статуса», нс	t_{SV}	$4.5 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 3 \text{ M}\Gamma\text{U}$	_	100	
pozopita o i any cam, no		$2.5 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 1.0 \text{ M}\Gamma\text{u}$	_	500	
		$1.8 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 0.5 \text{ M}\Gamma\text{ц}$	_	1000	
Время от включения питания до начала операции чтения, мс	t_{PUR}	$4.5 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 3 \text{ M}\Gamma\text{U}$	_	1,0	
1 ,		$2.5 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 1.0 \text{ M}\Gamma\text{H}$	_	1,0	
		$1.8 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 0.5 \text{ M} \Gamma \text{I}$	_	1,0	
Время от включения питания до начала операции записи, мс	$t_{ m PUW}$	$4.5 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 3 \text{ M}\Gamma\text{U}$	_	1,0	
		$2.5 \text{ B} \le \text{U}_{\text{CC}} \le 6.0 \text{ B}$ $f_{\text{C}} = 1.0 \text{ M}\Gamma\text{H}$	_	1,0	
		$1.8 \text{ B} \le U_{CC} \le 6.0 \text{ B}$	_	1,0	
Количество циклов стирания/записи	N _{E/W}	$f_{\rm C} = 0.5 \text{ M}\Gamma_{\rm H}$ $U_{\rm CC} = 5.0 \text{ B}$	1000000	_	

Таблица 5 – Параметры трехпроводного интерфейса (-40 °C ≤ Ta ≤ 85 °C, C₁=100 пФ)

1 aujin	таолица 3 – параметры грехпроводного интерфейса (-40 С 2 га 2 83 С, С[-100 пФ)									
Обо-		Норма								
значе-	Наименование параметра,	1,8 B ≤ U	_{CC} ≤ 6,0 B	2,5 B ≤ U	$J_{CC} \le 6,0 \text{ B}$	$4.5 \text{ B} \leq \text{U}_{\text{C}}$	_C ≤ 6,0 B			
ние па- рамет- ра	единица измерения	не	не более	не	не более	не менее	не более			
$f_{\rm C}$	Частота следования импульсов тактовых сигналов, МГц	_	0,5	_	1,0	_	3			
t_{CSS}	Время предустановки сигна- ла CS, нс	200	_	100	_	50	_			
t_{CSH}	Время удержания сигнала CS, нс	0	_	0	_	0	_			
$t_{ m DIS}$	Время предустановки данных, нс	200	Ι	100	_	50	I			
$t_{\rm DIH}$	Время удержания данных, нс	200	_	100	_	50	_			
t _{CS MIN}	Длительность сигнала CS низкого уровня, нс	1000	_	500	_	150	_			
$t_{ m SKHI}$	Длительность сигнала SK высокого уровня, нс	1000	_	500	_	150	_			
t_{SKLOW}	Длительность сигнала SK низкого уровня мс	1000	_	500	_	150	_			

Таблица 6 – Инструкции управления

	Ста	Код	Ад	Адрес		ные	
Инст-	рто	опе	Организация	Организация	Орга-	Орга-	Коментарий
рукция	вый	pa-	организация ×8	организация ×16	низация	низация	Коментарии
	бит	ции	^\0	^10	×8	×16	
READ	1	10	A10-A0	A9-A0			Чтение по
KEAD	1	10	A10-A0	A)-A0			адресу AN – A0
ERASE	1	11	A10-A0	A9-A0			Стирание по
LICASE	1	11	A10-A0	A9-A0			адресу AN – A0
WRITE	1	01	A10-A0	A9-A0	D7-D0	D15-D0	Запись по адресу
WKIIL	1	01	A10-A0	A9-A0	טט-טט	D13-D0	AN - A0
EWEN	1	00	11XXXXXXXXXX	11XXXXXXXX			Разрешение
E W EIN	1	00	ΠΑΛΑΛΑΛΑΛ	ΠΑΛΑΛΑΛΑ			записи
EWDS	1	00	00XXXXXXXXX	00XXXXXXXX			Запрет записи
ERAL	1	00	10XXXXXXXXX	10XXXXXXXX			Стирание всего
WRAL	1	1 00	01XXXXXXXXX	01777777777	D7 D0	D15 D0	Запись по всем
WKAL	1	00	UIAAAAAAAA	01XXXXXXXX	D7-D0 D15-D0		адресам

Для осуществления операций записи, стирания и считывания данных предусмотрены семь инструкций. Формат инструкций следующий: логическая "1" — стартовый бит, 2 бита (или 4 бита) — код операции, 10 бит для организации1024х16 (или 11 бит для организации 2048х8) — адрес ячейки. Для операции записи дополнительно необходимо 16-разрядное слово данных для организации 1024х16 (или 8-разрядное слово данных для организации 2048х8).

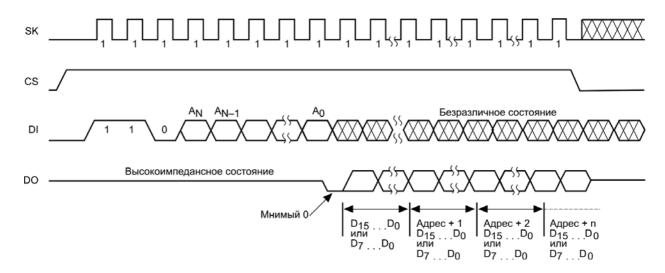
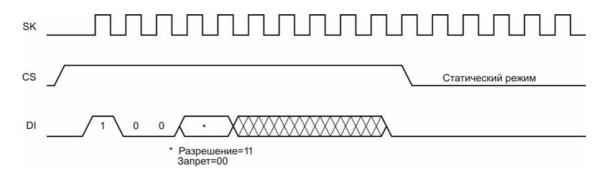
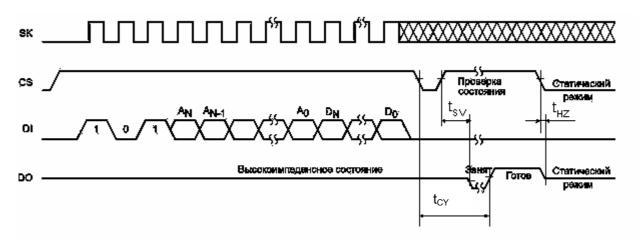




Рисунок 4 – Протокол режима "Чтение"

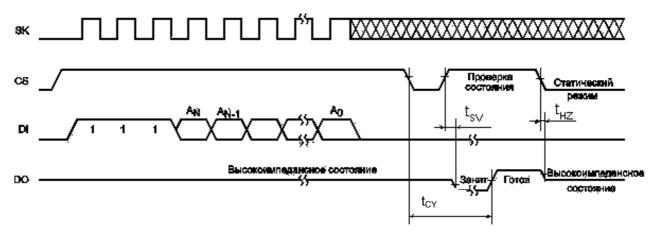
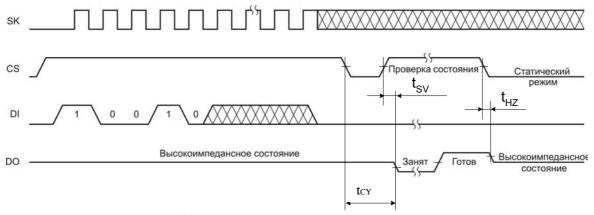

По включению питания микросхема устанавливается в режим "Запрет программирования/стирания". Для реализации любой из операций записи/стирания после включения питания и после установки в режим "Запрет программирования/стирания" требуется предварительно подать инструкцию "Разрешение программирования/стирания".

Рисунок 5 – Протокол режимов "Разрешение стирания/записи" и "Запрет стирания/записи"

На протяжении всей длительности цикла активного программирования микросхема не воспринимает внешнее обращение по сигналам SK и DI. Время цикла стирания/записи (t_{CY}) измеряется (контролируется) путем опроса выхода микросхемы. Если на выходе установлено состояние логического 0, то цикл программирования еще продолжается, если состояние логической 1 — цикл программирования уже закончился. Перевод выхода в высокоимпедансное состояние после окончания цикла программирования производится путем подачи на вход CS значения логического 0 либо путем подачи на вход DI значения логической 1 (при этом CS = 1).

Рисунок 6 – Протокол режима "Запись по определенному адресу"



Операция стирания устанавливает в стертой ячейке значение логической 1.

Рисунок 7 – Протокол режима "Стирание по определенному адресу"

Рисунок 8 – Протокол режима "Запись в весь накопитель"

Операция стирания информации со всего накопителя устанавливает во всех ячейках накопителя значения логической 1.

Рисунок 9 – Протокол режима "Стирание всего накопителя"

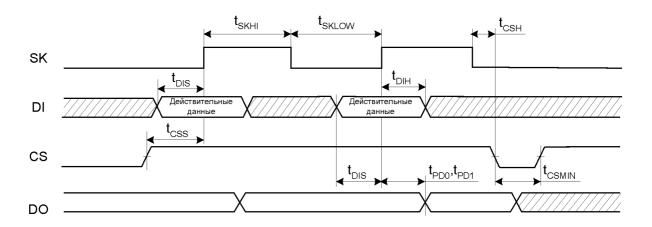
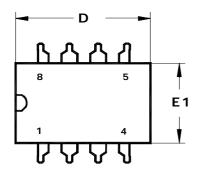
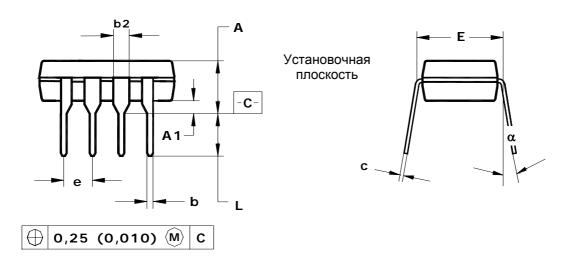
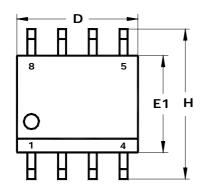
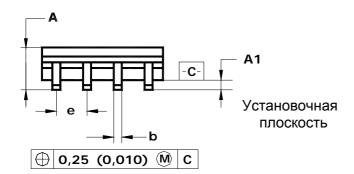




Рисунок 10 – Временная диаграмма синхронизации данных

Габаритные размеры корпуса




Примечание - Размеры D, E1 не включают величину облоя, которая не должна превышать 0.25 (0.010) на сторону.

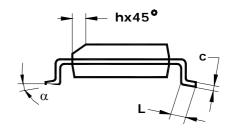
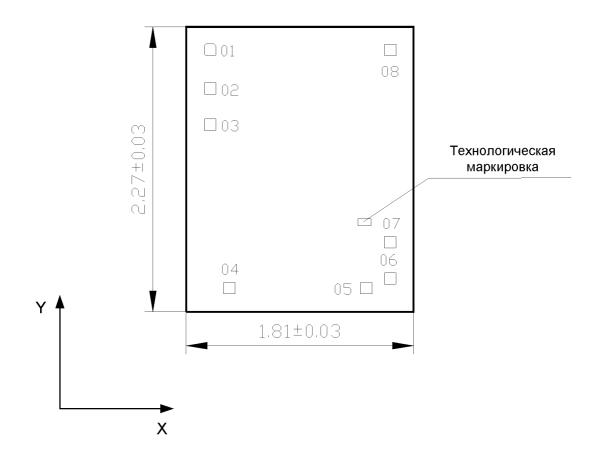

	D	E1	A	b	b2	e	α	L	Е	c	A1
	Миллиметры										
min	9,02	6,07		0,36	1,14		0°	2,93	7,62	0,20	0,38
max	10,16	7,11	5,33	0,56	1,78	2.54	15°	3,81	8,26	0,36	
	Дюймы										
min	0,355	0,240		0,014	0,045		0°	0,115	0,300	0,008	0,015
max	0,400	0,280	0,210	0,022	0,070	0,1	15°	0,150	0,325	0,014	_

Рисунок 11 – Габаритные размеры DIP-корпуса (MS-001BA)



Примечание - Размеры D, E1 не включают величину облоя, которая не должна превышать 0.25 (0.010) на сторону.

	D	E1	Н	b	e	α	A	A1	c	L	h
	Миллиметры										
min	4,80	3,80	5,80	0,33		0°	1,35	0,10	0,19	0,41	0,25
max	5,00	4,00	6,20	0,51	1,27	8°	1,75	0,25	0,25	1,27	0,50
	Дюймы										
min	0,1890	0,1497	0,2284	0,013		0°	0,0532	0,0040	0,0075	0,016	0,0099
max	0,1968	0,1574	0,2440	0,020	0,100	8°	0,0688	0,0090	0,0098	0,050	0,0196

Рисунок 12 - Габаритные размеры SO-корпуса (MS-012AA)

Координаты технологической маркировки (мм): левый нижний угол x = 1,383, y = 0,653. Толщина кристалла $0,46 \pm 0,02$ мм.

Номер контакт-	Координаты (левый	Обозначение	
ной площадки	X	У	
01	0,1428	2,0412	CS
02	0,1451	1,7328	SK
03	0,1451	1,444	DI
04	0,2970	0,1427	DO
05	1,3870	0,1422	GND
06	1,5785	0,2199	NC (ORG*)
07	1,5785	0,5087	WE
08	1,5797	2,0405	Vcc

Примечание — Координаты и размер контактных площадок $0,092 \times 0,092$ мм даны по слою «Пассивация»

Рисунок 13 – Внешний вид кристалла и координаты контактных площадок

^{*} Для микросхем IN93AA86CN/CD