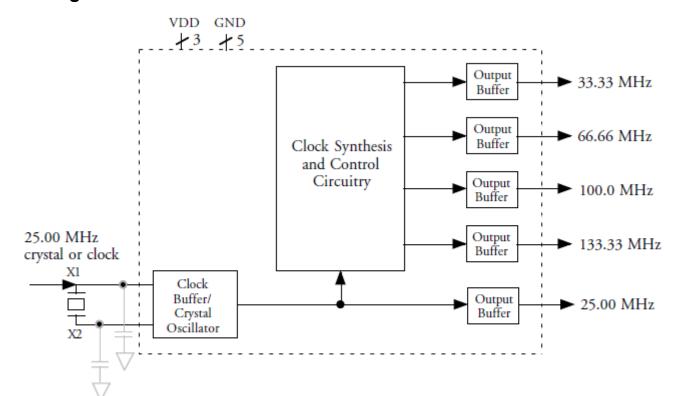
() IDT.

NETWORKING CLOCK SYNTHESIZER

DATASHEET

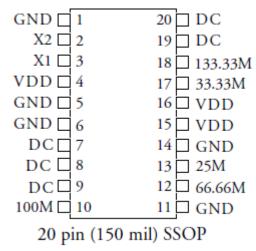

ICS650-11

Description

The ICS650-11 is a low cost, low jitter, high performance clock synthesizer customized for BroadCom. Using analog Phase-Locked Loop (PLL) techniques, the device accepts a 25.0MHz clock or fundamental mode crystal input to produce multiple output clocks of 25.0MHz, 33.33MHz, 66.66MHz, 100.0MHz, and 133.33MHz. All output clocks are frequency locked together. The ICS650-11 outputs all have 0 ppm synthesis error.

Features

- Packaged in 20-pin narrow SSOP, Pb-free
- 25.00 MHz fundamental crystal or clock input
- Five fixed output clocks of 25.0 MHz, 33.33MHz, 66.66MHz, 100.0MHz, and 133.33MHz
- Zero ppm synthesis error in all clocks
- Ideal for BroadCom BCM5600/BCM5400 chipset
- Full CMOS output swing
- Advanced, low power, sub-micron CMOS process
- 3.0V to 5.5V operating voltage
- Industrial temperature range



Block Diagram

Optional crystal capacitors are shown and may be required for tuning of initial accuracy (determined once per board).

1

Pin Assignment

Pin Descriptions

Pin	Pin	Pin	Pin Description	
Number	Name	Туре		
1	GND	Power	Connect to ground	
2	X2	ХО	Crystal connection. Connect to a 25MHz crystal or leave unconnected for a clock input.	
3	X1	XI	Crystal connection. Connect to a 25MHz fundamental crystal or clock input.	
4	VDD	Power	Connect to +3.3V or +5V. Must be same as other VDDs.	
5	GND	Power	Connect to ground	
6	GND	Power	Connect to ground	
7	DC		Don't connect. Do not connect this pin to anything.	
8	DC		Don't connect. Do not connect this pin to anything.	
9	DC	_	Don't connect. Do not connect this pin to anything.	
10	100M	Output	100.0MHz clock output.	
11	GND	Power	Connect to ground	
12	66.66M	Output	66.66MHz clock output.	
13	25M	Output	25.0MHz clock output.	
14	GND	Power	Connect to ground	
15	VDD	Power	Connect to +3.3V or +5V. Must be same as other VDDs.	
16	VDD	Power	Connect to +3.3V or +5V. Must be same as other VDDs.	
17	33.33M	Output	33.33MHz clock output.	
18	133.33M	Output	133.33MHz clock output.	
19	DC	—	Don't connect. Do not connect this pin to anything.	
20	DC		Don't connect. Do not connect this pin to anything.	

