
HT48E06, HT48E10,

HT48E30, HT48E50, HT48E70

I/O Type MTP MCU with EEPROM

Handbook

First Edition

January 2007

Copyright � 2006 by HOLTEK SEMICONDUCTOR INC. All rights reserved. Printed in Taiwan. No part of this publication

may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical photo-

copying, recording or otherwise without the prior written permission of HOLTEK SEMICONDUCTOR INC.

Contents

Part I Microcontroller Profile ... 1

Chapter 1 Hardware Structure ... 3

Introduction .. 3

Features ... 4

Technology Features ... 4

Kernel Features ... 4

Peripheral Features ... 5

Selection Table .. 5

Block Diagram ... 6

Pin Assignment .. 6

Pin Description ... 8

Absolute Maximum Ratings ... 13

D.C. Characteristics ... 13

A.C. Characteristics ... 15

EEPROM A.C. Characteristics... 15

System Architecture ... 16

Clocking and Pipelining ... 16

Program Counter ... 17

Stack ... 18

Arithmetic and Logic Unit � ALU .. 19

MTP Program Memory .. 19

Organization .. 19

Special Vectors ... 20

Look-up Table .. 21

Table Program Example .. 21

In Circuit Programming .. 23

RAM Data Memory .. 24

Organization .. 24

General Purpose Data Memory ... 25

Special Purpose Data Memory .. 25

Special Function Registers .. 26

Indirect Addressing Registers � IAR0, IAR1 .. 26

Contents

i

Memory Pointers � MP0, MP1 ... 26

Bank Pointer � BP.. 27

Accumulator � ACC ... 27

Program Counter Low Register � PCL ��� 28

Look-up Table Registers � TBLP, TBLH .. 28

Watchdog Timer Register � WDTS ... 28

Status Register � STATUS .. 28

Interrupt Control Register � INTC ... 29

Timer/Event Counter Registers ... 29

Input/Output Ports and Control Registers ... 30

EEPROM Control Register � EECR... 30

EEPROM Data Memory ... 30

EEPROM Data Memory Structure ... 31

Accessing the EEPROM Data Memory.. 31

EEPROM Data Memory Instruction Set ... 32

READ ... 33

WRITE ... 33

EWEN/EWDS .. 34

ERAL.. 35

WRAL... 36

ERASE ... 36

Internal Write Cycle .. 37

Initialising the EEPROM... 38

EEPROM Program Examples .. 38

Input/Output Ports .. 41

Pull-high Resistors .. 41

Port A Wake-up ... 41

I/O Port Control Registers ... 41

Pin-shared Functions .. 42

Programming Considerations .. 44

Timer/Event Counters .. 45

Configuring the Timer/Event Counter Input Clock Source 45

Timer Registers � TMR, TMR0, TMR0L/TMR0H, TMR1L/TMR1H 47

Timer Control Registers � TMRC, TMR0C, TMR1C .. 48

Configuring the Timer Mode .. 50

Configuring the Event Counter Mode .. 51

Configuring the Pulse Width Measurement Mode .. 51

Programmable Frequency Divider (PFD) and Buzzer Application 52

Prescaler .. 53

I/O Interfacing .. 53

Programming Considerations .. 53

Timer Program Example ... 54

Interrupts .. 55

Interrupt Registers ... 55

Interrupt Priority ... 57

External Interrupt.. 58

Timer/Event Counter Interrupt.. 58

Programming Considerations .. 58

ii

I/O Type MTP MCU with EEPROM

Reset and Initialization ... 59

Reset Functions .. 59

Oscillator .. 66

System Clock Configurations .. 66

System Crystal/Ceramic Oscillator .. 66

System RC Oscillator .. 67

Watchdog Timer Oscillator .. 67

Power Down Mode and Wake-up .. 68

Power Down Mode .. 68

Entering the Power Down Mode ... 68

Standby Current Considerations ... 68

Wake-up .. 69

Watchdog Timer ... 69

Configuration Options .. 71

Application Circuits .. 72

Part II Programming Language ... 73

Chapter 2 Instruction Set Introduction ... 75

Instruction Set .. 75

Instruction Timing .. 75

Moving and Transferring Data ... 76

Arithmetic Operations .. 76

Logical and Rotate Operations .. 76

Branches and Control Transfer ... 76

Bit Operations ... 77

Table Read Operations ... 77

Other Operations ... 77

Instruction Set Summary ... 77

Convention .. 77

Chapter 3 Instruction Definition .. 81

Chapter 4 Assembly Language and Cross Assembler .. 93

Notational Conventions .. 93

Statement Syntax .. 94

Name ... 94

Operation .. 94

Operand .. 94

Comment ... 95

Assembly Directives .. 95

Conditional Assembly Directives ... 95

File Control Directives ... 96

Program Directives .. 97

Contents

iii

Data Definition Directives .. 100

Macro Directives ... 102

Assembly Instructions .. 104

Name ... 104

Mnemonic .. 104

Operand, Operator and Expression .. 104

Miscellaneous ... 106

Forward References .. 106

Local Labels .. 106

Reserved Assembly Language Words .. 107

Cross Assembler Options .. 108

Assembly Listing File Format ... 108

Source Program Listing ... 108

Summary of Assembly .. 109

Miscellaneous ... 109

Part III Development Tools ... 110

Chapter 5 MCU Programming Tools .. 113

HT-IDE Development Environment .. 113

Holtek In-Circuit Emulator � HT-ICE .. 114

HT-ICE Interface Card ... 114

Programmer ... 115

Adapter Card ... 115

System Configuration ... 115

HT-ICE Interface Card Settings ... 116

Installation .. 117

System Requirement ... 117

Hardware Installation ... 117

Software Installation .. 117

Chapter 6 Quick Start .. 119

Step 1 � Create a New Project .. 119

Step 2 � Add Source Program Files to the Project .. 119

Step 3 � Build the Project .. 119

Step 4 � Programming the MTP Device .. 119

iv

I/O Type MTP MCU with EEPROM

Appendix ... 121

Appendix A Device Characteristic Graphics .. 123

Appendix B Package Information .. 133

Contents

v

vi

I/O Type MTP MCU with EEPROM

Preface

Since Holtek Semiconductor�s beginnings, the company has focused much of its design efforts in

the area of microcontroller development. Although supplying a wide range of semiconductor de-

vices, the microcontroller category has always been a key product category within the complete

Holtek range, and one which will continue to expand as their devices increase in functionality and

maturity. By capitalizing on the substantial accumulated skills within its dedicated microcontroller

development department, Holtek has been able to release a comprehensive range of feature

packed, high quality low-cost microcontroller devices for a wide range of application areas.

Among the various categories, a key Holtek MCU area is the I/O Type MTP with EEPROM range

of devices. Because of their inherent multi-programmable capabilities, these devices can be repro-

grammed many times by the user, which when combined with Holtek�s comprehensive range of

development tools provide designers with a convenient and cost effective way of debug and prod-

uct development. In addition the internal EEPROM Data Memory has the ability to retain data

even after power is removed, an important feature for many of today�s applications, where it is re-

quired to store information, such as product parameters, setup information or part number, etc.

This handbook is divided into three parts for user convenience. Most details regarding device infor-

mation and specifications are located within Part I. Information related to microcontroller program-

ming such as device instruction set, instruction definition, and assembly language directives is

found within Part II. Part III relates to the Holtek range of Development Tools where information

can be found on their installation and use.

By compiling all relevant data together in one handbook, it is anticipated that users of the Holtek

range of I/O Type MTP microcontrollers with EEPROM will have at their disposal a useful, com-

plete and easy to use means to efficiently implement their microcontroller applications. Holtek�s ef-

forts to combine information on device specifications, programming and development tools into

one publication have produced a handbook which with careful use by the user should result in trou-

ble free designs and the maximum benefit being gained from the many features of Holtek

microcontroller devices. We recommend that users regularly check our website for the latest up-

dates to our handbook and also welcome feedback and comments from our customers regarding

further improvements.

Preface

vii

viii

I/O Type MTP MCU with EEPROM

P a r t I

Microcontroller Profile

Part I Microcontroller Profile

1

2

I/O Type MTP MCU with EEPROM

C h a p t e r 1

Hardware Structure

This section is the main datasheet part of the I/O Type MTP microcontroller with EEPROM hand-

book and contains all the parameters and information related to the device hardware. The informa-

tion contained provides designers with details on all the main hardware features of the I/O Type

MTP MCU with EEPROM series which together with the programming section contains the infor-

mation to enable swift and successful implementation of user microcontroller applications. By

proper consultation of the relevant parts of this section, users can ensure that they make the most

efficient use of the flexible and multi-function multi-programmable features within the I/O Type

MTP microcontroller with EEPROM series.

Introduction

The HT48E06, HT48E10, HT48E30, HT48E50 and HT48E70 are 8-bit high-performance, RISC ar-

chitecture microcontroller devices specifically designed for multiple I/O control product applica-

tions. Device flexibility is enhanced with their internal special features such as power-down and

wake-up functions, oscillator options, buzzer driver, etc. These features combine to ensure appli-

cations require a minimum of external components and therefore reduce overall product costs.

Having the advantages of low-power consumption, high-performance, I/O flexibility as well as

low-cost, these devices have the versatility to suit a wide range of application possibilities such as

industrial control, consumer products, subsystem controllers, etc. Many features are common to

all devices, however, they differ in areas such as I/O pin count, RAM and Program Memory capac-

ity, timer number and size, etc.

The HT48E06, HT48E10, HT48E30, HT48E50 and HT48E70 devices, with their multi-programma-

ble ability and internal EEPROM offer the advantages of permitting easy and efficient program up-

dates using the Holtek range of development and programming tools, allowing a means for fast

and low-cost product development cycles.

Chapter 1 Hardware Structure

3

1

Features

Technology Features

� High-performance RISC Architecture

� Operating Voltage:

fSYS=4MHz: 2.2V~5.5V

fSYS=8MHz: 3.3V~5.5V

� Power Consumption:

3mA Typical at 5V 4MHz

Maximum of 3�A Standby Current at 3V with WDT Disabled

� Temperature Range:

Operating Temperature -40�C to 85�C (Industrial Grade)

Storage Temperature -50�C to 125�C

Kernel Features

� MTP Program Memory:

1024�14 (HT48E06, HT48E10)

2048�14 (HT48E30)

4096�15 (HT48E50)

8192�16 (HT48E70)

� EEPROM Data Memory:

128�8 (HT48E06, HT48E10, HT48E30)

256�8 (HT48E50, HT48E70)

� RAM Data Memory:

64�8 (HT48E06, HT48E10)

96�8 (HT48E30)

160�8 (HT48E50)

224�8 (HT48E70)

� Table Read Function

� Multi-level Hardware Stack:

2-level (HT48E06)

4-level (HT48E10, HT48E30)

6-level (HT48E50)

16-level (HT48E70)

� Bit Manipulation Instructions

� 63 Powerful Instructions

� All Instructions Implemented in 1 or 2 Machine Cycles

4

I/O Type MTP MCU with EEPROM

Peripheral Features

� From 13 to 56 Bidirectional I/O with Pull-high Options

� External Interrupt Input

� Event Counter Input

� Full Timer Functions with Prescaler and Interrupt

� Watchdog Timer (WDT)

� Power Down and Wake-up Feature for Power Saving Operation

� PFD/Buzzer Driver Outputs

� Crystal and RC System Oscillator

� Low Voltage Reset (LVR) Feature for Brown-out Protection

� Programming Interface

� Full Suite of Supported Hardware and Software Tools Available

Selection Table

The series of I/O Type MTP microcontrollers with EEPROM include a comprehensive range of fea-

tures, some of which are standard and some of which are device dependent. Most features are

common to all devices, the main features distinguishing them are Program Memory, Data Mem-

ory, Data EEPROM capacity, I/O count and timer functions. To assist users in their selection of the

most appropriate device for their application, the following table, which summarises the main fea-

tures of each device, is provided.

Part No. VDD
Program
Memory

Data
Memory

Data
EEPROM

I/O Timer Interrupt Stack
Package

Types

HT48E06 2.2V~5.5V 1K�14 64�8 128�8 13 8-bit�1 2 2
18DIP/SOP,

20SSOP

HT48E10 2.2V~5.5V 1K�14 64�8 128�8 19 8-bit�1 2 4 24SKDIP/SOP

HT48E30 2.2V~5.5V 2K�14 96�8 128�8 23 8-bit�1 2 4
24SKDIP/SOP,
28SKDIP/SOP

HT48E50 2.2V~5.5V 4K�15 160�8 256�8 33
8-bit�1

16-bit�1
3 6

28SKDIP/SOP,
48SSOP

HT48E70 2.2V~5.5V 8K�16 224�8 256�8 56 16-bit�2 3 16
48SSOP,
64QFP

Note For devices that exist in more than one package formats, the table reflects the situation for the larger

package.

Chapter 1 Hardware Structure

5

Block Diagram

The following block diagram illustrates the main functional blocks of the I/O Type MTP

microcontroller with EEPROM series of devices.

Pin Assignment

6

I/O Type MTP MCU with EEPROM

� � � � � �
� � � � � 	
 � �

� �
 � � � � � �
� �
 	 � � � � � � � � 	
 � �

� � �
 � � �
 � � �
� � � � � � �

� � �
 � � �
 � � �
� � � � �
 � �

� � �
� � � � � � 	
 � �

� � �
� 	
 	

� � � � �

�
�
�
��
�
�
��
�
�
�
�
�
�

� � � � �
� � � �
 � �

� � � � �

! � � " # � $
� 	 % � �

� � � � �
 � �

� � � & � � '
� � � � �
 � �

� 	
 � (� � �
� � � � �

� � � �
 �)
! * �

� � � & � � '
� � � � �
 � �

� � � � � �
� � � �
 � �

+ � , , � �
� � � - � �

� � � & � � '
� � � � �
 � �

� �
 � � � � $

� � � � � �

� � � & � � '
� � � � �
 � �

� � �
� � �
 �

� � - � � �
� � � � � 	 � � � � �

� � � � � �
 �

� � � & � � � � 	
 � � �
� $
 � � �

� � �
� � � � � 	 �
� � � � �

�
�
�
��
�
�
��
�
�
�
�
�
�

�
 	 � "

�
 	 � " � � � � �
 � �

� � � � � 	 �
� � � �
 � �

! � � " # � $
� 	 % � �
� � � �
 � �

� � � � � � � � 	 �
� � � � �

� !

