Programmable Timing Control Hub[™] for PII/III[™]

Recommended Application:

VIA Mobile PL133T and PLE133T Chipsets.

Output Features:

- 2 CPU clocks @ 2.5V
- 1 Pairs of differential CPU clocks @ 3.3V
- 7 PCI including 1 free running @ 3.3V
- 7 SDRAM @ 3.3V
- 1 48MHz @ 3.3V fixed
- 1 24_48MHz selectable @ 3.3V
- 2 REF @ 3.3V, 14.318MHz

Features/Benefits:

- Programmable output frequency.
- Programmable output divider ratios.
- Programmable output rise/fall time.
- Programmable output skew.
- Programmable spread percentage for EMI control.
- Watchdog timer technology to reset system if system malfunctions.
- Programmable watch dog safe frequency.
- Support I²C Index read/write and block read/write operations.
- Uses external 14.318MHz crystal.

Key Specifications:

- CPU Output Jitter <200ps
- CPU Output Skew <175ps
- PCI to PCI Output Skew <500ps

Pin Configuration

48-Pin SSOP & TSSOP

- * Internal Pull-up resistor of 120K to VDD
- ** these inputs have 120K internal pull-down to GND

Host Swing Select Functions

MULTISEL0	Board Target Trace/Term Z	Reference R, Iref = V _{DD} /(3*Rr)	Output Current	Voh @ Z
0	50 ohms	Rr = 221 1%, Iref = 5.00mA	loh = 4* I REF	1.0V @ 50
1	50 ohms	Rr = 475 1%, Iref = 2.32mA	loh = 6* I REF	0.7V @ 50

General Description

The **ICS950602** is a single chip clock solution for VIA Mobile PL133T and PLE133T chipsets. It provides all necessary clock signals for such a system.

The **ICS950602** is part of a whole new line of ICS clock generators and buffers called TCH[™] (Timing Control Hub). ICS is the first to introduce a whole product line which offers full programmability and flexibility on a single clock device. This part incorporates ICS's newest clock technology which offers more robust features and functionality. Employing the use of a serially programmable I²C interface, this device can adjust the output clocks by configuring the frequency setting, the output divider ratios, selecting the ideal spread percentage, the output skew, the output strength, and enabling/disabling each individual output clock. TCH also incorporates ICS's Watchdog Timer technology and a reset feature to provide a safe setting under unstable system conditions. M/N control can configure output frequency with resolution up to 0.1MHz increment. With all these programmable features, ICS' TCH makes motherboard testing, tuning and improvement very simple.

Pin Description

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION	
1, 6, 12, 23, 32, 38, 42,	GND	PWR	Ground pins for 3.3V supply	
5, 9, 29, 35	VDD	PWR	3.3V power supply	
2	FS2	IN	Logic input frequency select bit. Input latched at power on.	
2	REF1	OUT	3.3V, 14.318MHz reference clock output.	
3	REF0	OUT	3.3V, 14.318MHz reference clock output.	
4	Vtt_PWRGD#	IN	This 3.3V LVTTL input is a level sensitive strobe used to determine when FS (4:0) are valid and are ready to be sampled (active low)	
7	X1	IN	Crystal input, has internal load cap (33pF) and feedback resistor from X2	
8	X2	OUT	Crystal output, nominally 14.318MHz. Has internal load cap (33pF)	
10	FS4	IN	Logic input frequency select bit. Input latched at power on.	
	PCICLK_F	OUT	3.3V PCI clock output	
11	FS3	IN	Logic input frequency select bit. Input latched at power on.	
	PCICLK0	OUT	3.3V PCI clock output	
17, 16, 15, 14, 13	PCICLK (5:1)	OUT	3.3V PCI clock outputs	
18	SDRAM_IN	IN	SDRAM buffer input pin.	
19	CPU_STOP#	IN	Stops all CPUCLKs clocks at logic 0 level, when input low	
20	PCI_STOP#	IN	Stops all PCICLKs besides the PCICLK_F clocks at logic 0 level, when input low	
21	PD#	IN	Asynchronous active low input pin used to power down the device into a low power state. The internal clocks are disabled and the VCO and the crystal are stopped. The latency of the power down will not be greater than 3ms.	
22	MULTSEL	IN	3.3V LVTTL input for selecting the current multiplier for CPU outputs.	
24	SDATA	I/O	Data pin for I ² C circuitry 5V tolerant	
25	SCLK	IN	Clock pin for I ² C circuitry 5V tolerant	
26	FS1	IN	Logic input frequency select bit. Input latched at power on.	
20	48_24MHz	OUT	Selectable 48 or 24MHz output	
	FS0	IN	Logic input frequency select bit. Input latched at power on.	
27	48MHz	OUT	3.3V Fixed 48MHz clock output.	
28	AVDD48	PWR	3.3V analog power supply for 48 or 24MHz outputs.	
30, 31, 33, 34, 36, 37, 39	SDRAM (5:0, 6)	OUT	SDRAM clock outputs.	
40	IREF	OUT	This pin establishes the reference current for the CPUCLK pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current.	
41	RESET#	OUT	Real time system reset signal for frequency value or watchdog timer timeout. This signal is active low.	
43	CPUCLKC	OUT	"Complementary" clock of differential pair CPU outputs. These are current outputs and external resistors are required for voltage bias.	
44	CPUCLKT	OUT	T "True" clock of differential pair CPU outputs. These are current outputs and external resistors are required for voltage bias.	
45	VDDCPU_3.3	PWR	3.3V power for CPU differential clocks.	
46 47. 48	VDDCPU_2.5	PWR OUT	2.5V power for CPU clocks.	
47,48	CPUCLK (1:0)	001	CPU clock outputs.	

0469B-12/18/02

© 2019 Renesas Electronics Corporation

General I²C serial interface information

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will *acknowledge*
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
 - (see Note 2)
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

In	dex Block W	e Operation	
Со	ntroller (Host)	ICS (Slave/Receiver)	
Т	starT bit		
Slav	e Address D2 _(H)		
WR	WRite		
			ACK
Beg	inning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begir	nning Byte N		
			ACK
	0	fe	
	0	X Byte	0
	0	\times	0
		Ō	
Byt	e N + X - 1		
			ACK
Р	stoP bit		

*See notes on the following page. 0469B—12/18/02

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

In	dex Block Rea	ad (Operation	
Со	ntroller (Host)	IC	S (Slave/Receiver)	
Т	starT bit			
Slav	e Address D2 _(H)			
WR	WRite			
			ACK	
Beg	inning Byte = N			
	•		ACK	
RT	Repeat starT			
Slav	e Address D3 _(H)			
RD	ReaD			
		ACK		
		Data Byte Count = X		
	ACK			
			Beginning Byte N	
	ACK			
		¥.	0	
	<u> </u>	X Byte	0	
	0		0	
	<u> </u>	ł ŀ	Byte N + X - 1	
N	Not acknowledge			
Р	stoP bit			

© 2019 Renesas Electronics Corporation

Bit						Descri	iption		PWD
	Bit2 FS4	Bit1 FS3	Bit6 FS2	Bit5 FS1	Bit4 FS0	CPUCLK MHz	PCICLK MHz	Spread %	
	0	0	0	0	0	200.00	33.30	+/-0.25% center spread	
	0	0	0	0	1	190.00	38.00	+/-0.25% center spread	
	0	0	0	1	0	180.00	36.00	+/-0.25% center spread	
	0	0	0	1	1	170.00	34.00	+/-0.25% center spread	
	0	0	1	0	0	166.00	33.20	+/-0.25% center spread	
	0	0	1	0	1	160.00	32.00	+/-0.25% center spread	
	0	0	1	1	0	150.00	37.50	+/-0.25% center spread	
	0	0	1	1	1	145.00	36.30	+/-0.25% center spread	
	0	1	0	0	0	140.00	35.00	+/-0.25% center spread	
	0	1	0	0	1	136.00	34.00	+/-0.25% center spread	
	0	1	0	1	0	130.00	32.50	+/-0.25% center spread	
	0	1	0	1	1	124.00	31.00	+/-0.25% center spread	
	0	1	1	0	0	67.20	33.60	+/-0.25% center spread	
	0	1	1	0	1	100.90	33.63	+/-0.25% center spread	
Bit	0	1	1	1	0	118.00	39.30	+/-0.25% center spread	Note 1
(2:1,6:4)	0	1	1	1	1	134.40	33.60	+/-0.25% center spread	
	1	0	0	0	0	67.00	33.50	+/-0.25% center spread	
	1	0	0	0	1	100.50	33.50	+/-0.25% center spread	
	1	0	0	1	0	115.00	38.30	+/-0.25% center spread	
	1	0	0	1	1	133.90	33.47	+/-0.25% center spread	
	1	0	1	0	0	66.80	33.40	+/-0.25% center spread	
	1	0	1	0	1	100.20	33.40	+/-0.25% center spread	
	1	0	1	1	0	110.00	36.70	+/-0.25% center spread	
	1	0	1	1	1	133.60	33.40	+/-0.25% center spread	
	1	1	0	0	0	105.00	35.00	+/-0.25% center spread	
	1	1	0	0	1	90.00	30.00	+/-0.25% center spread	
	1	1	0	1	0	85.00	28.30	+/-0.25% center spread	
	1	1	0	1	1	78.00	39.00	+/-0.25% center spread	
	1	1	1	0	0	66.60	33.30	+/-0.25% center spread	
	1	1	1	0	1	100.00	33.30	0 to -0.5% down spread	
	1	1	1	1	0	75.00	37.50	+/-0.25% center spread	
	1	1	1	1	1	133.30	33.30	0 to -0.5% down spread	
Bit 3	1 - F	reque	ncy is			/ hardware / Bit 2,7:4	select, la	tched inputs	0
Bit 0		lorma Spread		trum e	enable	1			0
Bit 7								/ latch inputs ed by Byte 10 bit (4:0)	0

Byte 0: Functionality and frequency select register (Default=0)

Notes:

1. Default at power-up will be for latched logic inputs to define frequency, as displayed by Bit 3.

Byte 1: Output Control Register (1 = enable, 0 = disable)

Bit	Pin#	PWD	Description		
Bit7	-	Х	FS4 Read back		
Bit6	-	Х	FS3 Read back		
Bit5	-	Х	FS2 Read back		
Bit4	-	Х	FS1 Read back		
Bit3	-	Х	FS0 Read back		
Bit2	48	1	CPUCLK0		
Bit1	47	1	CPUCLK1		
Bit0	44, 43	1	CPUCLKT, CPUCLKC		

Byte 2: Output Control Register (1 = enable, 0 = disable)

Bit	Pin#	PWD	Description		
Bit7	39	1	SDRAM6		
Bit6	10	1	PCICLK_F		
Bit5	17	1	PCICLK5		
Bit4	16	1	PCICLK4		
Bit3	15	1	PCICLK3		
Bit2	14	1	PCICLK2		
Bit1	13	1	PCICLK1		
Bit0	11	1	PCICLK0		

Byte 3: Output Control Register (1 = enable, 0 = disable)

Bit	Pin#	PWD	Description
Bit7	-	0	RESET gear shift detect 1 = Enable, 0 = Disable
Bit6	-	0	SEL24_48: 0 = 24, 1 = 48
Bit5	27	1	48MHz
Bit4	26	1	24_48MHz
Bit3	-	0	Reserved
Bit2	31, 30	1	SDRAM (4:5)
Bit1	34, 33	1	SDRAM (2:3)
Bit0	37, 36	1	SDRAM (0:1)

Byte 4: Output Control Register (1 = enable, 0 = disable)

Bit	Pin#	PWD	Description			
Bit 7	-	Х	MULTSEL Read back			
Bit 6	-	Х	Reserved			
Bit 5	-	Х	Reserved			
Bit 4	-	Х	Reserved			
Bit 3	-	Х	Reserved			
Bit 2	-	Х	Reserved			
Bit 1	-	Х	Reserved			
Bit 0	-	Х	Reserved			

^{© 2019} Renesas Electronics Corporation

Byte 5: Output Control Register (1 = enable, 0 = disable)

•				
Bit	Pin#	PWD	Description	
Bit 7	-	0	Reserved	
Bit 6	-	0	Reserved	
Bit 5	-	0	0 Reserved	
Bit 4	-	0	CPUCLK0 Free running control, 0 = Not free running 1 = Free running	
Bit 3	-	0	0 CPUCLK1 Free running control, 0 = Not free running 1 = Free running	
Bit 2	-	0	CPUCLKT/C Free running control, 0 = Not free running 1 = Free running	
Bit 1	2	1	REF1	
Bit 0	3	1	REF0	

Byte 6: Reserved Register (1 = enable, 0 = disable)

Bit	Pin#	PWD	Description
Bit 7	-	0	Reserved
Bit 6	-	0	Reserved
Bit 5	-	0	Reserved
Bit 4	-	0	Reserved
Bit 3	-	0	Reserved
Bit 2	-	0	Reserved
Bit 1	-	0	Reserved
Bit 0	-	0	Reserved

Byte 7: Byte Count Read Back Register

Bit	Name	PWD	Description
Bit 7	Byte7	0	
Bit 6	Byte6	0	
Bit 5	Byte5	0	
Bit 4	Byte4	0	Default Byte count read back is 15 Byte.
Bit 3	Byte3	1	
Bit 2	Byte2	1	
Bit 1	Byte1	1	
Bit 0	Byte0	1	

Byte 8: Vendor ID Register

Bit	Name	PWD	Description			
Bit 7	Revision ID Bit3	Х				
Bit 6	Revision ID Bit2	Х	Revision ID values will be based on individual device's revision			
Bit 5	Revision ID Bit1	Х				
Bit 4	Revision ID Bit0	Х	-			
Bit 3	Vendor ID Bit3	0	(Reserved)			
Bit 2	Vendor ID Bit2	0	(Reserved)			
Bit 1	Vendor ID Bit1	0	(Reserved)			
Bit 0	Vendor ID Bit0	1	(Reserved)			

⁰⁴⁶⁹B-12/18/02

^{© 2019} Renesas Electronics Corporation

Byte 9: Watchdog Timer Count Register

Bit	Name	PWD	Description
Bit 7	WD7	0	
Bit 6	WD6	0	
Bit 5	WD5	0	The decimal representation of these 8 bits correspond to X •
Bit 4	WD4	1	290ms the watchdog timer will wait before it goes to alarm mode
Bit 3	WD3	0	and reset the frequency to the safe setting. Default at power up is
Bit 2	WD2	0	16 • 290ms = 4.64 seconds.
Bit 1	WD1	0	
Bit 0	WD0	0	

Byte 10: Programming Enable bit 8 Watchdog Control Register

Bit	Name	PWD	Description
Bit 7	Program Enable	0	Programming Enable bit 0 = no programming. Frequencies are selected by HW latches or Byte0 1 = enable all ^p C programing.
Bit 6	WD Enable	0	Watchdog Enable bit. This bit will over write WDEN latched value. 0 = disable, 1 = Enable.
Bit 5	WD Alarm	0	Watchdog Alarm Status 0 = normal 1= alarm status
Bit 4	SF4	1	
Bit 3	SF3	1	Matcheler acts from upper bits Minister to the set bits will confirm the set
Bit 2	Bit 2 SF2		Watchdog safe frequency bits. Writing to these bits will configure the safe
Bit 1 SF1		1	frequency corrsponding to Byte 0 Bit 2, 7:4 table
Bit 0 SF0		1	

Byte 11: VCO Frequency M Divider (Reference divider) Control Register

Bit	Name	PWD	Description			
Bit 7	Ndiv 8	Х	N divider bit 8			
Bit 6	Mdiv 6	Х				
Bit 5	Mdiv 5	Х				
Bit 4	Mdiv 4	Х	The decimal respresentation of Mdiv (6:0) corresposd to			
Bit 3	Mdiv 3	Х	reference divider value. Default at power up is equal to the			
Bit 2	Mdiv 2	Х	latched inputs selection.			
Bit 1	Mdiv 1	Х				
Bit 0	Mdiv 0	Х				

Byte 12: VCO Frequency N Divider (VCO divider) Control Register

Bit	Name	PWD	Description
Bit 7	Ndiv 7	Х	
Bit 6	Ndiv 6	Х	
Bit 5	Ndiv 5	Х	The decimal representation of Ndiv (8:0) correspond to the
Bit 4	Ndiv 4	Х	The decimal representation of Ndiv (8:0) correspond to the VCO divider value. Default at power up is equal to the
Bit 3	Ndiv 3	Х	latched inputs selecton. Notice Ndiv 8 is located in Byte 11.
Bit 2	Ndiv 2	Х	
Bit 1	Ndiv 1	Х	
Bit 0	Ndiv 0	Х	

^{© 2019} Renesas Electronics Corporation

Byte 13: Spread Spectrum Control Register

Bit	Name	PWD	Description
Bit 7	SS 7	Х	
Bit 6	SS 6	Х	
Bit 5	SS 5	Х	The Spread Spectrum will program the spread precentage. Spread
Bit 4	SS 4	Х	precent needs to be calculated based on the VCO frequency, spreading profile, spreading amount and spread frequency. It is
Bit 3	SS 3	Х	recommended to use ICS software for spread programming.
Bit 2	SS 2	Х	Default power on is latched FS divider.
Bit 1	SS 1	Х	
Bit 0	SS 0	Х	

Byte 14: Spread Spectrum Control Register

Bit	Name	PWD	Description
Bit 7	Reserved	Х	Reserved
Bit 6	Reserved	Х	Reserved
Bit 5	Reserved	Х	Reserved
Bit 4	SS 12	Х	Spread Spectrum Bit 12
Bit 3	SS 11	Х	Spread Spectrum Bit 11
Bit 2	SS 10	Х	Spread Spectrum Bit 10
Bit 1	SS 9	Х	Spread Spectrum Bit 9
Bit 0	SS 8	Х	Spread Spectrum Bit 8

Absolute Maximum Ratings

Supply Voltage	5.5 V
Logic Inputs	GND –0.5 V to V_{DD} +0.5 V $$
Ambient Operating Temperature	0°C to +70°C
Case Temperature	115°C
Storage Temperature	-65°C to +150°C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V _{IH}		2		V _{DD} + 0.3	V
Input Low Voltage	V _{IL}		V _{SS} - 0.3		0.8	V
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	mA
	I _{IL1}	$V_{IN} = 0$ V; Inputs with no pull-up resistors	-5			mA
Input Low Current	I _{IL2}	$V_{IN} = 0 V$; Inputs with pull-up resistors	-200			
Operating Supply		$C_{L} = 0 \text{ pF}; \text{ Select } @ 67 \text{ MHz}$			100	
Current	DD3.30P	C_{L} =Full load, SDRAM not running		144	280	mA
		IREF = 2.32 mA			20	A
Powerdown Current	IDD3.3PD	IREF = 5 mA		22	37	mA
Input Frequency	Fi	V _{DD} = 3.3 V		14.32		MHz
Pin Inductance	L _{pin}				7	nH
	C _{IN}	Logic Inputs			5	pF
Input Capacitance ¹	C _{OUT}	Output pin capacitance			6	pF
	C _{INX}	X1 & X2 pins	27		45	pF
Transition time ¹	T _{trans}	To 1st crossing of target frequency			3	ms
Settling time ¹	Τ _s	From 1st crossing to 1% target frequency			3	ms
Clk Stabilization ¹	T _{STAB}	From V_{DD} = 3.3 V to 1% target frequency			3	ms
Deley ¹	t _{PZH} ,t _{PZL}	Output enable delay (all outputs)	1		10	ns
Delay ¹		Output disable delay (all outputs)	1		10	ns

 $T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD} = 3.3 \text{ V} + -5\%$

Electrical Characteristics - CPUCLK(T,C)

 $T_A = 0 - 70^{\circ}$ C; $V_{DD} = 3.3$ V +/-5%; loads from Intel CK408B spec, Rev 1.1 (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Current Source Output Impedance ¹	Z _{O2A}	$V_{O} = V_{x}$	3000			Ω
Output High Voltage	V _{OH2A}	$V_{R} = 475\Omega \pm 1\%$; IREF = 2.32 mA; I _{OH} = 6*IREF		0.71	1.2	V
Output High Current	I _{OH32A}	$v_{\rm R} = 47.322 \pm 1.00$, IKET = 2.32 IIIA, IOH = 0 IKET		-13.92		mA
Rise Time ¹	t _{r2A}	V _{OL} = -0.35V, V _{OH} = 0.35V	175	220	467	ps
Fall Time ¹	t _{f2A}	$V_{OH} = 0.35V, V_{OL} = -0.35V$	175	230	467	ps
Differential Crossover Voltage ¹	V_{2A}	Rs = 33.2 Ω , Rp = 63.4 Ω to gnd, R _{T-C} = 475 Ω	510	700	900	mV
Duty Cycle ¹	d _{t2A}	$V_T = crossing point$	45	49	55	%
	+	V_T (CPU) = crossing point, V_T (PCI) = 1.25 V 100 MH	z	250	300	20
Skew, CPUT,C to CPU ¹	t _{sk2A}	133 MHz		170	200	ps
Skew, CPUT,C to PCI ¹	t _{sk2A1}	V_T (CPU) = crossing point, V_T (PCI) = 1.5 V	2	3.2	4	ns
Jitter, Cycle to cycle ¹	t _{jcyc-cyc2A}	V_T = crossing point CPU,SD = 100MHz		50	200	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - CPUCLK(1:0)

 $T_A = 0 - 70^{\circ}C$; $V_{DD}=3.3V + -5\%$; $C_L = 10-20 \text{ pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Impedance ¹	R_{DSP2B}	$V_{\rm O} = V_{\rm DD}^{*}(0.5)$	13.5		45	Ω
Output Impedance ¹	R _{DSN2B}	$V_{\rm O} = V_{\rm DD}^{*}(0.5)$	13.5		45	52
Output High Voltage	V _{OH2B}	I _{OH} = -1 mA	2			v
Output Low Voltage	V _{OL2B}	I _{OL} = 1 mA			0.4	v
Output High Current	I _{OH2B}	$V_{OH@MIN} = 1.0 V, V_{OH@MAX} = 2.375 V$	-27		27	V
Output Low Current	I _{OL2B}	$V_{OL@MIN} = 1.2 \text{ V}, V_{OL@MIN} = 0.3 \text{ V}$	27		30	v
Rise Time ¹	t _{r2B}	$V_{OL} = 0.4V, V_{OH} = 2.0V$	0.4	0.7	1.6	20
Fall Time ¹	t _{f2B}	$V_{OH} = 2.0V V_{OL} = 0.4V$	0.4	0.8	1.0	ns
Duty Cycle ¹	d _{t2B}	V _T = 50% 100MHz	45	50	55	%
Duly Cycle	u _{t2B}	133 MHz	45	54	55	70
Skew, CPU to CPU ¹	t _{sk2B}	V _T = 1.25 V		60	175	ps
Skew, CPU to PCI ¹	t _{sk2B1}	V _T (CPU) = 1.25 V, V _T (PCI) = 1.5 V	2	3.2	4	ns
		V _T = 1.25V CPU,SD = 100MHz		140	250	
Jitter, Cycle to cycle ¹	t _{jcyc-cyc2B}	CPU,SD = 133 MHz		100	250	ps
		CPU = 100, SD = 133 MHz		220	275	

Electrical Characteristics - PCICLK

 $T_A = 0 - 70^{\circ}C$; $V_{DD}=3.3V + -5\%$; $C_L = 10-30 \text{ pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Frequency	F _{O1}			33.33		MHz
Output Impedance	R_{DSP1}^{1}	$V_{\rm O} = V_{\rm DD}^{*}(0.5)$	12		55	Ω
Output High Voltage	V _{OH1} ¹	I _{OH} = -1 mA	2.4			V
Output Low Voltage	V _{OL1} ¹	I _{OL} = 1 mA			0.55	V
Output High Current	I _{OH1} ¹	V _{OH@MIN} = 1.0 V, V _{OH@MAX} = 3.135 V	-33		-33	mA
Output Low Current	I_{OL1}^{1}	$V_{OL @MIN} = 1.95 V, V_{OL @MAX} = 0.4 V$	30		38	mA
Rise Time	t _{r1} 1	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5	2.4	2.5	ns
Fall Time	t _{f1} 1	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.5	2.25	2.5	ns
Duty Cycle	d_{t1}^{1}	V _T = 1.5 V	45	53	55	%
Skew	t _{sk1} 1	V _T = 1.5 V		220	500	ps
Jitter, cycle to cycle	t _{jcyc-cyc} ¹	V _T = 1.5 V		300	450	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - 48MHz, 24_48MHz

 $T_A = 0 - 70^{\circ}C$; $V_{DD}=3.3V + -5\%$; $C_L = 10-20 \text{ pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Frequency	F_{O3}^{1}			48		MHz
Output Impedance	R _{DSP3} ¹	$V_{\rm O} = V_{\rm DD}^{*}(0.5)$	12		55	Ω
Output High Voltage	V _{OH3} ¹	I _{OH} = -1 mA	2.4			V
Output Low Voltage	V _{OL3} ¹	I _{OL} = 1 mA			0.55	V
Output High Current	I _{OH3} 1	V _{OH@MIN} = 1.0 V, V _{OH@MAX} = 3.135 V	-29		-23	mA
Output Low Current	I_{OL3}^{1}	$V_{OL @MIN} = 1.95 V, V_{OL @MAX} = 0.4 V$	29		27	mA
Rise Time	t _{r3A} 1	V _{OL} = 0.4 V, V _{OH} = 2.4 V	1	1.1	2	ns
Fall Time	t _{f3B} ¹	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1	1.25	2	ns
Duty Cycle	d _{t3A} ¹	V _T = 1.5 V	45	52	55	%
Jitter, cycle-to-cycle	t _{jcyc-cyc3} 1	V _T = 1.5 V		200	350	ps

⁰⁴⁶⁹B-12/18/02

Electrical Characteristics - SDRAM

 T_{A} = 0 - 70°C; V_{DD} =3.3V +/-5%; C_{L} = 10-30 pF (unless otherwise specified)

8							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Output Impedance ¹	R _{DSP5}	Vo=V _{DD} *(0.5)			24	Ω	
Output Impedance ¹	R _{DSN5}	Vo=V _{DD} *(0.5)	10		24	Ω	
Output High Voltage	V _{OH5}	I _{OH} = -1 mA	2.4			V	
Output Low Voltage	V _{OL5}	I _{OL} = 1 mA			0.4	V	
Output High Current	L	V _{OH@MIN} = 2 V			-46	m ^	
	I _{OH5}	V _{OH@MAX} = 3.135V	-54			mA	
Output Low Current	I _{OL5}	V _{OL@MIN} = 1 V	54			mA	
		V _{OL@MAX} =0.4V			53	IIIA	
Rise Time	t_{r5}^{1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.4	1.1	1.6	ns	
Fall Time	t_{f5}^{1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.4	0.75	1.6	ns	
Duty Cycle	d_{t5}^{1}	V _T = 1.5 V	45	50	55	%	
Skew	t _{sk5} 1	V _T = 1.5 V		30	250	ps	
Propagation delay SDRAM_IN to SDRAM	t _{pdel5} 1	V _T = 1.5 V		2.95	4	ns	

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - REF

 $T_A = 0 - 70^{\circ}C$; $V_{DD}=3.3V + -5\%$; $C_L = 10-20 \text{ pF}$ (unless otherwise specified)

SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
F_{O4}^{1}			14.318		MHz
R_{DSP4}^{1}	$V_{\rm O} = V_{\rm DD}^{*}(0.5)$	20		60	Ω
V _{OH4} ¹	I _{OH} = -1 mA	2.4			V
V _{OL4} ¹	I _{OL} = 1 mA			0.4	V
I_{OH4}^{1}	$V_{OH@MIN} = 1.0 V, V_{OH@MAX} = 3.135 V$	-29		-23	mA
I_{OL4}^{1}	$V_{OL @MIN} = 1.95 V, V_{OL @MAX} = 0.4 V$	29		27	mA
t_{r4}^{1}	V _{OL} = 0.4 V, V _{OH} = 2.4 V	1	1.85	4	ns
t_{f4}^{1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1	1.95	4	ns
d_{t1}^{1}	V _T = 1.5 V	45	55.7	56	%
t _{jcyc-cyc4} 1	V _T = 1.5 V		365	550	ps
	$\begin{array}{c} F_{04}^{-1} \\ R_{DSP4}^{-1} \\ V_{0H4}^{-1} \\ V_{0L4}^{-1} \\ I_{0H4}^{-1} \\ I_{0L4}^{-1} \\ t_{r4}^{-1} \\ t_{f4}^{-1} \\ t_{f4}^{-1} \\ d_{t1}^{-1} \\ \end{array}$	$ \begin{array}{c c} F_{O4}^{-1} & \\ \hline R_{DSP4}^{-1} & V_{O} = V_{DD}^{*}(0.5) \\ \hline V_{OH4}^{-1} & I_{OH} = -1 \text{ mA} \\ \hline V_{OL4}^{-1} & I_{OL} = 1 \text{ mA} \\ \hline I_{OH4}^{-1} & V_{OH@MIN} = 1.0 \text{ V}, \text{ V}_{OH@MAX} = 3.135 \text{ V} \\ \hline I_{OL4}^{-1} & V_{OL@MIN} = 1.95 \text{ V}, \text{ V}_{OL@MAX} = 0.4 \text{ V} \\ \hline I_{r4}^{-1} & V_{OL} = 0.4 \text{ V}, \text{ V}_{OH} = 2.4 \text{ V} \\ \hline I_{r4}^{-1} & V_{OH} = 2.4 \text{ V}, \text{ V}_{OH} = 0.4 \text{ V} \\ \hline I_{r4}^{-1} & V_{OH} = 2.4 \text{ V}, \text{ V}_{OH} = 0.4 \text{ V} \\ \hline I_{r4}^{-1} & V_{OH} = 2.4 \text{ V}, \text{ V}_{OH} = 0.4 \text{ V} \\ \hline I_{r4}^{-1} & V_{T} = 1.5 \text{ V} \\ \hline \end{array} $	$\begin{array}{c c} F_{O4}^{-1} & & \\ \hline R_{DSP4}^{-1} & V_{O} = V_{DD}^{*}(0.5) & 20 \\ \hline V_{OH4}^{-1} & I_{OH} = -1 \text{ mA} & 2.4 \\ \hline V_{OL4}^{-1} & I_{OL} = 1 \text{ mA} & \\ \hline I_{OH4}^{-1} & V_{OH@MIN} = 1.0 \text{ V}, \text{ V}_{OH@MAX} = 3.135 \text{ V} & -29 \\ \hline I_{OL4}^{-1} & V_{OL@MIN} = 1.95 \text{ V}, \text{ V}_{OL@MAX} = 0.4 \text{ V} & 29 \\ \hline t_{r4}^{-1} & V_{OL} = 0.4 \text{ V}, \text{ V}_{OH} = 2.4 \text{ V} & 1 \\ \hline t_{f4}^{-1} & V_{OH} = 2.4 \text{ V}, \text{ V}_{OL} = 0.4 \text{ V} & 1 \\ \hline t_{f4}^{-1} & V_{T} = 1.5 \text{ V} & 45 \\ \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

⁰⁴⁶⁹B-12/18/02

Shared Pin Operation -Input/Output Pins

The I/O pins designated by (input/output) serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period. Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

Fig. 1

Power Down Waveform

Note

- 1. After PD# is sampled active (Low) for 2 consective rising edges of CPUCLKs, all the output clocks are driven Low on their next High to Low tranistiion.
- 2. Power-up latency <3ms.
- 3. Waveform shown for 100MHz

300 mil SSOP Package

	In Millir	neters	In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
A	2.41	2.80	.095	.110	
A1	0.20	0.40	.008	.016	
b	0.20	0.34	.008	.0135	
С	0.13	0.25	.005	.010	
D	SEE VARIATIONS		SEE VARIATIONS		
E	10.03	10.68	.395	.420	
E1	7.40	7.60	.291	.299	
е	0.635 BASIC		0.025 BASIC		
h	0.38	0.64	.015	.025	
L	0.50	1.02	.020	.040	
N	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	

VARIATIONS

N	Drr	nm.	D (inch)		
Ν	MIN	MAX	MIN	MAX	
48	15.75	16.00	.620	.630	

Reference Doc.: JEDEC Publication 95, MO-118

10-0034

Ordering Information

ICS950602yFT

	In Millin		In Inches		
SYMBOL	COMMON DI	MENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
A		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VARIATIONS		SEE VARIATIONS		
E	8.10 B	ASIC	0.319 BASIC		
E1	6.00	6.20	.236	.244	
е	0.50 B	ASIC	0.020 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAR	IATIONS	
α	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS

Ν	Dm	m.	D (inch)		
	MIN	MAX	MIN	MAX	
48	12.40	12.60	.488	.496	

Reference Doc.: JEDEC Publication 95, MO-153

10-0039

6.10 mm. Body, 0.50 mm. pitch TSSOP (240 mil) (20 mil)

Ordering Information

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.