External Components

The ICS650-11 requires a minimum number of external components for proper operation. Decoupling capacitors of 0.01ìF should be connected between each VDD and GND on Pins 4 and 6, and Pins 16 and 14, as close to the ICS650-11 as possible. A series termination resistor of 33Ω may be used for each clock output. The 25.00 MHz crystal must be connected as close to the chip as possible. The crystal should be a fundamental mode (do not use third overtone), parallel resonant. Crystal capacitors should be connected from pins X1 to ground and X2 to ground to optimize the initial accuracy. The value of these capacitors is given by the following equation, where C_L is the crystal load capacitance: Crystal caps (pF) = (C_L-6) x 2. So for a crystal with 16 pF load capacitance, two 20 pF caps should be used.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS650-11. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

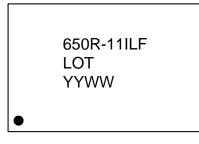
Item	Rating
Supply Voltage, VDD (referenced to GND)	7 V
All Inputs and Outputs (referenced to GND)	-0.5 V to VDD+0.5 V
Storage Temperature	-65 to +150°C
Junction Temperature	125°C
Soldering Temperature (max. of 20 seconds)	260°C
Ambient Operating Temperature	-40° to +85°C

DC Electrical Characteristics

Unless stated otherwise, VDD = 3.3 V ±5%, Ambient Temperature -40 to +85°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3		5.5	V
Input High Voltage	V _{IH}	X1 pin only	VDD/2+1	VDD/2		V
Input Low Voltage	V _{IL}	X1 pin only		VDD/2	VDD/2-1	V
Output High Voltage	V _{OH}	I _{OH} = -12 mA	2.4			V
Output Low Voltage	V _{OL}	I _{OL} = 12 mA			0.4	V
Output High Voltage, CMOS level	V _{OH}	I _{OH} = -8 mA	VDD-0.4			V
Operating Supply Current	IDD	No load		35		mA
Short Circuit Current		Each output		±50		mA

AC Electrical Characteristics


CycleUnless stated otherwise, VDD = 3.3 V ±5%, Ambient Temperature -40 to +85°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency	f _{IN}			25.000		MHz
Output Clock Rise Time		0.8 to 2.0V			1.5	ns
Output Clock Fall Time		2.0 to 0.8V			1.5	ns
Output Clock Duty Cycle		At VDD/2, except 25MHz	45	50	55	%
Frequency Error		All clocks			0	ppm
Absolute Jitter, Short-Term		Variation from mean		175		ps

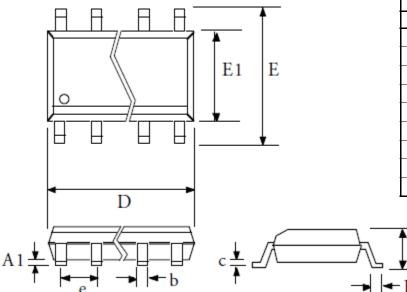
Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		135		°C/W
Ambient	θ_{JA}	1 m/s air flow		93		°C/W
	θ_{JA}	3 m/s air flow		78		°C/W
Thermal Resistance Junction to Case	θ _{JC}			60		°C/W

Marking Diagram

Notes:

1. "LOT" denotes lot number.


2. "YYWW" denotes the date code.

3. "I" denotes industrial grade.

4. "LF" denotes RoHS compliant package.

5. Bottom marking: country of origin.

Package Outline and Package Dimensions (20-pin SSOP, 150 Mil. Body)

	Millim	neters	Inc	hes
Symbol	Min	Max	Min	Max
А	1.35	1.75	0.053	0.069
A1	0.102	0.254	0.004	0.010
b	0.203	0.305	0.008	0.012
С	0.191	0.254	0.007	0.010
D	8.560	8.738	0.337	0.344
e	0.635 BASIC		0.025	BASIC
E	5.791	6.198	0.228	0.244
E1	3.810	3.988	0.150	0.157
L	0.406	1.270	0.016	0.050

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
650R-11ILF	see page 5	Tubes	20-pin SSOP	-40 to +85° C
650R-11ILFT		Tape and Reel	20-pin SSOP	-40 to +85° C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Date	Originator	Description of Change
D	01/23/13	D. Chan	 Updated datasheet to current IDT template. Added marking diagram.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

www.idt.com/go/clockhelp

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

© 2013 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA