GROUND FAULT INTERRUPTER EARTH LEAKAGE CURRENT DETECTOR IL54123 ### **Description** The IL54123N/D is designed for use in earth leakage circuit interrupters for operation directly off the AC Line in breakers. It contains pre regulator, main regulator, after regulator, differential amplifier, level comparator, latch circuit. The input in the differential amp latch circuit. The input in the differential amplifier is connect to the secondary node of zero current transformer. The level comparator generates high level when earth leakage current is greater than some level. #### **Feature** - Low Power Consumption (P_D=5mW) 100V/200V - 100V/200V Common Built-in Voltage Regulator - High Gain Differential Amplifier - High Input Sensitivity ($V_T = 6.1 \text{mV Typ.}$) - Minimum External Parts - Large Surge Margin - Wide Operating Temperature Range (T_A = -30 to 80°C) - High Noise Immunity - Meet U. L. 943 standards ### **Absolute Maximum Ratings (T^=25°c)** Supply Voltage 20V Supply Current 8mA Power Dissipation 200m W Operating Temperature - 30 to 80°C Storage Temperature - 55 to 125°C Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ^{*} Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. # **Pin Configuration** (Top View) # **Block Diagram** # Recommended Operating Condition: $T_A \text{=-} 30\,^{\circ}\text{C}$ to $80\,^{\circ}\text{C}$ | PARAMETER | SYMBOL | MIN. | TYP. | MAX | UNIT | |-------------------------------|---------|------|------|-----|------| | Supply Voltage | V^{+} | 12 | | | V | | Vs-GND Capacitor | Cvs | 1 | | | μF | | O _S -GND Capacitor | Cos | | | 1 | μF | ### **Electrical Characteristics** | PARAMETER | SYMBOL | CONDTIONS | | TEMP. | MIN. | TYP. | MAX. | UNIT | |-------------------------------------|---|---|--|-------|------|------|------|-------| | | | $V^{+}=12V$,
$V_{R} - V_{I} = 30 \text{ mV}$ | | -30 | - | - | 580 | μΑ | | Supply Current 1 | l_{S1} | | | 25 | _ | 400 | 530 | | | | | | | 85 | _ | - | 480 | | | * Trip Voltage | $V_{\rm T}$ | $V^+ = 16V,$ $V_R - V_I = X$ | | -30 | 4 | 6.1 | 9 | mV | | 1 0 | | | | 85 | | | | (rms) | | Differential | I_{TD1} | $V^{+} = 16 \text{ V},$ | | 25 | -12 | - | -30 | μA | | Amplifier | | $V_R - V_I = 30 \text{ mV}$ | | | | | | , | | Output Current 1 | | $V_{OD} = 1.2 \text{ V}$ | | | | | | | | Differential | I_{TD2} | $V^+ = 16 V$,
$V_R - V_I = \text{short}$ | | 25 | 17 | - | 37 | μΑ | | Amplifier Output | | | | | | | | | | current 2 | | $V_{\rm OD} = 0.8 \text{ V}$ | <u>, </u> | | | | | | | | | $V_{SC} = 1.4 \text{ V}$ | $l_{SI} = 580 \mu A$ | -30 | -200 | - | | | | Output Current | I_{O} | $V_{SC} = 1.4 \text{ V} $
$V_{OS} = 0.8 \text{ V}$ | $l_{SI} = 530 \mu A$ | 25 | -100 | - | | μΑ | | | | . 03 0.0 1 | $l_{SI} = 480 \mu A$ | 85 | -75 | - | | | | S _C ON Voltage | V _{SC} ON | $V^{+} = 16 \text{ V}$ | | 25 | 0.7 | - | 1.4 | V | | S _C Input Current | I _{SC} ON | $V^{+} = 12V$ | | 25 | - | - | 5 | μΑ | | Output "L" Current | Output "L" Current I_{OSL} $V^+ = 12 V$, | | | -30 | 200 | _ | _ | μА | | output 2 current | *USL | $V_{OSL} = 0.2 \text{ V}$ | | 85 | | | | μι | | Input Clamp | V _{IC} | $V^{+} = 12 \text{ V},$ | | -30 | 4.3 | - | 6.7 | V | | Voltage | | $I_{IC} = 20 \text{ mA}$ | | 85 | | | | | | Differential Input | $V_{\rm IDC}$ | $I_{IDC} = 100 \text{mA}$ | | -30 | 0.4 | - | 2 | V | | Clamp Voltage | | | | 85 | | | | | | Max. Current | V_{SM} | $I_{SM} = 7 \text{ mA}$ | | 25 | 20 | - | 28 | V | | Voltage | | | | | | | | | | | | $V_{OS} = 0.5 \text{ V},$ | | -30 | - | - | 1200 | μΑ | | | | $V_R - V_I = X$ | | 85 | | | | · | | Latch Circuit Off
Supply Voltage | V+ OFF | | | 25 | 0.5 | | | V | | Response Time | T _{ON} | $V^{+} = 16 \text{ V},$
$V_{R} - V_{I} = 0.3$ | 3 V | 25 | 1 | - | 4 | ms | ### **Typical Performance Curves** DIFFERENTIAL AMPLIFIER OUTPUT VOLTAGE—DIFFERENTIAL INPUT VOLTAGE # SUPPLY CURRENT-SUPPLY VOLTAGE #### BIAS CURRENT-TEMPERATURE # DIFFERENTIAL AMPLIFIER OUTPUT CURRENT-TEMP ### **Test Circuit** 10. 13. ### **Typical Application** Supply voltage circuit is connected as a previous diagram. Please decide constants R1, R2, C4, and C5 of a filter in order to keep at least 12V in Vs, when normal supply current flows. In this case, please connect C4 (more than 1 μ F) and C2 (less than 1 μ F). ZCT and load resistance R_L of ZCT are connected between input pin① and ②. In this case protective resistance (R3=100 Ω) must be insulted. Sensitivity current is regulated by RL, and output of amplifier shows in pin④. External capacitor C1 between pin④ and GND is used for noise removal. When large current is grounded in the primary side (AC line) of ZCT, the wave form in the secondary side of ZCT is distorted and some signals doesn't appear in the output of amplifier. So please connect a varistor or a diode (2pcs.) to ZCT in parallel. Latch circuit is used to inspect the output level of amplifier and to supply gate current on the external SCR. When input pin becomes more than 1.1V (Typ.) latch circuit operates and supply gate current in the gate of SCR connected to the output pin ①. Pin 6 can be used in the open state, but please connect capacitor (about 0.047 μ F) between pin 6 and 7. Capacitor C6 between pin 1 and GND is used to remove noise and is about 0.047 μ F. ### N SUFFIX DIP (MS – 001BA) ### **NOTES:** Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions 0.25 mm (0.010) per side. | | Dimension, mm | | | |--------|---------------|-------|--| | Symbol | MIN | MAX | | | A | 8.51 | 10.16 | | | В | 6.10 | 7.11 | | | C | | 5.33 | | | D | 0.36 | 0.56 | | | F | 1.14 | 1.78 | | | G | 2.54 | | | | Н | 7.62 | | | | J | 0° | 10° | | | K | 2.92 | 3.81 | | | L | 7.62 | 8.26 | | | M | 0.20 | 0.36 | | | N | 0.38 | | | ### D SUFFIX SOP (MS - 012AA) ### **NOTES:** - 1. Dimensions A and B do not include mold flash or protrusion. - 2. Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for B 0.25 mm (0.010) per side. | | Dimension, mm | | | | |--------|---------------|------|--|--| | Symbol | MIN | MAX | | | | A | 4.80 | 5.00 | | | | В | 3.80 | 4.00 | | | | C | 1.35 | 1.75 | | | | D | 0.33 | 0.51 | | | | F | 0.40 | 1.27 | | | | G | 1.27 | | | | | Н | 5.72 | | | | | J | 0° | 8° | | | | K | 0.10 | 0.25 | | | | M | 0.19 | 0.25 | | | | P | 5.80 | 6.20 | | | | R | 0.25 0.50 | | | |