DC-COUPLED VERTICAL DEFLECTION CIRCUIT

FEATURES

- Few external components
- Highly efficient fully DC-coupled vertical output bridge circuit
- Vertical flyback switch
- Guard circuit
- Protection against:
 short-circuit of the output pins (7 and 4)
 short-circuit of the output pins to VP
- Temperature (thermal) protection
- High EMC immunity because of common mode inputs
- A guard signal in zoom mode.

QUICK REFERENCE DATA

GENERAL DESCRIPTION

The ILA8351 is a power circuit for use in 90° and 110°

colour deflection systems for field frequencies of 50 to

120 Hz. The circuit provides a DC driven vertical deflection output circuit, operating as a highly efficient class G system.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DC supply						
V _p	supply voltage		9	-	25	V
I _q	quiescent supply current	6	-	30	-	mA
Vertical circuit						
I _{о(р-р)}	output current (peak-to-peak value)			_	3	A
l diff(p-p)	differential input current (peak- to-peak value)		—	600	—	μA
V _{diff(p-p)}	differential input voltage (peak-to-peak value)		—	1.5	1.8	V
Flyback switch						
I _M	peak output current		-	-	±1.5	А
V _{fb}	flyback supply voltage		-	-	50	V
		note 1	-	-	60	V
Thermal data (in acc	cordance with IEC 747-1)	·				
T stg	storage temperature		-55	-	+150	°C
l _{amb}	operating ambient temperature		-25	-	+75	°C
T _{vj}	virtual junction temperature		-	-	150	°C

Note

A flyback supply voltage of >50 V up to 60 V is allowed in application. A 220 nF capacitor in series with a 22 Ω resistor (dependent on I_o and the inductance of the coil) has to be connected between pin 7 and ground. The decoupling capacitor of V_{FB} has to be connected between pin 6 and pin 3. The supply voltage line must have a resistance of 33 Ω .

BLOCK DIAGRAM.

SYMBOL	PIN	DESCRIPTION		
I drive(pos)	1	input power-stage (positive); includes I _{i(sb)} signal bias		
drive(neg)	2	input power-stage (negative); includes I _{i(sb)} signal bias		
Vp	3	operating supply voltage		
V _{O(B)}	4	output voltage B		
GND	5	ground		
V _{fb}	6	input flyback supply voltage		
V _{o(a)}	7	output voltage A		
V _{o(guard)}	8	guard output voltage		
V _{I(fb)}	9	input feedback voltage		

PINNING

PIN CONFIGURATION

FUNCTIONAL DESCRIPTION

The vertical driver circuit is a bridge configuration. The deflection coil is connected between the output amplifiers, which are driven in phase opposition. An external resistor (R_M) connected in series with the deflection coil provides internal feedback information. The differential input circuit is voltage driven. An external resistor (R_{CON}) connected between the differential input determines the output current through the deflection coil. The relationship between the differential input current is adjustable from 0.5 A (p-p) to 3 A (p-p) by varying RM. The maximum input differential voltage is 1.8 V. In the application it is recommended that $V_{diff} = 1.5 V$ (typ). This is recommended because of the spread of input current and the spread in the value of R_{CON} .

The flyback voltage is determined by an additional supply voltage V_{FB}. The principle of operating with two supply voltages (class G) makes it possible to fix the supply voltage V_p optimum for the scan voltage and the second supply voltage V_{FB} optimum for the flyback voltage. Using this method, very high efficiency is achieved.

The supply voltage V_{FB} is almost totally available as flyback voltage across the coil, this being possible due to the absence of a decoupling capacitor (not necessary, due to the bridge configuration). The output circuit is fully protected against the following:

• thermal protection

short-circuit protection of the output pins (pins 4 and 7)

• short-circuit of the output pins to V_p.

A guard circuit Vo(guard) is provided. The guard circuit is activated at the following conditions:

- during flyback
- during short-circuit of the coil and during short-circuit of the output pins (pins 4 and 7) to V_p or ground
- during open loop
- when the thermal protection is activated.

This signal can be used for blanking the picture tube screen.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IRC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
DC supply		I			
V _p	supply voltage	non-operetion	-	40	V
			-	25	V
V _{FB}	flyback supply voltage		-	50	V
		note 1	-	60	V
Vertical circuit		1			
I _{O(A)}	output current (peak-to-peak	note 2	-	3	А
V _{O(A)}	output voltage (pin 7)		-	52	V
		note 1	-	62	V
Flyback switch					
I _M	peak output current		-	±1.5	A
Thermal data (in	accordance with IEC 747-1)			•	
T _{stg}	storage temperature		-55	+150	°C
l _{amb}	operating ambient temperature		-25	+75	°C
T _{vj}	virtual junction temperature		-	150	°C
R _{th vj-c}	resistance v _i -case		-	4	K/W
R _{th vj-a}	resistance v _j -ambient in free air		-	40	K/W
t _{sc}	short-circuiting time	note 3	-	1	hr

Notes

- 1. A flyback supply voltage of >50 V up to 60 V is allowed in application. A 220 nF capacitor in series with a 22 Ω resistor (dependent on I_o and the inductance of the coil) has to be connected between pin 7 and ground. The decoupling capacitor of V_{FB} has to be connected between pin 6 and pin 3. The supply voltage line must have a resistance of 33 Ω .
- 2. I_0 maximum determined by current protection.
- 3. U_P to V_P = 18 V.

CHARACTERISTICS

 $V_{p} = 17.5 \text{ V}; \text{ } \text{T}_{amb} = 25 \ ^{0}\text{C}; \text{ } \text{V}_{FB} = 45 \text{ V}; \text{ } \text{t}_{\text{j}} = 50 \text{ Hz}; \text{ } \text{I}_{\text{I(sb)}} = 400 \text{ } \mu\text{A}.$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
DC supply							
VP	operating supply voltage		9.0	-	25	V	
V _{FB}	flyback supply voltage		V _P	-	50	V	
		note 1	V _P	-	60	V	
l _q	supply current	no signal; no load	-	30	55	mA	
Vertical ci	rcuit						
Vo	output voltage swing (scan)	$I_{diff} = 0.6 \text{ mA (p-p)};$ $V_{diff} = 1.8 \text{ V (p-p)};$ $I_{O} = 3 \text{ A (p-p)}$	19.8	-	-	V	
LE	linearity error	$I_0 = 3 A (p-p);$ note 2	-	1	2	%	
		$I_0 = 50 \text{ mA (p-p); note 2}$	-	1	2	%	
Vo	output voltage swing (flyback) $V_{O(A)}$ - $V_{O(B)}$	$I_{diff} = 0.3 \text{ mA};$ $I_{O} = 1.5 \text{ A} (\text{M})$	-	39	-	V	
V _{DF}	forward voltage of the internal efficiency diode ($V_{O(A)}$ - V_{FB})	$I_{O} = -1.5 \text{ A} (\text{M})$ $I_{diff} = 0.3 \text{ mA}$	-	-	1.5	V	
I I _{os} I	output offset current	$I_{diff} = 0;$ $I_{l(sb)} = 50 \text{ to } 500 \mu\text{A}$	-	-	30	mA	
I V _{os} I	offset voltage at the input of the feedback amplifier $(V_{U(fb)} - V_{O(Fb)})$	$I_{diff} = 0;$ $I_{u(ab)} = 50 \text{ to } 500 \text{ µA}$	-	-	18	mV	
$\Delta V_{os}T$	output offset voltage as a function of temperature	$I_{\text{diff}} = 0$	-	-	72	μV/K	
V _{O(A)}	DC output voltage	I _{diff} = 0; note 3	-	8.0	-	V	
G _{vo}	open-loop voltage gain (V ₇₋₄ /V ₁₋₂₎)	notes 4 and 5	-	80	-	dB	
	open loop voltage gain(V_{7-4}/V_{1-2} ; $V_{1-2} = 0$)	note 4	-	80	-	dB	
V _R	voltage ratio V ₁₋₂ /V ₉₋₄		-	0	-	dB	
t _{res}	frequency response (-3 dB)	open loop; note 6	-	40	-	Hz	
Gi	current gain (I _O /I _{diff})		-	5000	-		
$\Delta G_C T$	current gain drift as a function of temperature		-	-	10 ⁻⁴	К	
I _{I(sb)}	signal bias current		50	400	500	μΑ	
I _{FB}	flyback supply current	during scan	-	-	100	μA	
PSRR	power supply ripple rejection	note 7	-	80	-	dB	
V _{I(DC)}	DC input voltage		-	2.7	-	V	
V _{ICM)}	common mode input voltage	$I_{I(sb)} = 0$	0	-	1.6	V	
I _{bias}	input bias current	$I_{I(sb)} = 0$	-	0.1	0.5	μA	
I _{O(CM)}	common mode output current	$\Delta I_{I(sb)} = 300 \ \mu A \ (p-p);$ $f_i = 50 \ Hz; \ I_{diff} = 0$	-	0.2	-	mA	
Guard circuit							
I _O	output current	not active; V _{O(guard)} = 0 V	-	-	50	μA	
		active; V _{O(guard)} = 4.5 V	1	-	2.5	mA	
V _{O(guard)}	output voltage on pin 8	I _O = 100 μA	-	-	5.5	V	
	allowable voltage on pin 8	maximum leakage current = 10 μA;	-	-	40	V	

Notes

1. A flyback supply voltage of >50 V up to 60 V is allowed in application. A 220 nF capacitor in series with a 22 Ω resistor (dependent on I_o and the inductance of the coil) has to be connected between pin 7 and ground. The decoupling capacitor of V_{FB} has to be connected between pin 6 and pin 3. The supply voltage line must have a resistance of 33 Ω .

2. The linearity error is measured without S-correction and based on the same measurement principle as performed on the screen. The measuring method is as follows:

Divide the output signal $I_4 - I_7$ (V_{RM}) into 22 equal parts ranging from 1 to 22 inclusive. Measure the value of two succeeding parts called one block starting with part 2 and 3 (block 1) and ending with part 20 and 21 (block 10). Thus part 1 and 22 are unused. The equations for linearity error for adjacent blocks (LEAB) and not adjacent blocks (NAB) are given below

$$LEAB = \frac{a_k - a_{(k+1)}}{a_{ave}}; NAB = \frac{a_{\max} - a_{\min}}{a_{ave}}$$

- 3. Referenced to V_P .
- 4. V values with formulae, relate to voltages at or between relating pin numbers, i.e. V_{7-4}/V_{1-2} = voltage value across pins 7 and 4 divided by voltage value across pins 1 and 2.
- 5. V₉₋₄ AC short-circuited.
- 6. Frequency response $V_{7\text{-}4}\!/\,V_{9\text{-}4}$ is equal to frequency response $V_{7\text{-}4}\!/\,V_{1\text{-}2}$.
- 7. At $V_{(ripple)} = 500 \text{ mV}$ eff; measured across R_M ; $f_j = 50 \text{ Hz}$.

• 9-Pin Plastic Power Single-in-Line (SIL-9MPF, SOT 131-2)