� (� &
 � �

�

�

. . � � � �
� 	
 	 � � � � � �

. . � �
� � � � �
 � �

� � � � � � � �
	 � �

 � � �

� � /

� � 0

� � 1

� � 2

� � � 3

� � � 4

* � �

� . �

� � 4 � � � �

5 �

� � 6

� � 3

� � 4

� � 7

� + 3

� + 4 � + 8

� + 7 � + 8

* � �

� � 7 � � 5 �

5 �

3 7

4 9

4 :

4 2

4 1

4 0

4 /

4 6

4 3

4 4

4

3

6

/

0

1

2

:

9

4 7

� � /

� � 0

� � 1

� � 2

� � � 3

� � � 4

* � �

� . �

� � 4 � � � �

� � 6

� � 3

� � 4

� � 7

� + 3

� + 4 � + 8

� + 7 � + 8

* � �

� � 7 � � 5 �

4 :

4 2

4 1

4 0

4 /

4 6

4 3

4 4

4 7

4

3

6

/

0

1

2

:

9

� � � � � � � �
� � � � � � � �
 � � �

� � � � � � �
	 � �
 � � � � � �
 � � �

3 /

3 6

3 3

3 4

3 7

4 9

4 :

4 2

4 1

4 0

4 /

4 6

4

3

6

/

0

1

2

:

9

4 7

4 4

4 3

� + 1

� + 2

� � /

� � 0

� � 1

� � 2

� � � 3

� � � 4

* � �

� . �

� � 3

� � 4 � � � �

� + 0

� + /

� � 6

� � 3

� � 4

� � 7

� + 6

� + 3

� + 4 � + 8

� + 7 � + 8

* � �

� � 7 � � 5 �

3 :

3 2

3 1

3 0

3 /

3 6

3 3

3 4

3 7

4 9

4 :

4 2

4 1

4 0

4

3

6

/

0

1

2

:

9

4 7

4 4

4 3

4 6

4 /

� + 1

� + 2

� � /

� � 0

� � 1

� � 2

� � � 3

� � � 4

* � �

� . �

� � 0

� � /

� � 6

� � 3

� + 0

� + /

� � 6

� � 3

� � 4

� � 7

� + 6

� + 3

� + 4 � + 8

� + 7 � + 8

* � �

� � 7 � � 5 �

� � 7 � � � �

� � 4

� � � � � � �
	 � �
 � � � � � �
 � � �

� � � � � � �
	 � �
 � � � � � �
 � � �

3 /

3 6

3 3

3 4

3 7

4 9

4 :

4 2

4 1

4 0

4 /

4 6

4

3

6

/

0

1

2

:

9

4 7

4 4

4 3

� + 1

� + 2

� � /

� � 0

� � 1

� � 2

� � � 3

� � � 4

* � �

� . �

� � 3

� � 7 � � � �

� + 0

� + /

� � 6

� � 3

� � 4

� � 7

� + 6

� + 3

� + 4 � + 8

� + 7 � + 8

* � �

� � 7 � � 5 �

� � � � � � �
	 � �
 � � � � � �
 � � �

3 :

3 2

3 1

3 0

3 /

3 6

3 3

3 4

3 7

4 9

4 :

4 2

4 1

4 0

4

3

6

/

0

1

2

:

9

4 7

4 4

4 3

4 6

4 /

� + 1

� + 2

� � /

� � 0

� � 1

� � 2

� � � 3

� � � 4

* � �

� . �

� � 0 � � � � 4

� � /

� � 6

� � 3

� + 0

� + /

� � 6

� � 3

� � 4

� � 7

� + 6

� + 3

� + 4 � + 8

� + 7 � + 8

* � �

� � 7 � � 5 �

� � 7 � � � � 7

� � 4

Chapter 1 Hardware Structure

7

� � � � � � �
� � �

 � � �

/ :

/ 2

/ 1

/ 0

/ /

/ 6

/ 3

/ 4

/ 7

6 9

6 :

6 2

6 1

6 0

6 /

6 6

6 3

6 4

6 7

3 9

3 :

3 2

3 1

3 0

4

3

6

/

0

1

2

:

9

4 7

4 4

4 3

4 6

4 /

4 0

4 1

4 2

4 :

4 9

3 7

3 4

3 3

3 6

3 /

� + 1

� + 2

� � /

� � 0

� � 1

� � 2

5 �

5 �

5 �

5 �

� � � 3

� � � 4

* � �

� . �

� � � 4

� � 6

� � 3

� � 4

� � 7

� � 2

� � 1

� � 0

� � /

� � 6

� + 0

� + /

� � 6

� � 3

� � 4

� � 7

� + 6

� + 3

� + 4 � + 8

� + 7 � + 8

5 �

5 �

5 �

5 �

� � 2

� � 1

� � 0

� � /

* � �

� � 7 � � 5 �

� � � 7

� � 7

� � 4

� � 3

� + 0

� + /

� � 6

� � 3

� � 4

� � 7

� + 6

� + 3

� + 4 � + 8

� + 7 � + 8

� . 6

� . 3

� . 4

� . 7

� � 2

� � 1

� � 0

� � /

* � �

� 5 �

� � � 7

� � 7

� � 4

� � 3

� + 1

� + 2

� � /

� � 0

� � 1

� � 2

� ; 7

� ; 4

� ; 3

� ; 6

� � � 3

� � � 4

* � �

� . �

� � � 4

� � 6

� � 3

� � 4

� � 7

� � 2

� � 1

� � 0

� � /

� � 6

� � � � � � �
� � �

 � � �

/ :

/ 2

/ 1

/ 0

/ /

/ 6

/ 3

/ 4

/ 7

6 9

6 :

6 2

6 1

6 0

6 /

6 6

6 3

6 4

6 7

3 9

3 :

3 2

3 1

3 0

4

3

6

/

0

1

2

:

9

4 7

4 4

4 3

4 6

4 /

4 0

4 1

4 2

4 :

4 9

3 7

3 4

3 3

3 6

3 /

� � 2

� ; 7

� ; 4

� ; 3

� ; 6

� � � 3

� � � 4

� ; /

� ; 0

� ; 1

� ; 2

* � �

� . �

� � � 4

� � 6

� � 3

� � 4

� � 7

� � 2

3 7 3 4 3 3 3 6 3 /

� � 4

� � 7

� . 2

� . 1

� . 0

� . /

� + 6

� + 3

� + 4 � + 8

� + 7 � + 8

� . 6

� . 3

� . 4

� . 7

� � 2

� � 1

� � 0

� � /

* � �

�
�
1

�
�
0

�
�
/

�
�
6

�
�
3

�
�
4

�
�
7

�
�
6

�
�
3

�
�
4

�
�
7

�
�
�
7

�5
�

6 36 46 73 93 :3 23 13 0

4

3

6

/

0

1

2

:

9

4 7

4 4

4 3

4 6

4 /

4 0

4 1

4 2

4 :

4 9

0 4

0 7

/ 9

/ :

/ 2

/ 1

/ 0

/ /

/ 6

/ 3

/ 4

/ 7

6 9

6 :

6 2

6 1

6 0

6 /

6 6

1 / 1 6 1 3 1 4 1 7 0 30 60 /0 00 10 20 :0 9

� � � � � � �
� � � � � � �

�
�
1

�
�
0

�
�
/

�
+
2

�
+
1

�
+
0

�
+
/

�
�
2

�
�
1

�
�
0

�
�
/

�
�
6

�
�
3

Pin Description

HT48E06

Pin Name I/O
Configuration

Option
Description

PA0~PA7 I/O
Pull-high

Wake-up

Bidirectional 8-bit input/output port. Each pin can be config-

ured as a wake-up input by configuration option. Software in-

structions determine if the pin is a CMOS output or Schmitt

Trigger input. A configuration option determines if all pins on

this port have pull-high resistors.

PB0/BZ

PB1/BZ

PB2

I/O
Pull-high

I/O or BZ/BZ

Bidirectional 3-bit input/output port. Software instructions de-

termine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines if all pins on this port have

pull-high resistors. Pins PB0 and PB1 are pin-shared with BZ

and BZ, respectively.

PC0/INT

PC1/TMR
I/O Pull-high

Bidirectional 2-bit input/output port. Software instructions de-

termine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines if all pins on this port have

pull-high resistors. PC0 is pin-shared with the external inter-

rupt pin INT and PC1 is pin-shared with the external timer in-

put pin TMR.

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or ex-

ternal crystal, determined by configuration option, for the inter-

nal system clock. If the RC system clock option is selected, pin

OSC2 can be used to measure the system clock at 1/4 fre-

quency.

RES I 	 Schmitt Trigger reset input. Active low.

VDD 	 	 Positive power supply

VSS 	 	 Negative power supply, ground

Note 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins cannot be selected to have pull-high resistors. If the pull-high configuration

is chosen for a particular port, then all input pins on this port will be connected to pull-high

resistors.

8

I/O Type MTP MCU with EEPROM

HT48E10

Pin Name I/O
Configuration

Option
Description

PA0~PA7 I/O

Pull-high

Wake-up

Schmitt Trigger

Bidirectional 8-bit input/output port. Each pin can be config-

ured as a wake-up input by configuration option. Software in-

structions determine if the pin is a CMOS output or input.

Configuration options determine if all pins on this port have

pull-high resistors and if the inputs are Schmitt Trigger or

non-Schmitt Trigger.

PB0/BZ

PB1/BZ

PB2~PB7

I/O
Pull-high

I/O or BZ/BZ

Bidirectional 8-bit input/output port. Software instructions de-

termine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines if all pins on this port have

pull-high resistors. Pins PB0 and PB1 are pin-shared with BZ

and BZ, respectively.

PC0/INT

PC1/TMR

PC2

I/O Pull-high

Bidirectional 3-bit input/output port. Software instructions deter-

mine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines if all pins on this port have

pull-high resistors. Pin PC0 is pin-shared with external interrupt

pin INT and PC1 shared with external timer pin TMR.

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or ex-

ternal crystal, determined by configuration option, for the inter-

nal system clock. If the RC system clock option is selected, pin

OSC2 can be used to measure the system clock at 1/4 fre-

quency.

RES I 	 Schmitt Trigger reset input. Active low.

VDD 	 	 Positive power supply

VSS 	 	 Negative power supply, ground

Note 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins cannot be selected to have pull-high resistors. If the pull-high configuration

is chosen for a particular port, then all input pins on this port will be connected to pull-high

resistors.

Chapter 1 Hardware Structure

9

HT48E30

Pin Name I/O
Configuration

Option
Description

PA0~PA7 I/O

Pull-high

Wake-up

Schmitt Trigger

Bidirectional 8-bit input/output port. Each pin can be config-

ured as a wake-up input by configuration option. Software in-

structions determine if the pin is a CMOS output or input.

Configuration options determine if all pins on this port have

pull-high resistors and if the inputs are Schmitt Trigger or

non-Schmitt Trigger.

PB0/BZ

PB1/BZ

PB2~PB7

I/O
Pull-high

I/O or BZ/BZ

Bidirectional 8-bit input/output port. Software instructions de-

termine if the pin is a output or Schmitt Trigger input. A config-

uration option determines if all pins on this port have pull-high

resistors. Pins PB0 and PB1 are pin-shared with BZ and BZ,

respectively.

PC0/TMR

PC1~PC5
I/O Pull-high

Bidirectional 6-bit input/output port. Software instructions de-

termine if the pin is a output or Schmitt Trigger input. A config-

uration option determines if all pins on this port have pull-high

resistors. PC0 is pin-shared with external timer pin TMR.

PG0/INT I/O Pull-high

Bidirectional 1-bit input/output port. Software instructions de-

termine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines if the pin has a pull-high resis-

tor. PG0 is pin-shared with external interrupt pin INT.

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or ex-

ternal crystal, determined by configuration option, for the inter-

nal system clock. If the RC system clock option is selected, pin

OSC2 can be used to measure the system clock at 1/4 fre-

quency.

RES I 	 Schmitt Trigger reset input. Active low.

VDD 	 	 Positive power supply

VSS 	 	 Negative power supply, ground

Note 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins cannot be selected to have pull-high resistors. If the pull-high configuration

is chosen for a particular port, then all input pins on this port will be connected to pull-high

resistors.

3. Pins PC1 and PC3~PC5 only exist on the 28-pin package. On the 24-pin package, these pins

are not available.

10

I/O Type MTP MCU with EEPROM

HT48E50

Pin Name I/O
Configuration

Option
Description

PA0~PA7 I/O

Pull-high

Wake-up

Schmitt Trigger

Bidirectional 8-bit input/output port. Each pin can be config-

ured as a wake-up input by configuration option. Software in-

structions determine if the pin is a CMOS output or input.

Configuration options determine if all pins on this port have

pull-high resistors and if the inputs are Schmitt Trigger or

non-Schmitt Trigger.

PB0/BZ

PB1/BZ

PB2~PB7

I/O
Pull-high

I/O or BZ/BZ

Bidirectional 8-bit input/output port. Software instructions deter-

mine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines if all pins on this port have

pull-high resistors. Pins PB0 and PB1 are pin-shared with BZ

and BZ, respectively.

PC0/TMR0

PC5/TMR1

PC1~PC4

PC6~PC7

I/O Pull-high

Bidirectional 8-bit input/output port. Software instructions deter-

mine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines if all pins on this port have

pull-high resistors. TMR0 and TMR1 are pin-shared with PC0

and PC5 respectively in the 28-pin package.

PD0~PD7 I/O Pull-high

Bidirectional 8-bit input/output port. Software instructions de-

termine if the pin is a CMOS output or Schmitt Trigger input.

Configuration options determine if all pins on this port have

pull-high resistors.

PG0/INT I/O Pull-high

Bidirectional 1-bit input/output ports. Software instructions de-

termine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines if the pin has a pull-high resis-

tor. PG0 is pin-shared with external interrupt pin INT.

TMR0 I 	
Schmitt Trigger input for Timer/Event Counter 0

(48-pin package only)

TMR1 I 	
Schmitt Trigger input for Timer/Event Counter 1

(48-pin package only)

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or ex-

ternal crystal, determined by configuration option, for the inter-

nal system clock. If the RC system clock option is selected, pin

OSC2 can be used to measure the system clock at 1/4 fre-

quency.

RES I 	 Schmitt Trigger reset input. Active low.

VDD 	 	 Positive power supply

VSS 	 	 Negative power supply, ground

Chapter 1 Hardware Structure

11

Note 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins cannot be selected to have pull-high resistors. If the pull-high configuration is

chosen for a particular port, then all input pins on this port will be connected to pull-high resistors.

3. On the 48-pin package Port C has no shared pins. All of Port C pins exist as I/Os as the TMR0

and TMR1 are independent pins.

4. Pins PC6 and PC7 only exist on the 48-pin package.

5. Port D is only present on the 48-pin package.

HT48E70

Pin Name I/O
Configuration

Option
Description

PA0~PA7 I/O

Pull-high

Wake-up

Schmitt Trigger

Bidirectional 8-bit input/output port. Each pin can be config-

ured as a wake-up input by configuration option. Software in-

structions determine if the pin is a CMOS output or input.

Configuration options determine if all pins on this port have

pull-high resistors and if the inputs are Schmitt Trigger or

non-Schmitt Trigger.

PB0/BZ

PB1/BZ

PB2~PB7

PC0~PC7

PD0~PD7

PE0~PE7

PF0~PF7

PG0~PG7

I/O
Pull-high

I/O or BZ/BZ

Bidirectional 8-bit input/output ports. Software instructions de-

termine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option for each port determines if all pins on the

relevant port have pull-high resistors. Pins PB0 and PB1 are

pin-shared with BZ and BZ, respectively.

INT I 	 External interrupt Schmitt Trigger input.

TMR0 I 	 Schmitt Trigger input for Timer/Event Counter 0

TMR1 I 	 Schmitt Trigger input for Timer/Event Counter 1

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or ex-

ternal crystal, determined by configuration option, for the inter-

nal system clock. If the RC system clock option is selected, pin

OSC2 can be used to measure the system clock at 1/4 fre-

quency.

RES I 	 Schmitt Trigger reset input. Active low.

VDD 	 	 Positive power supply

VSS 	 	 Negative power supply, ground

12

I/O Type MTP MCU with EEPROM

Note 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins cannot be selected to have pull-high resistors. If the pull-high configuration is

chosen for a particular port, then all input pins on this port will be connected to pull-high

resistors.

3. Pins PE4~PE7 and pins PF4~PF7 only exist on the 64-pin package.

4. Port G only exists on the 64-pin package.

Absolute Maximum Ratings

Supply Voltage...VSS�0.3V to VSS+6.0V

Input Voltage ...VSS�0.3V to VDD+0.3V

Storage Temperature...�50�C to 125�C

Operating Temperature..�40�C to 85�C

IOL Total..150mA

IOH Total ...�100mA

Total Power Dissipation..500mW

These are stress ratings only. Stresses exceeding the range specified under Absolute Maximum

Ratings may cause substantial damage to the device. Functional operation of this device at other

conditions beyond those listed in the specification is not implied and prolonged exposure to ex-

treme conditions may affect device reliability.

D.C. Characteristics

HT48E06, HT48E10, HT48E30 Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage
� fSYS=4MHz 2.2 � 5.5 V

� fSYS=8MHz 3.3 � 5.5 V

IDD1 Operating Current � Crystal OSC
3V

No load, fSYS=4MHz
� 0.6 1.5 mA

5V � 2 4 mA

IDD2 Operating Current � RC OSC
3V

No load, fSYS=4MHz
� 0.8 1.5 mA

5V � 2.5 4 mA

IDD3
Operating Current �

Crystal OSC or RC OSC
5V No load, fSYS=8MHz � 4 8 mA

ISTB1
Standby Current �

WDT Clock Enabled*

3V
No load, system HALT

� � 5 �A

5V � � 10 �A

ISTB2
Standby Current �

WDT Clock Disabled*

3V
No load, system HALT

� � 1 �A

5V � � 2 �A

VIL1 Input Low Voltage for I/O Ports � � 0 � 0.3VDD V

VIH1 Input High Voltage for I/O Ports � � 0.7VDD � VDD V

VIL2 RES Input Low Voltage � � 0 � 0.4VDD V

Chapter 1 Hardware Structure

13

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VIH2 RES Input High Voltage � � 0.9VDD � VDD V

VLVR Low Voltage Reset � LVR enabled 2.7 3 3.3 V

IOL I/O Port Sink Current
3V

VOL=0.1VDD

4 8 � mA

5V 10 20 � mA

IOH I/O Port Source Current
3V

VOH=0.9VDD

�2 �4 � mA

5V �5 �10 � mA

RPH Pull-high Resistance
3V

�
20 60 100 k�

5V 10 30 50 k�

Note * Tests conducted with I/O�s setup as outputs at a low value, for all devices.

HT48E50, HT48E70 Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage
� fSYS=4MHz 2.2 � 5.5 V

� fSYS=8MHz 3.3 � 5.5 V

IDD1 Operating Current � Crystal OSC
3V

No load, fSYS=4MHz
� 1 2 mA

5V � 3 5 mA

IDD2 Operating Current � RC OSC
3V

No load, fSYS=4MHz
� 1 2 mA

5V � 2.5 4 mA

IDD3
Operating Current �

Crystal OSC or RC OSC
5V No load, fSYS=8MHz � 4 8 mA

ISTB1
Standby Current �

WDT Clock Enabled*

3V
No load, system HALT

� � 5 �A

5V � � 10 �A

ISTB2
Standby Current �

WDT Clock Disabled*

3V
No load, system HALT

� � 1 �A

5V � � 2 �A

VIL1 Input Low Voltage for I/O Ports � � 0 � 0.3VDD V

VIH1 Input High Voltage for I/O Ports � � 0.7VDD � VDD V

VIL2 RES Input Low Voltage � � 0 � 0.4VDD V

VIH2 RES Input High Voltage � � 0.9VDD � VDD V

VLVR Low Voltage Reset � LVR enabled 2.7 3 3.3 V

IOL I/O Port Sink Current
3V

VOL=0.1VDD

4 8 � mA

5V 10 20 � mA

IOH I/O Port Source Current
3V

VOH=0.9VDD

�2 �4 � mA

5V �5 �10 � mA

RPH Pull-high Resistance
3V

�
20 60 100 k�

5V 10 30 50 k�

Note * Tests conducted with I/O�s setup as outputs at a low value, for all devices.

14

I/O Type MTP MCU with EEPROM

A.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS System Clock � Crystal OSC
� 2.2V~5.5V 400 � 4000 kHz

� 3.3V~5.5V 400 � 8000 kHz

fTIMER Timer I/P Frequency � TMR
� 2.2V~5.5V 0 � 4000 kHz

� 3.3V~5.5V 0 � 8000 kHz

tWDTOSC Watchdog Oscillator Period
3V

�
45 90 180 �s

5V 32 65 130 �s

tWDT1
Watchdog Time-out Period �

WDT Internal Clock Source

3V
Without WDT prescaler

11 23 46 ms

5V 8 17 33 ms

tWDT2
Watchdog Time-out Period �

Instruction Clock Source
� Without WDT prescaler � 1024 � tSYS*

tRES External Reset Low Pulse Width � � 1 � � �s

tSST System Start-up Timer Period � Wake-up from HALT � 1024 � tSYS*

tLVR Low Voltage Reset Time � � 1 � � ms

tINT Interrupt Pulse Width � � 1 � � �s

*tSYS = 1/fSYS

EEPROM A.C. Characteristics

Symbol Parameter
VCC=5V�10% VCC=2.2V�10%

Unit
Min. Max. Min. Max.

fSK Clock Frequency 0 2 0 1 MHz

tSKH SK High Time 250 � 500 � ns

tSKL SK Low Time 250 � 500 � ns

tCSS CS Setup Time 50 � 100 � ns

tCSH CS Hold Time 0 � 0 � ns

tCDS CS Deselect Time 250 � 250 � ns

tDIS DI Setup Time 100 � 200 � ns

tDIH DI Hold Time 100 � 200 � ns

tPD1 DO Delay to �1� � 250 � 500 ns

tPD0 DO Delay to �0� � 250 � 500 ns

tSV Status Valid Time � 250 � 250 ns

tHZ DO Disable Time 100 � 200 � ns

tPR1 Write Cycle Time Per Word 1 � 2 � 5 ms

tPR2 Write Cycle Time Per Word 2 � 10 � 10 ms

Chapter 1 Hardware Structure

15

System Architecture

A key factor in the high-performance features of the Holtek range of I/O Type MTP

microcontrollers with EEPROM is attributed to the internal system architecture. The range of de-

vices take advantage of the usual features found within RISC microcontrollers providing increased

speed of operation and enhanced performance. The pipelining scheme is implemented in such a

way that instruction fetching and instruction execution are overlapped, hence instructions are ef-

fectively executed in one cycle, with the exception of branch or call instructions. An 8-bit wide ALU

is used in practically all operations of the instruction set. It carries out arithmetic operations, logic

operations, rotation, increment, decrement, branch decisions, etc. The internal data path is simpli-

fied by moving data through the Accumulator and the ALU. Certain internal registers are imple-

mented in the Data Memory and can be directly or indirectly addressed. The simple addressing

methods of these registers along with additional architectural features ensure that a minimum of

external components is required to provide a functional I/O control system with maximum reliabil-

ity and flexibility. This makes these devices suitable for low-cost, high-volume production for con-

troller applications requiring from 1K up to 8K words of Program Memory and from 64 to 224 bytes

of RAM data storage.

Clocking and Pipelining

The main system clock, derived from either a Crystal/Resonator or RC oscillator is subdivided into

four internally generated non-overlapping clocks, T1~T4. The Program Counter is incremented at

the beginning of the T1 clock during which time a new instruction is fetched. The remaining T2~T4

clocks carry out the decoding and execution functions. In this way, one T1~T4 clock cycle forms

one instruction cycle. Although the fetching and execution of instructions takes place in consecu-

tive instruction cycles, the pipelining structure of the microcontroller ensures that instructions are

effectively executed in one instruction cycle. The exception to this are instructions where the con-

tents of the Program Counter are changed, such as subroutine calls or jumps, in which case the in-

struction will take one more instruction cycle to execute.

Note When the RC oscillator is used, OSC2 is freed for use as a T1 phase clock synchronizing pin. This

T1 phase clock has a frequency of fSYS/4 with a 1:3 high/low duty cycle.

16

I/O Type MTP MCU with EEPROM

; �
 � (� � � �
 ' � < � � =

. > � � �
 � � � � �
 ' � < � � # 4 = ; �
 � (� � � �
 ' � < � � ? 4 =

. > � � �
 � � � � �
 ' � < � � = ; �
 � (� � � �
 ' � < � � ? 3 =

. > � � �
 � � � � �
 ' � < � � ? 4 =

� � � � ? 4 � � ? 3

� � � � � � 	
 � � � � � � � "
< � �
 � � � � � � � " =

� (� � � � � � � " � � 4

� � � � � 	 � � � � � �
 � �

� (� � � � � � � " � � 3

� (� � � � � � � " � � 6

� (� � � � � � � " � � /

� � $ � � � � � � �

System Clocking and Pipelining

For instructions involving branches, such as jump or call instructions, two machine cycles are re-

quired to complete instruction execution. An extra cycle is required as the program takes one cy-

cle to first obtain the actual jump or call address and then another cycle to actually execute the

branch. The requirement for this extra cycle should be taken into account by programmers in tim-

ing sensitive applications.

Program Counter

During program execution, the Program Counter is used to keep track of the address of the next in-

struction to be executed. It is automatically incremented by one each time an instruction is exe-

cuted except for instructions, such as �JMP� or �CALL� that demand a jump to a non-consecutive

Program Memory address. For the I/O Type MTP MCU with EEPROM series of microcontrollers,

note that the Program Counter width varies with the Program Memory capacity depending upon

which device is selected. However, it must be noted that only the lower 8 bits, known as the Pro-

gram Counter Low Register, are directly addressable by the user.

When executing instructions requiring jumps to non-consecutive addresses such as a jump in-

struction, a subroutine call, interrupt or reset, etc., the microcontroller manages program control

by loading the required address into the Program Counter. For conditional skip instructions, once

the condition has been met, the next instruction, which has already been fetched during the pres-

ent instruction execution, is discarded and a dummy cycle takes its place while the correct instruc-

tion is obtained.

The lower byte of the Program Counter, known as the Program Counter Low Register or PCL, is

available for program control and is a readable and writable register. By transferring data directly

into this register, a short program jump can be executed directly, however, as only this low byte is

available for manipulation, the jumps are limited to the present page of memory, that is 256 loca-

tions. When such program jumps are executed it should also be noted that a dummy cycle will be

inserted.

Note The lower byte of the Program Counter is fully accessible under program control. The use of the

PCL might cause program branching, so an extra cycle is needed to pre-fetch. Further information

on the PCL register can be found in the Special Function Register section.

Chapter 1 Hardware Structure

17

; �
 � (� � � �
 ' � 4 . > � � �
 � � � � �
 ' � 4

; �
 � (� � � �
 ' � 3

; � � � (� � � $ � � � � �

4
3
6
/
0
1

� . ! � @ A

� � * � � B C 4 3 D E
� � ! ! � � . ! � @
� � ! � C 4 3 D E
A
A
5 � �

. > � � �
 � � � � �
 ' � 3

; �
 � (� � � �
 ' � 6

; �
 � (� � � �
 ' � 1 . > � � �
 � � � � �
 ' � 1

; �
 � (� � � �
 ' � 2

Mode
Program Counter Bits

b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Initial Reset 0 0 0 0 0 0 0 0 0 0 0 0 0

External Interrupt 0 0 0 0 0 0 0 0 0 0 1 0 0

Timer/Event Counter 0
Overflow

0 0 0 0 0 0 0 0 0 1 0 0 0

Timer/Event Counter 1
Overflow

0 0 0 0 0 0 0 0 0 1 1 0 0

Skip Program Counter + 2

Loading PCL PC12 PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

Jump, Call Branch #12 #11 #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 #0

Return from Subroutine S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Note 1. PC12~PC8: Current Program Counter bits.

2. @7~@0: PCL bits.

3. #12~#0: Instruction code address bits.

4. S12~S0: Stack register bits.

5. For the HT48E70, the Program Counter is 13 bits wide, i.e. from b12~b0.

6. For the HT48E50, since their Program Counter is 12 bits wide, the b12 column in the table

is not applicable.

7. For the HT48E30, since their Program Counter is 11 bits wide, the b11 and b12 columns

in the table are not applicable.

8. For the HT48E10 and the HT48E06, since their Program Counter is 10 bits wide, the b10, b11,

and b12 columns in the table are not applicable.

9. The Timer/Event Counter 1 overflow row is available only for the HT48E50 and the HT48E70.

Stack

This is a special part of the memory which is used to save the contents of the Program Counter

only. The stack can have 2, 4, 6 or 16 levels depending upon which device is selected and is nei-

ther part of the data nor part of the program space, and is neither readable nor writable. The acti-

vated level is indexed by the Stack Pointer (SP) and is neither readable nor writable. At a

subroutine call or interrupt acknowledge signal, the contents of the Program Counter are pushed

onto the stack. At the end of a subroutine or an interrupt routine, signaled by a return instruction

(RET or RETI), the Program Counter is restored to its previous value from the stack. After a device

reset, the Stack Pointer will point to the top of the stack.

If the stack is full and an enabled interrupt takes place, the interrupt request flag will be recorded

but the acknowledge signal will be inhibited. When the Stack Pointer is decremented (by RET or

RETI), the interrupt will be serviced. This feature prevents stack overflow allowing the program-

mer to use the structure more easily. However, when the stack is full, a �CALL subroutine� instruc-

tion can still be executed which will result in a stack overflow. Precautions should be taken to avoid

such cases which might cause unpredictable program branching.

18

I/O Type MTP MCU with EEPROM

Note 1. For the HT48E06, N=2, i.e. 2 levels of stack available.

2. For the HT48E10 and HT48E30, N=4, i.e. 4 levels of stack available.

3. For the HT48E50, N=6, i.e. 6 levels of stack available.

4. For the HT48E70, N=16, i.e. 16 levels of stack available.

Arithmetic and Logic Unit � ALU

The arithmetic-logic unit or ALU is a critical area of the microcontroller that carries out arithmetic

and logic operations of the instruction set. Connected to the main microcontroller data bus, the

ALU receives related instruction codes and performs the required arithmetic or logical operations

after which the result will be placed in the specified register. As these ALU calculation or opera-

tions may result in carry, borrow or other status changes, the status register will be correspond-

ingly updated to reflect these changes. The ALU supports the following functions:

� Arithmetic operations ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA

� Logic operations AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA

� Rotation RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC

� Increment and Decrement INCA, INC, DECA, DEC

� Branch decision JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI

MTP Program Memory

The Program Memory is the location where the user code or program is stored. For this series of

devices the Program Memory is an MTP type, which means it can be programmed and repro-

grammed a large number of times, allowing the user the convenience of code modification using

the same device. By using the appropriate programming tools, these MTP devices offer users the

flexibility to conveniently debug and develop their applications while also offering a means of field

programming.

Organization

The Program Memory has a capacity of 1K by 14, 2K by 14, 4K by 15 or 8K by 16 bits depending

upon which device is selected. The Program Memory is addressed by the Program Counter and

also contains data, table information and interrupt entries. Table data, which can be setup in any lo-

cation within the Program Memory, is addressed by a separate table pointer register.

Chapter 1 Hardware Structure

19

� � � � � 	 � � � � � �
 � �

�
 	 � " � ! � - � � � 4

�
 	 � " � ! � - � � � 3

�
 	 � " � ! � - � � � 6

�
 	 � " � ! � - � � � 5

� � �
� � � � � 	 �
� � � � �

� � $ � � & � �
 	 � "

�
 	 � "
� � � �
 � �

+ �

 � � � � & � �
 	 � "

The following diagram shows the Program Memory for the I/O Type MTP MCU with EEPROM

series.

Special Vectors

Within the Program Memory, certain locations are reserved for special usage such as reset and in-

terrupts.

� Location 000H

This vector is reserved for use by the device reset for program initialization. After a device reset

is initiated, the program will jump to this location and begin execution.

� Location 004H

This vector is used by the external interrupt. If the external interrupt pin on the device receives a

high to low transition, the program will jump to this location and begin execution if the external in-

terrupt is enabled and the stack is not full.

� Location 008H

This internal vector is used by the Timer/Event Counter. If a counter overflow occurs, the pro-

gram will jump to this location and begin execution if the timer interrupt is enabled and the stack

is not full. For the HT48E50 and HT48E70 devices, which have dual timers, this timer is known

as Timer/Event Counter 0.

� Location 00CH

This internal vector is used by the Timer/Event Counter. If a counter overflow occurs, the pro-

gram will jump to this location and begin execution if the timer interrupt is enabled and the stack

is not full. This vector is available for the HT48E50 and HT48E70 only. The Timer/Event Counter

is known as Timer/Event Counter 1. Note that the HT48E06, HT48E10 and HT48E30 devices

have only one timer, therefore, this interrupt vector is not used.

20

I/O Type MTP MCU with EEPROM

� � � �

� � � �

� � � �

� � � �

� � � �

� � 	
 	 � � 	 �
 	 � �
� � �
 � �

� �
 � � � � �
� �
 � � � � �
 � � � �
 � �

� 	 � � � � � � � �
 � �
� �
 � � � � �
 � � � �
 � �

� � 	
 	 � � 	 �
 	 � �
� � �
 � �

� � 	
 	 � � 	 �
 	 � �
� � �
 � �

� �
 � � � � �
� �
 � � � � �
 � � � �
 � �

� �
 � � � � �
� �
 � � � � �
 � � � �
 � �

� 	 � � � � � � � �
 � �
� �
 � � � � �
 � � � �
 � �

� 	 � � � � � � � �
 � � � �
� �
 � � � � �
 � � � �
 � �

� 	 � � � � � � � �
 � � � �
� �
 � � � � �
 � � � �
 � �

� � � � � � �

� � � � � � � � � � � � 	 � � � � � �
 �

� � � �

� � � �

� � 	
 	 � � 	 �
 	 � �
� � �
 � �

� �
 � � � � �
� �
 � � � � �
 � � � �
 � �

� 	 � � � � � � � �
 � � � �
� �
 � � � � �
 � � � �
 � �

� 	 � � � � � � � �
 � � � �
� �
 � � � � �
 � � � �
 � �

� � � � � � �

� � � � 	
 �� � � � 	
 �� � � � 	
 �

� � � �
� � � �

� � � �
� � � � �

� � � � �

� � � 	
 �

! �
 � � � � � � � � �
 � " �

� � �
� � � �

Look-up Table

Any location within the Program Memory can be defined as a look-up table where programmers

can store fixed data. To use the look-up table, the table pointer must first be setup by placing the

lower order address of the look up data to be retrieved in the table pointer register, TBLP. This reg-

ister defines the lower 8-bit address of the look-up table.

After setting up the table pointer, the table data can be retrieved from the current Program Memory

page or last Program Memory page using the �TABRDC[m]� or �TABRDL [m]� instructions, respec-

tively. When these instructions are executed, the lower order table byte from the Program Memory

will be transferred to the user defined Data Memory register [m] as specified in the instruction. The

higher order table data byte from the Program Memory will be transferred to the TBLH special reg-

ister. Any unused bits in this transferred higher order byte will have uncertain values.

The following diagram illustrates the addressing/data flow of the look-up table:

Table Program Example

The following example shows how the table pointer and table data is defined and retrieved from

the HT48E10 I/O Type MTP microcontroller with EEPROM. This example uses raw table data lo-

cated in the last page which is stored there using the ORG statement. The value at this ORG state-

ment is �300H� which refers to the start address of the last page within the 1K Program Memory of

the HT48E10 microcontroller. The table pointer is setup here to have an initial value of �06H�. This

will ensure that the first data read from the data table will be at the Program Memory address

�306H� or 6 locations after the start of the last page. Note that the value for the table pointer is refer-

enced to the first address of the present page if the �TABRDC [m]� instruction is being used. The

high byte of the table data which in this case is equal to zero will be transferred to the TBLH regis-

ter automatically when the �TABRDL [m]� instruction is executed.

Chapter 1 Hardware Structure

21

� � � � � � � �
� 	 � � �

� � � � � � � � � � � � � 	 �
� � � � � � � � � � � � �
 � 	

� � � �

� � � � � � 	 � � � � 	 � � �
 � � � �

� � � � � �
 � 	 � � � � � � � � 	 � � � � 	 � � � � � � �
 � 	 � � � � � � � � 	 � � � � 	 � �

tempreg1 db ? ; temporary register #1
tempreg2 db ? ; temporary register #2

:
:

mov a,06h ; initialize table pointer - note that this address is
; referenced

mov tblp,a ; to the last page or present page
:
:

tabrdl tempreg1 ; transfers value in table referenced by table pointer
; to tempregl

; data at prog. memory address �306H� transferred to
; tempreg1 and TBLH

dec tblp ; reduce value of table pointer by one

tabrdl tempreg2 ; transfers value in table referenced by table pointer
; to tempreg2

; data at prog. memory address �305H� transferred to
; tempreg2 and TBLH

; in this example the data �1AH� is transferred to

; tempreg1 and data �0FH� to register tempreg2
:
:

org 300h ; sets initial address of last page (for HT48E10)

dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
:
:

Because the TBLH register is a read-only register and cannot be restored, care should be taken to

ensure its protection if both the main routine and Interrupt Service Routine use the table read in-

structions. If using the table read instructions, the Interrupt Service Routines may change the

value of the TBLH and subsequently cause errors if used again by the main routine. As a rule it is

recommended that simultaneous use of the table read instructions should be avoided. However,

in situations where simultaneous use cannot be avoided, the interrupts should be disabled prior to

the execution of any main routine table-read instructions. Note that all table related instructions re-

quire two instruction cycles to complete their operation.

Instruction

Table Location Bits

b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

TABRDC [m] PC12 PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

TABRDL [m] 1 1 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Note 1. PC12~PC8: Current Program Counter bits.

2. @7~@0: Table Pointer TBLP bits.

3. For the HT48E70, the Table address location is 13 bits, i.e. from b12~b0.

4. For the HT48E50, the Table address location is 12 bits, i.e. from b11~b0.

5. For the HT48E30, the Table address location is 11 bits, i.e. from b10~b0.

6. For the HT48E10 and the HT48E06, the Table address location is 10 bits, i.e. from b9~b0.

22

I/O Type MTP MCU with EEPROM

In Circuit Programming

The provision of multi-programmable Program Memory gives the user and designer the conve-

nience of easy upgrades and modifications to their programs on the same device. As an additional

convenience, Holtek has provided a means of programming the microcontroller in-circuit. This pro-

vides manufacturers with the possibility of manufacturing their circuit boards complete with a pro-

grammed or un-programmed MTP Type microcontroller, and then programming or upgrading the

program at a later stage. This enables product manufacturers to easily keep their manufactured

products supplied with the latest program releases without removal and re-insertion of the device.

Pin Name Function

PA0 Serial data input/output

PA4 Serial clock

RES Device reset

VDD Power supply

VSS Ground

The MTP device Program Memory and EEPROM memory can both be programmed serially

in-circuit using a 5-wire interface. Data is downloaded and uploaded serially on a single pin with an

additional line for the clock. Two additional lines are required for the power supply and one line for

the reset. The technical details regarding the in-circuit programming of the devices are beyond the

scope of this handbook and will be supplied in supplementary literature.

Chapter 1 Hardware Structure

23

� � F � �

� � � � � �

� 	
 	

� � � � "

� � � �

* � �

* � �

� � 7

� � /

� . �

� � � � � �
 � �

In-circuit Programming Interface

RAM Data Memory

The RAM Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location

where temporary information is stored. Divided into two sections, the first of these is an area of

RAM where special function registers are located. These registers have fixed locations and are

necessary for correct operation of the device. Many of these registers can be read from and writ-

ten to directly under program control, however, some remain protected from user manipulation.

The second area of RAM Data Memory is reserved for general purpose use. All locations within

this area are read and write accessible under program control.

Organization

The RAM Data Memory is subdivided into two banks, known as Bank 0 and Bank 1, all of which

are implemented in 8-bit wide RAM. Most of the RAM Data Memory is located in Bank 0 which is

also subdivided into two sections, the Special Purpose Data Memory and the General Purpose

Data Memory. The length of these sections is dictated by the type of microcontroller chosen. The

start address of the RAM Data Memory for all devices is the address �00H�. The last Data Memory

address is �7FH� for the HT48E06, HT48E10 and HT48E30 devices, and �FFH� for the HT48E50

and HT48E70 devices. Registers which are common to all microcontrollers, such as ACC, PCL,

etc., have the same Data Memory address.

Bank 1 of the RAM Data Memory contains only one special function register, known as the EECR

register which is located at address �40H� for all devices.

Note Most of the RAM Data Memory bits can be directly manipulated using the �SET [m].i� and �CLR

[m].i� with the exception of a few dedicated bits. The RAM Data Memory can also be accessed

through the Memory Pointer registers MP0 and MP1.

24

I/O Type MTP MCU with EEPROM

� $ � � � 	 � � � � � $ � � �
� 	
 	 � � � � � �

7 7 D

2 ; D

4 2 D

� � � � � 	 � � � � � $ � � �
� 	
 	 � � � � � �
< 1 / � +
 � � =

� � � � � � �� � � � � � �� � � � � � �
� � � � � � �
� � � � � � �

A � � � � � � B � � � 	 � � 	 � � G 7 7 G �

7 7 D

3 7 D

2 ; D

4 ; D

� $ � � � 	 � � � � � $ � � �
� 	
 	 � � � � � �

� � � � � 	 � � � � � $ � � �
� 	
 	 � � � � � �
< 9 1 � +
 � � =

� $ � � � 	 � � � � � $ � � �
� 	
 	 � � � � � �

7 7 D

1 7 D

; ; D

4 ; D

� � � � � 	 � � � � � $ � � �
� 	
 	 � � � � � �
< 4 1 7 � +
 � � =

7 7 D

; ; D

4 ; D

/ 7 D

� $ � � � 	 � � � � � $ � � �
� 	
 	 � � � � � �

� � � � � 	 � � � � � $ � � �
� 	
 	 � � � � � �
< 3 3 / � +
 � � =

3 7 D

Bank 0 RAM Data Memory Structure

/ 7 D . . � �

Bank 1 RAM Data Memory Structure

General Purpose Data Memory

All microcontroller programs require an area of read/write memory where temporary data can be

stored and retrieved for use later. It is this area of RAM memory that is known as General Purpose

Data Memory. This area of Data Memory is fully accessible by the user program for both read and

write operations. By using the �SET [m].i� and �CLR [m].i� instructions individual bits can be set or

reset under program control giving the user a large range of flexibility for bit manipulation in the

Data Memory.

Special Purpose Data Memory

This area of Data Memory, is located in Bank 0, where registers, necessary for the correct opera-

tion of the microcontroller, are stored. Most of the registers are both readable and writable but

some are protected and are readable only, the details of which are located under the relevant Spe-

cial Function Register section. Note that for locations that are unused, any read instruction to

these addresses will return the value �00H�. Although the Special Purpose Data Memory registers

are located in Bank 0, they will still be accessible even if Bank Pointer 1 is selected.

The following diagram shows a detailed Special Purpose Data Memory organization map of the

I/O Type MTP microcontrollers with EEPROM:

Chapter 1 Hardware Structure

25

� � � 7

� � 7

� � � 4

� � 4

+ �

� � �

� � !

� + ! �

� + ! D

� � � �

� � � � �

� 5 � �

� � �

� � � �

� �

� � �

� +

� + �

� �

� � �

� � � 7

� � 7

� � � 4

� � 4

+ �

� � �

� � !

� + ! �

� + ! D

� � � �

� � � � �

� 5 � �

� � � 7

� � � 7 �

� � � 4 D

� � � 4 !

� � � 4 �

� �

� � �

� +

� + �

� �

� � �

� �

� � �

� �

� � �

7 7 D

7 4 D

7 3 D

7 6 D

7 / D

7 0 D

7 1 D

7 2 D

7 : D

7 9 D

7 � D

7 + D

7 � D

7 � D

7 . D

7 ; D

4 7 D

4 4 D

4 3 D

4 6 D

4 / D

4 0 D

4 1 D

4 2 D

4 : D

4 9 D

4 � D

4 + D

4 � D

4 � D

4 . D

4 ; D

� � � 7

� � 7

� � � 4

� � 4

+ �

� � �

� � !

� + ! �

� + ! D

� � � �

� � � � �

� 5 � �

� � �

� � � �

� �

� � �

� +

� + �

� �

� � �

� �

� � �

� � � 7

� � 7

� � � 4

� � 4

+ �

� � �

� � !

� + ! �

� + ! D

� � � �

� � � � �

� 5 � �

� � � 7 D

� � � 7 !

� � � 7 �

� � � 4 D

� � � 4 !

� � � 4 �

� �

� � �

� +

� + �

� �

� � �

� �

� � �

� .

� . �

� ;

� ; �

� �

� � � A � � � � � � B � � � 	 � � 	 � � G 7 7 G �

� � � � � � �
� �

Special Function Registers

To ensure successful operation of the microcontroller, certain internal registers are implemented

in the RAM Data Memory area. These registers ensure correct operation of internal functions such

as timers, interrupts, watchdog, etc., as well as external functions such as I/O data control. The lo-

cation of these registers within the RAM Data Memory begins at the address �00H�. Any unused

Data Memory locations between these special function registers and the point where the General

Purpose Memory begins is reserved for future expansion purposes, attempting to read data from

these locations will return a value of �00H�.

Indirect Addressing Registers � IAR0, IAR1

The Indirect Addressing Registers, IAR0 and IAR1, although having their locations in normal RAM

register space, do not actually physically exist as normal registers. The method of indirect address-

ing for RAM data manipulation uses these Indirect Addressing Registers and Memory Pointers, in

contrast to direct memory addressing, where the actual memory address is specified. Actions on

the IAR0 and IAR1 registers will result in no actual read or write operation to these registers but

rather to the memory location specified by their corresponding Memory Pointer, MP0 or MP1.

Acting as a pair, IAR0 and MP0 can together only access data from Bank 0, while the IAR1 and

MP1 register pair can access data from both Bank 0 and Bank 1. As the Indirect Addressing Regis-

ters are not physically implemented, reading the Indirect Addressing Registers indirectly will re-

turn a result of �00H� and writing to the registers indirectly will result in no operation.

Memory Pointers � MP0, MP1

For all devices, two Memory Pointers, known as MP0 and MP1 are provided. These Memory

Pointers are physically implemented in the Data Memory and can be manipulated in the same way

as normal registers providing a convenient way with which to address and track data. When any

operation to the relevant Indirect Addressing Registers is carried out, the actual address that the

microcontroller is directed to, is the address specified by the related Memory Pointer. MP0, to-

gether with Indirect Addressing Register, IAR0, are used to access data from Bank 0 only, while

MP1 and IAR1 are used to access data from both Bank 0 and Bank 1. For the HT48E06, HT48E10

and HT48E30 devices, which have smaller RAM Data Memory capacities, bit 7 of the Memory

Pointers is not required to address the full memory space. It must be noted that when the Memory

Pointers for these devices are read, a value of �1� will be returned.

The following example shows how to clear a section of four RAM locations already defined as lo-

cations adres1 to adres4.

data .section �data�
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?
code .section at 0 �code�
org 00h

start:
mov a,04h ; setup size of block
mov block,a
mov a,offset adres1 ; Accumulator loaded with first RAM address
mov mp0,a ; setup Memory Pointer with first RAM address

26

I/O Type MTP MCU with EEPROM

loop:
clr IAR0 ; clear the data at address defined by MP0
inc mp0 ; increment Memory Pointer
sdz block ; check if last memory location has been cleared
jmp loop

continue:

The important point to note here is that in the example shown above, no reference is made to spe-

cific RAM addresses.

Bank Pointer � BP

The RAM Data Memory is divided into two Banks, known as Bank 0 and Bank 1. With the excep-

tion of the EECR register, all of the Special Purpose Registers and General Purpose Registers are

contained in Bank 0. Bank 1 contains only one register, which is the EEPROM Control Register,

known as EECR. Selecting the required Data Memory area is achieved using the Bank Pointer. If

data in Bank 0 is to be accessed, then the BP register must be loaded with the value �00�, while if

data in Bank 1 is to be accessed, then the BP register must be loaded with the value �01�.

Using Memory Pointer MP0 and Indirect Addressing Register IAR0 will always access data from

Bank 0, irrespective of the value of the Bank Pointer. The EECR register is located at memory loca-

tion 40H in Bank 1 and can only be accessed indirectly using memory pointer MP1 and the indirect

addressing register, IAR1, after the BP register has first been loaded with the value �01�. Data can

only be read from or written to the EEPROM via this register.

The Data Memory is initialised to Bank 0 after a reset, except for the WDT time-out reset in the

Power Down Mode, in which case, the Data Memory bank remains unaffected. It should be noted

that Special Function Data Memory is not affected by the bank selection, which means that the

Special Function Registers can be accessed from within either Bank 0 or Bank 1. Directly address-

ing the Data Memory will always result in Bank 0 being accessed irrespective of the value of the

Bank Pointer.

Accumulator � ACC

The Accumulator is central to the operation of any microcontroller and is closely related with opera-

tions carried out by the ALU. The Accumulator is the place where all intermediate results from the

ALU are stored. Without the Accumulator it would be necessary to write the result of each calcula-

tion or logical operation, such as addition, subtraction, shift, etc., to the Data Memory resulting in

higher programming and timing overheads. Data transfer operations usually involve the tempo-

rary storage function of the Accumulator; for example, when transferring data between one user

defined register and another, it is necessary to do this by passing the data through the Accumula-

tor as no direct transfer between two registers is permitted.

Chapter 1 Hardware Structure

27

� � � � � � � � � � !

% 2 % 7

+ � 7

+ � 7 � � � � � 	
 	 � � � � � �
� � � 7 � � � � � � + 	 � " � 7
� � � 4 � � � � � � + 	 � " � 4

5 �
 � � � � � B � � � �
 � % � � � � � �
 �
 � � G 7 G

Program Counter Low Register � PCL

To provide additional program control functions, the low byte of the Program Counter is made ac-

cessible to programmers by locating it within the Special Purpose area of the Data Memory. By ma-

nipulating this register, direct jumps to other program locations are easily implemented. Loading a

value directly into this PCL register will cause a jump to the specified Program Memory location,

however, as the register is only 8-bit wide, only jumps within the current Program Memory page

are permitted. When such operations are used, note that a dummy cycle will be inserted.

Look-up Table Registers � TBLP, TBLH

These two special function registers are used to control operation of the look-up table which is

stored in the Program Memory. TBLP is the table low byte pointer and indicates the location where

the table data is located. Its value must be setup before any table read commands are executed.

Its value can be changed, for example using the �INC� or �DEC� instructions, allowing for easy ta-

ble data pointing and reading. TBLH is the location where the high order byte of the table data is

stored after a table read data instruction has been executed. Note that the lower order table data

byte is transferred to a user defined location.

Watchdog Timer Register � WDTS

The Watchdog feature of the microcontroller provides an automatic reset function giving the

microcontroller a means of protection against spurious jumps to incorrect Program Memory ad-

dresses. To implement this, a timer is provided within the microcontroller which will issue a reset

command when its value overflows. To provide variable Watchdog Timer reset times, the Watch-

dog Timer clock source can be divided by various division ratios, the value of which is set using the

WDTS register. By writing directly to this register, the appropriate division ratio for the Watchdog

Timer clock source can be setup. Note that only the lower 3 bits are used to set division ratios be-

tween 1 and 128.

Status Register � STATUS

This 8-bit register contains the zero flag (Z), carry flag (C), auxiliary carry flag (AC), overflow flag

(OV), power down flag (PDF), and watchdog time-out flag (TO). These arithmetic/logical operation

and system management flags are used to record the status and operation of the microcontroller.

With the exception of the TO and PDF flags, bits in the status register can be altered by instruc-

tions like most other registers. Any data written into the status register will not change the TO or

PDF flag. In addition, operations related to the status register may give different results due to the

different instruction operations. The TO flag can be affected only by a system power-up, a WDT

time-out or by executing the �CLR WDT� or �HALT� instruction. The PDF flag is affected only by ex-

ecuting the �HALT� or �CLR WDT� instruction or during a system power-up.

The Z, OV, AC and C flags generally reflect the status of the latest operations.

� C is set if an operation results in a carry during an addition operation or if a borrow does not take

place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate

through carry instruction.

� AC is set if an operation results in a carry out of the low nibbles in addition, or no borrow from the

high nibble into the low nibble in subtraction; otherwise AC is cleared.

28

I/O Type MTP MCU with EEPROM

� Z is set if the result of an arithmetic or logical operation is zero; otherwise Z is cleared.

� OV is set if an operation results in a carry into the highest-order bit but not a carry out of the high-

est-order bit, or vice versa; otherwise OV is cleared.

� PDF is cleared by a system power-up or executing the �CLR WDT� instruction. PDF is set by ex-

ecuting the �HALT� instruction.

� TO is cleared by a system power-up or executing the �CLR WDT� or �HALT� instruction. TO is

set by a WDT time-out.

In addition, on entering an interrupt sequence or executing a subroutine call, the status register

will not be pushed onto the stack automatically. If the contents of the status registers are important

and if the subroutine can corrupt the status register, precautions must be taken to correctly save it.

Interrupt Control Register � INTC

This 8-bit register, known as the INTC register, controls the operation of both external and internal

timer interrupts. By setting various bits within this register using standard bit manipulation instruc-

tions, the enable/disable function of the external interrupt and each of the internal timer interrupts

can be independently controlled. A master interrupt bit within this register, the EMI bit, acts like a

global enable/disable and is used to set all of the interrupt enable bits on or off. This bit is cleared

when an interrupt routine is entered to disable further interrupt and is set by executing the �RETI�

instruction.

Note In situations where other interrupts may require servicing within present interrupt service routines,

the EMI bit can be manually set by the program after the present interrupt service routine has been

entered.

Timer/Event Counter Registers

Depending upon which device is selected, all devices contain one or two integrated Timer/Event

Counters of either 8-bit or 16-bit size. For the HT48E06, HT48E10 and HT48E30 devices, which

have a single 8-bit Timer/Event Counter, an associated register known as TMR is the location

where the timer�s 8-bit value is located. An associated control register, known as TMRC, contains

the setup information for this timer. The HT48E50 devices contain a single 8-bit Timer/Event Coun-

ter with an associated register, known as TMR0, and a single 16-bit Timer/Event Counter with an

associated register pairs, known as TMR1L/TMR1H, where the timer�s values are located. Two as-

sociated control registers, known as TMR0C and TMR1C contain the setup information for these

two timers. The HT48E70 devices contain two 16-bit Timer/Event Counters with two associated

Chapter 1 Hardware Structure

29

� � � � ; � * 8 � � �
 � � � "
 � # $ � % � !

� � �
 (� �
 � � � ! � � � � � � $ � � 	
 � � � � ; � 	 � �

� 	 � � � & � 	 �
� � > � � � 	 � � � 	 � � � & � 	 �
8 � � � � & � 	 �
� - � � & � � F � & � 	 �

� �
 � � � � 	 � 	 � � � � �
 � ; � 	 � �

� � F � � � � � F � � & � 	 �
� 	
 � (� � � �
 � � � # � �
 � & � 	 �
5 �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � G 7 G

% 2 % 7

register pairs, known as TMR0L/TMR0H and TMR1L/TMR1H, where the timer�s 16-bit values are

located. Two associated control registers, known as TMR0C and TMR1C contain the setup infor-

mation for these two timers.

Input/Output Ports and Control Registers

Within the area of Special Function Registers, the I/O registers and their associated control regis-

ters play a prominent role. All I/O ports have a designated register correspondingly labeled as PA,

PB, PC, etc. These labeled I/O registers are mapped to specific addresses within the Data Mem-

ory as shown in the Data Memory table, which are used to transfer the appropriate output or input

data on that port. with each I/O port there is an associated control register labeled PAC, PBC,

PCC, etc., also mapped to specific addresses with the Data Memory. The control register specifies

which pins of that port are set as inputs and which are set as outputs. To setup a pin as an input,

the corresponding bit of the control register must be set high, for an output it must be set low. Dur-

ing program initialization, it is important to first setup the control registers to specify which pins are

outputs and which are inputs before reading data from or writing data to the I/O ports. One flexible

feature of these registers is the ability to directly program single bits using the �SET [m].i� and

�CLR [m].i� instructions. The ability to change I/O pins from output to input and vice versa by ma-

nipulating specific bits of the I/O control registers during normal program operation is a useful fea-

ture of these devices.

EEPROM Control Register � EECR

This register is used to control all operations to and from the EEPROM Data Memory. As the

EEPROM Data Memory is not mapped like the other memory types, all data to and from the

EEPROM must be made through this register. The EECR register is located in Bank 1 of the Data

Memory, so before use the Bank Pointer must be setup to a value of �1�. The EECR register can

only be read and written to indirectly using the MP1 address pointer.

EEPROM Data Memory

One of the special features within all the devices in the MTP series of microcontrollers is their inter-

nal EEPROM Data Memory. EEPROM, which stands for Electrically Erasable Programmable

Read Only Memory, is by its nature a non-volatile form of memory, with data retention even when

its power supply is removed. By incorporating this kind of data memory in all of its MTP range, a

whole new host of application possibilities are made available to the designer. The availability of

EEPROM storage allows information such as product identification numbers, calibration values,

specific user data, system setup data or other product information to be stored directly within the

product microcontroller.

30

I/O Type MTP MCU with EEPROM

� � � # � & � ' � � � ! � (� # $ � % � !

5 �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � G 7 G

% 2 % 7

. . � � � � � � 	
 	 � � � � � � � � � � � �

. . � � � � � � � � � 	 � � � � � � " � � � $ �

. . � � � � � � � � � 	 � � � 	
 	 � � � $ �

. . � � � � � � � � � 	 � � � 	
 	 � � �
 $ �

� � � � � H � �

EEPROM Data Memory Structure

Dependent upon which device is chosen, the EEPROM Data Memory capacity is either 128�8 bits

or 256�8 bits. Unlike the Program Memory and RAM Data Memory, the EEPROM Data Memory is

not directly mapped and is therefore not directly accessible in same way as the other types of mem-

ory. Instead it has to be accessed indirectly through the EEPROM Control Register.

Device EEPROM Memory Capacity

HT48E06 128�8

HT48E10 128�8

HT48E30 128�8

HT48E50 256�8

HT48E70 256�8

EEPROM Data Memory Capacity

Accessing the EEPROM Data Memory

The EEPROM Data Memory is accessed using a set of seven instructions. These instructions con-

trol all functions of the EEPROM such as read, write, erase, enable etc. The internal EEPROM

structure is similar to that of a standard 3-wire EEPROM, for which four pins are used for transfer

of instruction, address and data information. These are the Chip Select pin, CS, Serial Clock pin,

SK, Data In pin, DI and the Data Out pin, DO. All actions related to the EEPROM must be con-

ducted through the EECR register which is located in Bank 1 of the RAM Data Memory, in which

each of these four EEPROM pins is represented by a bit in the EECR register. By manipulating

these four bits in the EECR register, in accordance with the accompanying timing diagrams, the

microcontroller can communicate with the EEPROM and carry out the required functions, such as

reading and writing data.

Bit No. Label EEPROM Function

0~3 	 Not implemented bit, read as �0�

4 CS EEPROM Data Memory select

5 SK Serial Clock: Used to clock data into and out of the EEPROM

6 DI Data Input: Instructions, address and data information are written to the EEPROM on this pin

7 DO
Data Output: Data from the EEPROM is readout with this bit. Will be in a high-impedance
condition if no data is being read.

EECR Register EEPROM Control Bit Functions

When reading data from the EEPROM, the data will clocked out on the rising edge of SK and ap-

pear on DO. The DO pin will normally be in a high-impedance condition unless a READ statement

is being executed. When writing to the EEPROM the data must be presented first on DI and then

clocked in on the rising edge of SK. After all the instruction, address and data information has

been transmitted, CS should be cleared to �0� to terminate the instruction transmission. Note that

after power on the EEPROM must be initialised as described.

As indirect addressing is the only way to access the EECR register, all read and write operations to

this register must take place using the Indirect Addressing Register, IAR1, and the Memory

Pointer, MP1. Because the EECR control register is located in Bank 1 of the RAM Data Memory at

location 40H, the MP1 Memory Pointer must first be set to the value 40H and the Bank Pointer set

to �1�.

Chapter 1 Hardware Structure

31

EEPROM Data Memory Instruction Set

Control over the internal EEPROM, to execute functions such as read, write, disable, enable etc,

is implemented through instructions of which there are a total of seven. The related instruction is

transmitted to the EEPROM via the DI bit, after CS has first been set to �1� to enable the EEPROM

and a start bit �1� has been transmitted. For the READ, WRITE and ERASE instructions, each of

the three instructions has its own two bit related instruction code. The address should then be

transmitted, which in the case of devices with a 128�8 capacity EEPROM is 7-bits. For devices

with a 256�8 capacity EEPROM, a 9-bit address is transmitted, however the first bit is a dummy bit

and can have any value. The address is transmitted in MSB first format.

For the other four instructions, �EWEN�, �EWDS�, �ERAL� and �WRAL�, after the start bit has

been transmitted a �00� instruction code should then follow. The address information should then

follow which is 7-bits long for devices with a 128�8 capacity EEPROM, and 9-bits long for devices

with a 256�8 capacity EEPROM. The first two bits of this address is instruction dependant as

shown in the table while the remaining bits have don�t care values and can be either high or low.

After any write or erase instruction is issued, the internal write function of the EEPROM will be

used to write the data into the device. As this internal write operation uses the EEPROM�s own in-

ternal clock, no further instructions will be accepted by the EEPROM until the internal write func-

tion has ended. After power on and before any instruction is issued the EEPROM must be properly

initialised to ensure proper operation.

Instruction Function Start Bit Instruction Code Address Data

READ Read Out Data Byte(s) 1 10 A6~A0 D7~D0

ERASE Erase Single Data Byte 1 11 A6~A0 �

WRITE Write Single Data Byte 1 01 A6~A0 D7~D0

EWEN Erase/Write Enable 1 00 11 XXXXX �

EWDS Erase/Write Disable 1 00 00 XXXXX �

ERAL Erase All 1 00 10 XXXXX �

WRAL Write All 1 00 01 XXXXX �

Instruction Set Summary � HT48E06, HT48E10 and HT48E30

32

I/O Type MTP MCU with EEPROM

� �

� �

� �

� �

� � � �

� � � �

� 	 �

�

� � � � � � � � � � � � � �

� � � � � � � �

� � � �

� � � � � � � �

� 	 � �

Clocking Data in and Out of the EEPROM

Instruction Function Start Bit Instruction Code Address Data

READ Read Out Data Byte(s) 1 10 X, A7~A0 D7~D0

ERASE Erase Single Data Byte 1 11 X, A7~A0 �

WRITE Write Single Data Byte 1 01 X, A7~A0 D7~D0

EWEN Erase/Write Enable 1 00 11 XXXXXXX �

EWDS Erase/Write Disable 1 00 00 XXXXXXX �

ERAL Erase All 1 00 10 XXXXXXX �

WRAL Write All 1 00 01 XXXXXXX �

Instruction Set Summary � HT48E50 and HT48E70

READ

The �READ� instruction is used to read out one or more bytes of data from the EEPROM Data

Memory. To instigate a �READ� instruction, the CS bit should be set high, followed by a high start

bit and then the instruction code �10�, all transmitted via the DI bit. The address information should

then follow with the MSB being transmitted first. For the HT48E50 and HT48E70 devices, a

dummy bit must be inserted between the last bit of the instruction code and the MSB of the ad-

dress. After the last address bit, A0, has been transmitted, the data can be clocked out, bit D7 first,

on the rising edge of the SK clock signal and can be read via the DO bit. However, a dummy �0� bit

will first precede the reading of the first data bit, D7. After the full byte has been read out, the inter-

nal address will be automatically incremented allowing the next consecutive data byte to be read

out without entering further address data. As long as the CS bit remains high, data bit D7 of the

next address will automatically follow data bit D0 of the previous address with no dummy �0� being

inserted between them. The address will keep incrementing in this way until CS returns to a low

value. DO will normally be in a high impedance condition until the �READ� instruction is executed.

Note that as the �READ� instruction is not affected by the condition of the �EWEN� or �EWDS� in-

struction, the READ command is always valid and independent of these two instructions.

Chapter 1 Hardware Structure

33

� �

� �

� �

�� �

� � 	
 � � � �

�

� � � �

�

� � � �

� � � �� �� �

� � � � 	 � �
 � � � � � � 	 � � � � 	 � � 	 � � � � � �
 � � � � � � � � 	 � � � � � � � � � � �

�

READ Timing � HT48E06, HT48E10 and HT48E30

� �

� �

� �

�� �

� � 	
 � � � �

�

� � � �

� � � � 	 � �
 � � � � � � 	 � � � � 	 � � 	 � � � � � �
 � � � � � � � � 	 � � � � � � � � � � �

�

� � � �

� � � �� � ��

�

READ Timing � HT48E50 and HT48E70

WRITE

The �WRITE� instruction is used to write a single byte of data into the EEPROM. To instigate a

WRITE instruction, the CS bit should be set high, followed by a high start bit and then the instruc-

tion code �01�, all transmitted via the DI bit. The address information should then follow with the

MSB bit being transmitted first. After the last address bit, A0, has been transmitted, the data can

be immediately transmitted MSB first. For the HT48E50 and HT48E70 devices, a dummy bit must

be inserted between the last bit of the instruction code and the MSB of the address. After all the

WRITE instruction code, address and data have been transmitted, the data will be written into the

EEPROM when the CS bit is cleared to zero. The EEPROM does this by executing an internal

write-cycle, which will first erase and then write the previously transmitted data byte into the

EEPROM. This process takes place internally using the EEPROM�s own internal clock and does

not require any action from the SK clock. No further instructions can be accepted by the EEPROM

until this internal write-cycle has finished. To determine when the write cycle has ended, CS

should be again brought high and the DO bit polled. If DO is low this indicates that the internal

write-cycle is still in progress, however, the DO bit will change to a high value when the internal

write-cycle has ended. Before a �WRITE� instruction is transmitted an �EWEN� instruction must

have been transmitted at some point earlier to ensure that the erase/write function of the

EEPROM is enabled.

34

I/O Type MTP MCU with EEPROM

� �

� �

� �

� � ��

� 	
 � 	 � � 	

�

� 	
 � � �

	 � �

	 � � �

� � � � � �

� � � �
� �
 � �

� � � � � �� � � �

� 	 � � � �

� � � ��

WRITE Timing � HT48E06, HT48E10 and HT48E30

� �

� �

� �

� 	
 � � �

� � �

	 � �

	 � � �

� � � � � �

�

� � � �
� �
 � �

� 	
 � 	 � � 	

� � � � � �� � � �

�

�

� 	 � � � �

WRITE Timing � HT48E50 and HT48E70

EWEN/EWDS

The �EWEN� instruction is the Erase/Write Enable instruction and the �EWDS� instruction is the

Erase/Write Disable instruction. To instigate an �EWEN� or �EWDS� instruction, the CS bit should

first be set high, followed by a high start bit and then the instruction code �00�. For the �EWEN� in-

struction, a �11� should then be transmitted and for the �EWDS� instruction a �00� should be trans-

mitted. Following on from this, and depending on whether the internal EEPROM has a 128�8 or

256�8 capacity, either 5-bits or 7-bits respectively, of �don�t-care� data should then be transmitted

to complete the instruction. If the device is already in the Erase Write Disable mode then no write

or erase operations can be executed thus protecting the internal EEPROM data. Before any write

or erase instruction is executed an �EWEN� instruction must be issued. After the �EWEN� instruc-

tion is executed, the device will remain in the Erase Write Enable mode until a subsequent

�EWDS� instruction is issued or until the device is powered down.

ERAL

The �ERAL� instruction is used to erase the whole contents of the EEPROM memory. After it has

been executed all the data in the EEPROM will be set to �1�. To instigate this instruction, the CS bit

should be set high, followed by a high start bit and then the instruction code �00�. Following on

from this, a �10� should then be transmitted, and depending on whether the internal EEPROM has

a 128�8 or 256�8 capacity, this should be followed by either 5-bits or 7-bits respectively, of

�don�t-care� data to complete the instruction. After the �ERAL� instruction code has been transmit-

ted, the EEPROM data will be erased when the CS bit is cleared to zero. The EEPROM does this

by executing an internal write-cycle. This process takes place internally using the EEPROM�s own

internal clock and does not require any action from the SK clock. No further instructions can be ac-

cepted by the EEPROM until this internal write-cycle has finished. To determine when the write cy-

cle has ended, CS should be again brought high and the DO bit polled. If D0 is low this indicates

that the internal write-cycle is still in progress, however the D0 bit will change to a high value when

Chapter 1 Hardware Structure

35

� �

� �

� 	
 � � �

� � �� �

� 	
 � 	 � � 	 � � ! � " � � �
� � � � " � � �

� � � � � � � � � � # # # # # � $ $ � � $ � 	 � � % � � � & ' � ' � � � � � � (
# # # # # # # � $ $ � � $ � 	 � � % � � & � � � ' � � � � � � (

EWEN/EWDS Timing

# # # # # # # � $ $ � � $ � 	 � � % � � & � � � ' � � � � � � (

� �

� �

� �

� 	
 � � �

� �

	 � �

	 � � �

� � � � � �
 � �

� � � � � �

� ���

�

� 	 � � & �

� 	
 � 	 � � 	

�

� � � � � � � � � � # # # # # � $ $ � � $ � 	 � � % � � � & ' � ' � � � � � � (

ERAL Timing

the internal write-cycle has ended. Before an �ERAL� instruction is transmitted an �EWEN� instruc-

tion must have been transmitted at some point earlier to ensure that the erase/write function of the

EEPROM is enabled.

WRAL

The WRAL instruction is used to write the same data into the entire EEPROM. To instigate this in-

struction, the CS bit should be set high, followed by a high start bit and then the instruction code

�00�. Following on from this, a �01� should then be transmitted, and depending on whether the in-

ternal EEPROM has a 128�8 or 256�8 capacity, this should be followed by either 5-bits or 7-bits re-

spectively, of �don�t-care� data. The data information should then follow with the MSB bit being

transmitted first. After the instruction code and data have been transmitted, the data will be written

into the EEPROM when the CS bit is cleared to zero. The EEPROM does this by executing an inter-

nal write-cycle. This process takes place internally using the EEPROM�s own internal clock and

does not require any action from the SK clock. No further instructions can be accepted by the

EEPROM until this internal write-cycle has finished. To determine when the write cycle has ended,

CS should be again brought high and the DO bit polled. If D0 is low this indicates that the internal

write-cycle is still in progress, however the D0 bit will change to a high value when the internal

write-cycle has ended. Before a �WRAL� instruction is transmitted an �EWEN� instruction must

have been transmitted at some point earlier to ensure that the erase/write function of the

EEPROM is enabled. The WRAL instruction will automatically erase any previously written data

making it unnecessary to first issue an erase instruction.

ERASE

The �ERASE� instruction is used to erase data at a specified addresses. The data at the address

specified will be set to �1�. To instigate an �ERASE� instruction, the CS bit should be set high, fol-

lowed by a high start bit and then the instruction code �11�, all transmitted via the DI bit. The ad-

dress information should then follow with the MSB bit being transmitted first. For the HT48E50 and

HT48E70 devices, a dummy bit must be inserted between the last bit of the instruction code and

the MSB of the address. After all the �ERASE� instruction code and address have been transmit-

ted, the data at the specified address will be erased when the CS bit is cleared to zero. The

EEPROM does this by executing an internal write cycle which will set all data at the specified ad-

dress to �1�. This process takes place internally using the EEPROM�s own internal clock and does

36

I/O Type MTP MCU with EEPROM

� �

� �

� �

� 	
 � � �

� � �

	 � �

	 � � �

� � � � � �
 � �

� � � � � �

� � � � ���

�

� 	 � � & �

� 	
 � 	 � � 	

�

� � � � � � � � � � # # # # # � $ $ � � $ � 	 � � % � � � & ' � ' � � � � � � (
# # # # # # # � $ $ � � $ � 	 � � % � � & � � � ' � � � � � � (

WRAL Timing

not require any action from the SK clock. No further instructions can be accepted by the EEPROM

until the write cycle has finished. To determine when the write cycle has ended, the CS should be

again brought high and the DO bit polled. If the DO bit is low this indicates that the write-cycle is

still in progress, however, the DO bit will change to a high value when the write-cycle has ended.

Before an �ERASE� instruction is transmitted, an �EWEN� instruction must have been transmitted

at some point earlier to ensure that the erase/write function of the EEPROM is enabled.

Internal Write Cycle

The write or erase instructions, �WRITE�, �ERASE�, �ERAL� or �WRAL� will all use the EEPROM�s

internal write cycle function. As this function is completely internally timed, the SK clock is not re-

quired. As the MCU has no control over the timing of this write cycle, it must still have some way of

knowing when the internal write cycle has completed. This is because, when the internal write cycle

is executing, the EEPROM will not accept any further instructions from the MCU. The MCU must

therefore wait until the write cycle has finished before sending any further instructions.

One way for the MCU to know when the write cycle has terminated is to poll the DO bit after the CS

bit has issued a low pulse. The low going edge of this CS bit pulse will initiate the internal write cy-

cle, when the bit is returned high the DO bit will go low to indicated that the write cycle is in prog-

ress. When the DO bit returns high this indicates that the internal write cycle has ended and that

the EEPROM is ready to receive further instructions.

Chapter 1 Hardware Structure

37

� �

� �

� �

� � ��

� 	
 � 	 � � 	

�

� 	
 � � �

	 � �

	 � � �

� � � �
� �
 � �

� � � � � �

� � � � � �

� 	 � � � �

� � � ��

ERASE Timing � HT48E06, HT48E10 and HT48E30

� �

� �

� �

� 	
 � � �

� � �

	 � �

	 � � �

� � � �
� �
 � �

� � � � � �

�

� 	
 � 	 � � 	

� � � � � �

�

� � � �

� 	 � � � �

�

ERASE Timing � HT48E50 and HT48E70

Initialising the EEPROM

After the MCU is powered on and if the EEPROM is to be used, it must be initialised in a specific

way before any user instructions are transmitted. This is achieved by first transmitting an EWEN in-

struction, then by issuing a WRITE instruction to write random data to any single address in the

EEPROM. The initialisation procedure can then be terminated by issuing an EWDS instruction,

however at this point, if actual user data is to be imminently written to the EEPROM, this last step

is optional.

The following is an example program of how this can be implemented:

mov A,01h
mov BP,A ; set to bank 1
mov A,40h
mov MP1,A ; set MP1 to EECR address
call EWEN ; subroutine to run EWEN instructions
mov A, 7Fh
mov EEADDR, A
mov A, 55h
mov EEDATA, A
call WRITE ; subroutine to run WRITE instruction

; write 55h data to address 7Fh
call EWDS ; optional subroutine to run EWDS instruction

EEPROM Program Examples

The following short programs gives examples of how to send instructions, read and write to the

EEPROM. These programs can form a basis of understanding as to how the internal EEPROM

memory is to be used to store and retrieve data. The programs are for use with the HT48E50 and

HT48E70 devices, which have the same capacity internal EEPROM memory of 256�8 bits. For

the other devices, which have a smaller 128�8 bit EEPROM memory capacity, the dummy bit

which is inserted between the instruction code transmission and the address MSB, is not transmit-

ted.

38

I/O Type MTP MCU with EEPROM

5 �
@ � �

� � � � � � � � �
 � � �
 � � �
� � � � � � � B � � 	
 	

� �
 � � � 	 � � F � �
 � � � � � � � � � �
 � 	
 � �

� �
 � � � 	 � � F � �
 �
� � � � � & � � � � (� �

� � � I � G 4 G

� � � F � � � � � � � � � F � (� � � �
 � � � � � � � 	
 � � � �
 � � � 	 �
F � �
 � � � � � � � �
 � � � � � � � $ � � � � � � �

 � * � � � � 	

 � � � � � � � 	

� �

� �

Internal Write Cycle Busy Polling

Example 1 � Definitions and Sending Instructions to the EEPROM

_CS EQU IAR1.4 ; EEPROM lines setup to have a corresponding
_SK EQU IAR1.5 ; Bit in the Indirect Addressing Register IAR1
_DI EQU IAR1.6 ; EEPROM can only be indirectly addressed using

; MP1
_DO EQU IAR1.7
_EECR EQU 40H ; Setup address of the EEPROM control register

C_Addr_Length EQU 8 ; Address length � 8-bits for this device

C_Data_Length EQU 8 ; Data length � always 8-bits
;

DATA .SECTION at 70h �DATA�

EE_command DB ? ; Stores the read or write instruction
; information

ADDR DB ? ; Store write data or read data address
WR_Data DB ? ; Store read or write data
COUNT DB ? ; Temporary counter
;
WriteCommand: ; Write instruction code subroutine

MOV A,3 ; Read, write and erase instructions are 3 bits
; long

MOV COUNT,A
WriteCommand_0:

CLR _DI ; Prepare the transmitted bit
SZ EE_command.7 ; Check value of highest instruction code bit
SET _DI
SET _SK
CLR _SK
CLR C
RLC EE_command ; Get next bit of instruction code
SDZ COUNT ; Check if last bit has been transmitted
JMP WriteCommand_0
CLR _DI
RET

Example 2 � Transmitting an Address to the EEPROM

WriteAddr: ; Write address subroutine

MOV A,C_Addr_Length ; Setup address length � 8 bits for HT48E50 and
; HT48E70 devices

MOV COUNT,A
SET _SK ; Dummy bit transmission for HT48E50 and

; HT48E70 devices only
CLR _SK ; Not required for other devices

WriteAddr_0:
CLR _DI
SZ ADDR.7 ; Check value of address MSB
SET _DI
CLR C
RLC ADDR ; Get next address bit
SET _SK
CLR _SK
SDZ COUNT ; Check if address LSB has been written
JMP WriteAddr_0
CLR _DI
RET

Chapter 1 Hardware Structure

39

Example 3 � Writing Data to the EEPROM

WriteData:
MOV A,C_Data_Length ; Setup data length
MOV COUNT,A

WriteData_0:
CLR _DI
SZ WR_Data.7 ; Check value of data MSB
SET _DI
CLR C
RLC WR_Data ; Get next address bit
SET _SK
CLR _SK
SDZ COUNT ; Check if data LSB has been written
JMP _0
CLR _CS ; CS low edge initiates internal write cycle
SET _CS ; CS high edge allows DO to be used to indicate

; end of write cycle
SNZ _DO ; Poll for DO high to indicate end of write

; cycle
JMP $-1
RET

Example 4 � Reading Data from the EEPROM

ReadData:
MOV A,C_Data_Length ; Setup data length
MOV COUNT,A
CLR WR_Data

ReadData_0:
CLR C
RLC WR_Data
SET _SK
SZ _DO ; check value of data MSB
SET WR_Data.0
CLR _SK
SDZ COUNT ; check if LSB has been received
JMP _0
MOV A,WR_Data
RET

40

I/O Type MTP MCU with EEPROM

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on their I/O ports. with the input or output des-

ignation of every pin fully under user program control, pull-high options for all ports and wake-up

options on certain pins, the user is provided with an I/O structure to meet the needs of a wide

range of application possibilities.

Depending upon which device or package is chosen, the microcontroller range provides from 13

to 56 bidirectional input/output lines labeled with port names PA, PB, PC, etc. These I/O ports are

mapped to the RAM Data Memory with specific addresses as shown in the Special Purpose Data

Memory table. All of these I/O ports can be used for input and output operations. For input opera-

tion, these ports are non-latching, which means the inputs must be ready at the T2 rising edge of in-

struction �MOV A,[m]�, where m denotes the port address. For output operation, all the data is

latched and remains unchanged until the output latch is rewritten.

Pull-high Resistors

Many product applications require pull-high resistors for their switch inputs usually requiring the

use of an external resistor. To eliminate the need for these external resistors, all I/O pins, when con-

figured as an input have the capability of being connected to an internal pull-high resistor. These

pull-high resistors are selectable via configuration options and are implemented using a weak

PMOS transistor. Note that if the pull-high option is selected, then all I/O pins on that port will be

connected to pull-high resistors, individual pins cannot be selected for pull-high resistor options.

Port A Wake-up

Each device has a HALT instruction enabling the microcontroller to enter a Power Down Mode and

preserve power, a feature that is important for battery and other low-power applications. Various

methods exist to wake-up the microcontroller, one of which is to change the logic condition on one

of the Port A pins from high to low. After a �HALT� instruction forces the microcontroller into enter-

ing the Power Down Mode, the processor will remain in a low-power state until the logic condition

of the selected wake-up pin on Port A changes from high to low. This function is especially suitable

for applications that can be woken up via external switches. Note that each pin on Port A can be se-

lected individually to have this wake-up feature.

I/O Port Control Registers

Each I/O port has its own control register PAC, PBC, PCC, etc., to control the input/output configu-

ration. with this control register, each CMOS output or input with or without pull-high resistor struc-

tures can be reconfigured dynamically under software control. Each pin of the I/O ports is directly

mapped to a bit in its associated port control register. For the I/O pin to function as an input, the cor-

responding bit of the control register must be written as a �1�. This will then allow the logic state of

the input pin to be directly read by instructions. When the corresponding bit of the control register

is written as a �0�, the I/O pin will be setup as a CMOS output. If the pin is currently setup as an out-

put, instructions can still be used to read the output register. However, it should be noted that the

program will in fact only read the status of the output data latch and not the actual logic status of

the output pin. Note that with the exception of the HT48E06 device, there is an additional configura-

tion option for Port A that can select whether the inputs on this port are Schmitt Trigger types or

non-Schmitt Trigger types. Inputs for the other ports are all Schmitt Trigger type.

Chapter 1 Hardware Structure

41

Pin-shared Functions

The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more

than one function. Limited numbers of pins can force serious design constraints on designers but

by supplying pins with multi-functions, many of these difficulties can be overcome. For some pins,

the chosen function of the multi-function I/O pins is set by configuration options while for others the

function is set by application program control.

Buzzer

The buzzer pins BZ and BZ are pin-shared with I/O pins PB0 and PB1. The buzzer function is se-

lected via a configuration option and remains fixed after the device is programmed. Note that the

corresponding bits of the port control register, PBC, must setup the pins as outputs to enable the

buzzer outputs. If the PBC port control register has setup the pins as inputs, then the pins will func-

tion as normal logic inputs with the usual pull-high options, even if the buzzer configuration option

has been selected.

External Interrupt Input

The external interrupt pin INT is pin-shared with the I/O pin PC0 or PG0 depending upon which de-

vice is used. However, for the HT48E70 devices, the external interrupt pin INT is an independent

non-shared pin. For the shared function pins to operate as an external interrupt pin and not as a

normal I/O pin, the corresponding external interrupt enable bits in the INTC interrupt control regis-

ter must be correctly set. For applications not requiring an external interrupt input, the pin-shared

external interrupt pin can be used as a normal I/O pin, however to do this, the external interrupt en-

able bits in the INTC register must be disabled.

External Timer/Event Counter Input

Each device contains either one or two Timer/Event Counters depending upon which one is cho-

sen. Each Timer/Event Counter has an external input pin, known as TMR, TMR0 or TMR1. For all

devices with a single Timer/Event Counter, the external input pin TMR is pin-shared with I/O pin

PC0 or PC1. For devices with two Timer/Event Counters, the external input pins TMR0 and TMR1

are pin-shared with pins PC0 and PC5 respectively or exist as independent non-shared pins de-

pending upon which device and which package is selected. If a shared pin is to be used as a

Timer/Event Counter input, then the corresponding Timer/Event Counter must be configured to be

in the Event Counter or Pulse Width Measurement Mode. This is achieved by setting the appropri-

ate bits in the relevant Timer/Event Counter Control Register. The pin must also be setup as an in-

put by setting the appropriate bit in the Port Control Register. Pull-high resistor options can also be

selected via the appropriate port pull-high configuration option. If the shared pin is to be used as a

normal I/O pin, then the external timer input function must be disabled, by ensuring that the corre-

sponding Timer/Event Counter is configured to be in the Off Mode or Timer Mode.

I/O Pin Structures

The following diagrams illustrate the I/O pin internal structures. As the exact logical construction of

the I/O pin may differ from these drawings, they are supplied as a guide only to assist with the

functional understanding of the I/O pins. Note also that the specified pins refer to the largest de-

vice package, therefore not all pins specified will exist on all devices.

42

I/O Type MTP MCU with EEPROM

Chapter 1 Hardware Structure

43

* � �

�

�

� � 	 � � � 	
 	 � � � � � �
 � �

� J

� H
�

� J

� H
�

� � �
 � � � � + �

� � � � # D � � (
� $
 � � �

� 	
 	 � + � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� (� $ � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � + �

� + 7 � � 	
 	 � + �

+ 8 � < � + 4 � � � � =
+ 8 � < � + 7 � � � � =

+ 8 � � $
 � � �

� � 	 "
� � � � # � $

J

J

� + 7 � + 8
� + 4 � + 8

�

�

PB0~PB1 Input/Output Ports

� 	 " � # � $ � � $
 � � �
� �
 � � � � 	 " � # � $

� � 	 � � � 	
 	 � � � � � �
 � �

� � �
 � � � � + �

� � � � # D � � (
� $
 � � �

� 	
 	 � + � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� (� $ � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � + �

� � 7 K � � 2

� � (� �

 � � � � � � � � � � � $ �
 � � $
 � � �

� � 	 "
� � � � # � $� J

� H
�

J

� J

� H
�

J

* � �

�

�

PA Input/Output Port

Programming Considerations

Within the user program, one of the first things to consider is port initialization. After a reset, all of

the I/O data and port control registers will be set high. This means that all I/O pins will default to an

input state, the level of which depends on the other connected circuitry and whether pull-high op-

tions have been selected. If the port control registers, PAC, PBC, PCC, etc., are then programmed

to setup some pins as outputs, these output pins will have an initial high output value unless the as-

sociated port data registers, PA, PB, PC, etc., are first programmed. Selecting which pins are in-

puts and which are outputs can be achieved byte-wide by loading the correct values into the

appropriate port control register or by programming individual bits in the port control register using

the �SET [m].i� and �CLR [m].i� instructions. Note that when using these bit control instructions, a

read-modify-write operation takes place. The microcontroller must first read in the data on the en-

tire port, modify it to the required new bit values and then rewrite this data back to the output ports.

Port A has the additional capability of providing wake-up functions. When the device is in the

Power Down Mode, various methods are available to wake the device up. One of these is a high to

low transition of any of the Port A pins. Single or multiple pins on Port A can be setup to have this

function.

44

I/O Type MTP MCU with EEPROM

� 4 � 3 � 6 � / � 4 � 3 � 6 � /

� � �
 � �
 � � � � �
 � � 	 � � & � � � � � � �

� �
 � � � � � � � "

� � �
 � � 	
 	

* � �

�

�

� J

� H
�

� J

� H
�

� � �
 � � � � + �

� � � � # D � � (
� $
 � � �

� 	
 	 � + � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� (� $ � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � + �

J

� � 	 "
� � � � # � $

J

� + 3 K � + 2
� � 7 K � � 2
� � 7 K � � 2
� . 7 K � . 2
� ; 7 K � ; 2
� � 7 K � � 2

� 5 � � � � � � � � � 7 � � � � 4
� (� � � � � � � �

� � 	 � � � 	
 	 � � � � � �
 � �

� � � 5 � � < � � 7 � � � 7 � � � � =

� � � � � � � 7 � � � � 4
< � � 7 � � � 4 � � � 0 � � � � =

PB, PC, PD, PE, PF and PG Input/Output Ports

Timer/Event Counters

The provision of timers form an important part of any microcontroller, giving the designer a means

of carrying out time related functions. The devices in the I/O Type MTP MCU with EEPROM series

contain either one or two count-up timers of either 8 or 16-bit capacity depending upon which de-

vice is selected. As each timer has three different operating modes, they can be configured to oper-

ate as a general timer, an external event counter or as a pulse width measurement device. The

provision of an internal prescaler to the clock circuitry of some of the timer/event counters gives

added range to the timer.

There are two types of registers related to the Timer/Event Counters. The first is the register that

contains the actual value of the timer and into which an initial value can be preloaded. Reading

from this register retrieves the contents of the Timer/Event Counter. The second type of associ-

ated register is the Timer Control Register which defines the timer options and determines how the

timer is to be used. All devices can have the timer clock configured to come from the internal clock

source. In addition, the timer clock source can also be configured to come from an external timer

pin. The accompanying table lists the associated timer register names.

HT48E06 HT48E10 HT48E30 HT48E50 HT48E70

No. of 8-bit Timers 1 1 1 1 0

Timer Register Name TMR TMR TMR TMR0 	

Timer Control Register TMRC TMRC TMRC TMR0C 	

No. of 16-bit Timers 0 0 0 1 2

Timer Register Name 	 	 	 TMR1L/TMR1H
TMR0L/TMR0H
TMR1L/TMR1H

Timer Control Register 	 	 	 TMR1C
TMR0C
TMR1C

An external clock source is used when the timer is in the event counting mode, the clock source be-

ing provided on the external timer pin, known as TMR, TMR0 or TMR1 depending on which device

is selected. These external pins may be pin-shared with other I/O pins depending upon which de-

vice and package is chosen. Depending upon the condition of the TE, T0E or T1E bit in the corre-

sponding Timer Control Register, each high to low, or low to high transition on the external timer

input pin will increment the counter by one.

Configuring the Timer/Event Counter Input Clock Source

The internal timer�s clock can originate from various sources, depending upon which device and

which timer is chosen. The system clock input timer source is used when the timer is in the timer

mode or in the pulse width measurement mode. Depending upon which timer and which device is

chosen this system clock timer source may be first divided by a prescaler, the division ratio of

which is conditioned by the Timer Control Register bits PSC2~PSC0 or T0PSC2~T0PSC0.

Chapter 1 Hardware Structure

45

An external clock source is used when the timer is in the event counting mode, the clock source

being provided on an external timer pin, TMR, TMR0 or TMR1 depending upon which device and

which timer is used. Depending upon the condition of the TE, T0E or T1E bit, each high to low, or

low to high transition on the external timer pin will increment the counter by one.

46

I/O Type MTP MCU with EEPROM

� � �

� .

� � � � � � . - � �
 � � � � �
 � �
� � � � � � � �
 � � �

� � 5

� � � � � 	 � � � � � � �
 � �

� � � � � � . - � �
 � � � � �
 � �

� 	
 	 � + � �

� � � � 	 �

� - � � & � � F

 � � � �
 � � � � $

+ 8

+ 8

� � � 3 K � � � 7
< 4 � 3 K 4 � 3 0 1 =

: # + �
 � � � � � � � . - � �
 � � � � �
 � �

� � 4 � � 7

3�

& � @ � : # �
 	 � � � � � � � � 	 � � �

8-Bit Timer/Event Counter Structure � HT48E06, HT48E10 and HT48E30

� � � 7

� 7 .

� � � � � � . - � �
 � � � � �
 � �
� � � � � � � �
 � � �

4 1 # + �

� � � � � 	 � � � � � � �
 � �

� 	
 	 � + � �

� � � � 	 �

� - � � & � � F

 � � � �
 � � � � $

! � F � +
 � � + � & & � �

� 7 � 4 � 7 � 7

� 7 � 5

D � � (� +
 � ! � F � +
 �

4 1 # + �
 � � � � � � � . - � �
 � � � � �
 � �

& � @ � � /

+ 8

+ 8

3�

16-Bit Timer/Event Counter 0 Structure � HT48E70

� � � 7

� 7 .

� � � � � � . - � �
 � � � � �
 � �
� � � � � � � �
 � � �

� � 5

� � � � � 	 � � � � � � �
 � �

� � � � � � . - � �
 � � � � �
 � �

� 	
 	 � + � �

� � � � 	 �

� - � � & � � F

 � � � �
 � � � � $

+ 8

+ 8

< 4 � 3 K 4 � 3 0 1 =

: # + �
 � � � � � � � . - � �
 � � � � �
 � �

� 7 � 4 � 7 � 7

3�

& � @ � : # �
 	 � � � � � � � � 	 � � �

� 7 � � � 3 K � 7 � � � 7

8-Bit Timer/Event Counter 0 Structure � HT48E50

� � � 4

� 4 .

� � � � � � . - � �
 � � � � �
 � �
� � � � � � � �
 � � �

4 1 # + �

� � � � � 	 � � � � � � �
 � �

� 	
 	 � + � �

� � � � 	 �

� - � � & � � F

 � � � �
 � � � � $

! � F � +
 � � + � & & � �

� 4 � 4 � 4 � 7

� 4 � 5

D � � (� +
 � ! � F � +
 �

4 1 # + �
 � � � � � � � . - � �
 � � � � �
 � �

& � @ � � /

+ 8

+ 8

3�

16-Bit Timer/Event Counter 1 Structure � HT48E50 and HT48E70

Timer Registers � TMR, TMR0, TMR0L/TMR0H, TMR1L/TMR1H

The timer registers are special function registers located in the Special Purpose Data Memory and

is the place where the actual timer value is stored. For the 8-bit timer, this register is known as

TMR or TMR0, depending upon which device is used. In the case of the 16-bit timer, a pair of 8-bit

registers is required to store the16-bit timer value. These register pairs are known as TMR0L/

TMR0H or TMR1L/TMR1H depending upon which device and timer is used. The value in the timer

registers increases by one each time an internal clock pulse is received or an external transition oc-

curs on the external timer pin. The timer will count from the initial value loaded by the preload regis-

ter to the full count of FFH for the 8-bit timer or FFFFH for the 16-bit timers at which point the timer

overflows and an internal interrupt signal is generated. The timer value will then be reset with the

initial preload register value and continue counting.

Note that to achieve a maximum full range count of FFH for the 8-bit timer or FFFFH for the 16-bit

timers, the preload registers must first be cleared to all zeros. It should be noted that after

power-on, the preload registers will be in an unknown condition. Note that if the Timer/Event Coun-

ters are in an OFF condition and data is written to their preload registers, this data will be immedi-

ately written into the actual counter. However, if the counter is enabled and counting, any new data

written into the preload data registers during this period will remain in the preload registers and will

only be written into the actual counter the next time an overflow occurs.

For devices which have an internal 16-bit Timer/Event Counter, and which therefore have both low

byte and high byte timer registers, accessing these registers is carried out in a specific way. It must

be noted that when using instructions to preload data into the low byte register, namely TMR0L or

TMR1L, the data will only be placed in a low byte buffer and not directly into the low byte register.

The actual transfer of the data into the low byte register is only carried out when a write to its associ-

ated high byte register, namely TMR0H or TMR1H, is executed. On the other hand, using instruc-

tions to preload data into the high byte timer register will result in the data being directly written to

the high byte register. At the same time the data in the low byte buffer will be transferred into its as-

sociated low byte register. For this reason, when preloading data into the 16-bit timer registers, the

low byte should be written first. It must also be noted that to read the contents of the low byte regis-

ter, a read to the high byte register must first be executed to latch the contents of the low byte

buffer from its associated low byte register. After this has been done, the low byte register can be

read in the normal way. Note that reading the low byte timer register directly will only result in read-

ing the previously latched contents of the low byte buffer and not the actual contents of the low

byte timer register.

Chapter 1 Hardware Structure

47

Timer Control Registers � TMRC, TMR0C, TMR1C

The flexible features of the Holtek microcontroller Timer/Event Counters enable them to operate in

three different modes, the options of which are determined by the contents of their respective control

register. For devices with only one timer, the single Timer Control Register is known as TMRC while

for devices with more than one timer, there are two Timer Control Registers, known as TMR0C and

TMR1C. It is the Timer Control Register together with its corresponding timer registers that control

the full operation of the Timer/Event Counters. Before the timers can be used, it is essential that the

appropriate Timer Control Register is fully programmed with the right data to ensure its correct oper-

ation, a process that is normally carried out during program initialization.

To choose which of the three modes the timer is to operate in, either in the timer mode, the event

counting mode or the pulse width measurement mode, bits 7 and 6 of the Timer Control Register,

which are known as the bit pair TM1/TM0, T0M1/T0M0 or T1M1/T1M0 respectively, depending

upon which timer is used, must be set to the required logic levels. The timer-on bit, which is bit 4 of

the Timer Control Register and known as TON, T0ON or T1ON, depending upon which timer is

used, provides the basic on/off control of the respective timer. Setting the bit high allows the coun-

ter to run, clearing the bit stops the counter. For timers that have prescalers, bits 0~2 of the Timer

Control Register determine the division ratio of the input clock prescaler. The prescaler bit settings

have no effect if an external clock source is used. If the timer is in the event count or pulse width

measurement mode, the active transition edge level type is selected by the logic level of bit 3 of the

Timer Control Register which is known as TE, T0E or T1E, depending upon which timer is used.

48

I/O Type MTP MCU with EEPROM

5 �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � G 7 G

% 2

. - � �
 � � � � �
 � � � � �
 � - � � . � � � � � � � � �

4 A � � � � �
 � � � � & 	 � � � � � � � � � �
7 A � � � � �
 � � � � � � � � � � � � � � � �

� .� � 5� � 7� � 4

� � � � � � � � � � � 	 � � � � � 	
 � � � � � � �

� � � 3
7
7
7
7
4
4
4
4

% 7

� � � 3 � � � 4 � � � 7

� � � 4
7
7
4
4
7
7
4
4

� � � 7
7
4
7
4
7
4
7
4

� � � � � � � 	
 �
� � � � � 4 A 3
� � � � � 4 A /
� � � � � 4 A :
� � � � � 4 A 4 1
� � � � � 4 A 6 3
� � � � � 4 A 1 /
� � � � � 4 A 4 3 :
� � � � � 4 A 3 0 1

� � � � � � . - � �
 � � � � �
 � � � � � � �
 � � � � . � 	 % � �
4 A � � � 	 % � �
7 A � � � � 	 % � �

� $ � � 	
 � � � � � � � � � � � � � �

� � 4
7
7
4
4

� � 7
7
4
7
4

� � � � � � � � 	 - 	 � � 	 % � �
� - � �
 � � � � �
 � � � � � � � �

 � � � � � � � � �
$ � � � � � F � �
 (� � � 	 � � � � � � �
 � � � � �

� � � � � � � � �
 (� � � 	 � � � � � � �
 � � �
 � - � � . � � � � � � � � �

4 A � �
 	 �
 � � � � �
 � � � � � � � � � � � � � � � � � � B � �
 � $ � � � � & 	 � � � � � � � � � �
7 A � �
 	 �
 � � � � �
 � � � � � � � & 	 � � � � � � � � � � B � �
 � $ � � � � � � � � � � � � � � � �

� �) ! � � * � � � ' � + � � ! � ' � � � ! � (� # $ � % � !
� & # ' � � � � � � � � � � � � , � � � � � � � � � � � - � � � � � � � �

Chapter 1 Hardware Structure

49

� �) ! � � * � � � ' � + � � ! � ' � � � ! � (� # $ � % � !
� & # � ' � � � � � � � � � � � �

5 �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � G 7 G

% 2

. - � �
 � � � � �
 � � � � �
 � - � � . � � � � � � � � �

4 A � � � � �
 � � � � & 	 � � � � � � � � � �
7 A � � � � �
 � � � � � � � � � � � � � � � �

� 7 .� 7 � 5� 7 � 7� 7 � 4

� � � � � � � � � � � 	 � � � � � 	
 � � � � � � �

� 7 � � � 3
7
7
7
7
4
4
4
4

% 7

� 7 � � � 3 � 7 � � � 4 � 7 � � � 7

� 7 � � � 4
7
7
4
4
7
7
4
4

� 7 � � � 7
7
4
7
4
7
4
7
4

� � � � � � � 	
 �
� � � � � 4 A 3
� � � � � 4 A /
� � � � � 4 A :
� � � � � 4 A 4 1
� � � � � 4 A 6 3
� � � � � 4 A 1 /
� � � � � 4 A 4 3 :
� � � � � 4 A 3 0 1

� � � � � � . - � �
 � � � � �
 � � � � � � �
 � � � � . � 	 % � �
4 A � � � 	 % � �
7 A � � � � 	 % � �

� $ � � 	
 � � � � � � � � � � � � � �

� 7 � 4
7
7
4
4

� 7 � 7
7
4
7
4

� � � � � � � � 	 - 	 � � 	 % � �
� - � �
 � � � � �
 � � � � � � � �

 � � � � � � � � �
$ � � � � � F � �
 (� � � 	 � � � � � � �
 � � � � �

� � � � � � � � �
 (� � � 	 � � � � � � �
 � � �
 � - � � . � � � � � � � � �

4 A � �
 	 �
 � � � � �
 � � � � � � � � � � � � � � � � � � B � �
 � $ � � � � & 	 � � � � � � � � � �
7 A � �
 	 �
 � � � � �
 � � � � � � � & 	 � � � � � � � � � � B � �
 � $ � � � � � � � � � � � � � � � �

% 2

� 7 .� 7 � 5� 7 � 7� 7 � 4

% 7

� 7 � 4
7
7
4
4

� 7 � 7
7
4
7
4

� � � � � � � � 	 - 	 � � 	 % � �
� - � �
 � � � � �
 � � � � � � �

 � � � � � � � � �
$ � � � � � F � �
 (� � � 	 � � � � � � �
 � � � � �

� �) ! � � * � � � ' � + � � ! � ' � � � ! � (� # $ � % � !
� & # � ' � � � � � � � � � � � �

5 �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � G 7 G

. - � �
 � � � � �
 � � � � �
 � - � � . � � � � � � � � �

4 A � � � � �
 � � � � & 	 � � � � � � � � � �
7 A � � � � �
 � � � � � � � � � � � � � � �

� � � � � � � � �
 (� � � 	 � � � � � � �
 � � �
 � - � � . � � � � � � � � �

4 A � �
 	 �
 � � � � �
 � � � � � � � � � � � � � � � � � � B � �
 � $ � � � � & 	 � � � � � � � � � �
7 A � �
 	 �
 � � � � �
 � � � � � � � & 	 � � � � � � � � � � B � �
 � $ � � � � � � � � � � � � � � �

� � � � � � . - � �
 � � � � �
 � � � � � � �
 � � � � . � 	 % � �
4 A � � � 	 % � �
7 A � � � � 	 % � �

5 �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � G 7 G

� $ � � 	
 � � � � � � � � � � � � � �

The HT48E50 and HT48E70 devices have two internal timers, Timer/Event Counter 0 and

Timer/Event Counter 1, and therefore require an additional Timer Control Register TMR1C.

Configuring the Timer Mode

In this mode, the timer can be utilized to measure fixed time intervals, providing an internal inter-

rupt signal each time the counter overflows. To operate in this mode, the bit pair, TM1/TM0,

T0M1/T0M0 or T1M1/T1M0, depending upon which timer is used, must be set to 1 and 0, respec-

tively. In this mode the internal clock is used as the timer clock. Note that for the 8-bit timers, which

are the single Timer/Event Counters in the HT48E06, HT48E10 and HT48E30 devices and Timer/

Event Counter 0 in the HT48E50 device, the timer input clock source is fSYS. However, this timer

clock source is further divided by a prescaler, the value of which is determined by the bits

PSC2~PSC0 or T0PSC2~T0PSC0 in the relevant Timer Control Register. For the remaining

Timer/Event Counters, which are the 16-bit Timer/Event Counters, the input clock frequency is

fSYS/4. There is no prescaler function for the 16-bit timers. The timer-on bit, TON, T0ON or T1ON,

depending upon which timer is used, must be set high to enable the timer to run. Each time an inter-

nal clock high to low transition occurs, the timer increments by one; when the timer is full and over-

flows, an interrupt signal is generated and the timer will preload the value already loaded into the

preload register and continue counting. The timer interrupts can be disabled by ensuring that the

ETI, ET0I or ET1I bits in the INTC register are reset to zero. It should be noted that a timer overflow

and corresponding timer interrupt is one of the wake-up sources.

50

I/O Type MTP MCU with EEPROM

� 4 � 4
7
7
4
4

� 4 � 7
7
4
7
4

� � � � � � � � 	 - 	 � � 	 % � �
� - � �
 � � � � �
 � � � � � � �

 � � � � � � � � �
$ � � � � � F � �
 (� � � 	 � � � � � � �
 � � � � �

� �) ! � � * � � � ' � + � � ! � ' � � � ! � (� # $ � % � !
� & # � ' � � � � � � � � � � � � � � � - � � � � � � � �

% 2

� 4 .� 4 � 5� 4 � 7� 4 � 4

% 7

5 �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � G 7 G

. - � �
 � � � � �
 � � � � �
 � - � � . � � � � � � � � �

4 A � � � � �
 � � � � & 	 � � � � � � � � � �
7 A � � � � �
 � � � � � � � � � � � � � � �

� � � � � � � � �
 (� � � 	 � � � � � � �
 � � �
 � - � � . � � � � � � � � �

4 A � �
 	 �
 � � � � �
 � � � � � � � � � � � � � � � � � � B � �
 � $ � � � � & 	 � � � � � � � � � �
7 A � �
 	 �
 � � � � �
 � � � � � � � & 	 � � � � � � � � � � B � �
 � $ � � � � � � � � � � � � � � �

� � � � � � . - � �
 � � � � �
 � � � � � � �
 � � � � . � 	 % � �
4 A � � � 	 % � �
7 A � � � � 	 % � �

5 �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � G 7 G

� $ � � 	
 � � � � � � � � � � � � � �

� � � � � � � �

� � � � � � � � �
 � � � � � �

� � � � � � � � � � " � � �
� � � � � 	 � � � � � �
 $ �

� � � � � � ? � 4 � � � � � � ? � 3 � � � � � � ? � 5 � � � � � � ? � 5 � ? � 4

Timer Mode Timing Chart

Configuring the Event Counter Mode

In this mode, a number of externally changing logic events, occurring on the external timer pin, can

be recorded by the internal timer. For the timer to operate in the event counting mode, the bit pair,

TM1/TM0, T0M1/T0M0 or T1M1/T1M0, depending upon which timer is used, must be set to 0 and

1, respectively. The timer-on bit, TON, T0ON or T1ON, depending upon which timer is used, must

be set high to enable the timer to count. Depending upon which counter is used, if the TE, T0E or

T1E bit is low, the counter will increment each time the external timer pin receives a low to high

transition. If the TE, T0E or T1E bit is high, the counter will increment each time the external timer

pin receives a high to low transition. As in the case of the other two modes, when the counter is full,

the timer will overflow and generate an internal interrupt signal. The counter will then preload the

value already loaded into the preload register. If the external timer pins are pin-shared with other

I/O pins, to ensure that the pin is configured to operate as an event counter input pin, two things

have to happen. The first is to ensure that the TM1/TM0, T0M1/T0M0 or T1M1/T1M0 bits place the

Timer/Event Counter in the event counting mode, the second is to ensure that the port control reg-

ister configures the pin as an input. It should be noted that in this event counting mode, the

Timer/Event Counter will continue to record externally changing logic events on the timer input

pin, even if the microcontroller is in the Power Down Mode. As a result when the timer overflows it

will generate a timer interrupt and corresponding wake-up source. Note that the timer interrupts

can be disabled by ensuring that the ETI, ET0I or ET1I bits in the INTC register are reset to zero.

Configuring the Pulse Width Measurement Mode

In this mode, the width of external pulses applied to the external timer pin can be measured. In the

Pulse Width Measurement Mode the timer clock source is supplied by the internal clock. For the

timer to operate in this mode, the bit pair, TM1/TM0, T0M1/T0M0 or T1M1/T1M0, depending upon

which timer is used, must both be set high. Depending upon which counter is used, if the TE, T0E

or T1E bit is low, once a high to low transition has been received on the external timer pin, the timer

will start counting until the external timer pin returns to its original high level. At this point the TON,

T0ON or T1ON bit, depending upon which counter is used, will be automatically reset to zero and

the timer will stop counting. If the TE, T0E or T1E bit is high, the timer will begin counting once a

low to high transition has been received on the external timer pin and stop counting when the exter-

nal timer pin returns to its original low level. As before, the TON, T0ON or T1ON bit will be automati-

cally reset to zero and the timer will stop counting. It is important to note that in the Pulse Width

Measurement Mode, the TON, T0ON or T1ON bit is automatically reset to zero when the external

control signal on the external timer pin returns to its original level, whereas in the other two modes

the TON, T0ON or T1ON bit can only be reset to zero under program control. The residual value in

the timer, which can now be read by the program, therefore represents the length of the pulse re-

ceived on the external timer pin. As the TON, T0ON or T1ON bit has now been reset, any further

transitions on the external timer pin, will be ignored. Not until the TON, T0ON or T1ON bit is again

set high by the program can the timer begin further pulse width measurements. In this way, single

shot pulse measurements can be easily made. It should be noted that in this mode the counter is

controlled by logical transitions on the external timer pin and not by the logic level.

Chapter 1 Hardware Structure

51

� � � � � ? 3 � � � � � ? 6

. >
 � � � 	 � � . - � �

� � � � � � � �

� � � � � � � � � �
 � �

� � � � � ? 4

Event Counter Mode Timing Chart

As in the case of the other two modes, when the counter is full, the timer will overflow and generate

an internal interrupt signal. The counter will also be reset to the value already loaded into the

preload register. If the external timer pin is pin-shared with other I/O pins, to ensure that the pin is

configured to operate as a pulse width measuring input pin, two things have to happen. The first is

to ensure that the TM1/TM0, T0M1/T0M0 or T1M1/T1M0 bits place the Timer/Event Counter in

the pulse width measuring mode, the second is to ensure that the port control register configures

the pin as an input. It should be noted that a timer overflow and corresponding timer interrupt is

one of the wake-up sources. Note that the timer interrupts can be disabled by ensuring that the

ETI, ET0I or ET1I bits in the INTC register are reset to zero.

Programmable Frequency Divider (PFD) and Buzzer Application

Operating similar to a programmable frequency divider, the buzzer function within the

microcontroller provides a means of producing a variable frequency output suitable for applica-

tions, such as piezo-buzzer driving or other interfaces requiring a precise frequency generator.

The BZ and BZ are a complimentary pair and pin-shared with I/O pins, PB0 and PB1. The function

is selected via configuration option, however, if not selected, the pins can operate as normal I/O

pins. Note that the BZ pin is the inverse of the BZ pin generating a kind of differential output and

supplying more power to connected interfaces such as buzzers.

The timer overflow signal is the clock source for the buzzer circuit. The output frequency is con-

trolled by loading the required values into the timer prescaler and timer registers to give the re-

quired division ratio. The counter will begin to count-up from this preload register value until full, at

which point an overflow signal is generated, causing both the BZ and BZ outputs to change state.

The counter will then be automatically reloaded with the preload register value and continue count-

ing-up. Refer to the relevant Timer/Event Counters section for details of its settings and opera-

tions. For the HT48E50 and HT48E70 devices, either Timer/Event Counter 0 or Timer/Event

Counter 1 can form the clock source for the buzzer function, selectable via configuration option.

If the configuration option has selected the buzzer function, then for both buzzer outputs to oper-

ate, it is essential that the Port B control register PBC bit 0 and PBC bit 1 are setup as outputs. If

only one pin is setup as an output, the other pin can still be used as a normal data input pin. How-

ever, if both pins are setup as inputs then the buzzer will not function. The buzzer outputs will only

be activated if bit PB0 is set to �1�. This output data bit is used as the on/off control bit for the

buzzer outputs. Note that the BZ and BZ outputs will both be low if the PB0 output data bit is

cleared to �0�. The condition of data bit PB1 has no effect on the overall control of the BZ and BZ

pins.

52

I/O Type MTP MCU with EEPROM

? 4 ? 3 ? 6 ? /� � � � �

. >
 � � � 	 � � � � � � �
� � � � � � $ �

� � 5 B � � 7 � 5 � � � � � 4 � 5
< F �
 (� � . B � � 7 . � � � � � 4 . � I � 7 =

� � � � � � � � � � � � � � 	 � � � � � �
 $ �

� � � � � � � �

� � � � � � � � � �
 � �

� � � � � 	 � � � � � �
 $ �
 � � � � � 	 � $ � � � � 	
 � � - � � � & 	 � � � � � � � � � � � � & � � 4 '

Pulse Width Measurement Mode Timing Chart

Using this method of frequency generation, and if a crystal oscillator is used for the system clock,

very precise values of frequency can be generated.

Prescaler

The single timer in the HT48E06, HT48E10 and HT48E30, and Timer/Event Counter 0 in the

HT48E50 all possess a prescaler. Bits 0~2 of their associated Timer Control Register, namely bits

PSC0~ PSC2 or T0PSC0~T0PSC2, define the prescaling stages of the internal clock source of

the Timer/Event Counter.

I/O Interfacing

The Timer/Event Counter, when configured to run in the event counter or pulse width measure-

ment mode, require the use of external pins for correct operation. As these external timer pins may

be pin-shared with other I/O pins, depending upon which device is selected, they must be config-

ured correctly to ensure they are setup for use as Timer/Event Counter inputs and not as normal

I/O pins. This is implemented by ensuring that the mode select bits in the Timer/Event Counter con-

trol register, select either the event counter or pulse width measurement mode. Additionally the

Port Control Register bits for these pins must be set high to ensure that the pin is setup as an input.

Any pull high configuration for these pins will remain valid even if the pin is used as a Timer/Event

Counter input.

Programming Considerations

When configured to run in the timer mode, the internal system clock is used as the timer clock

source and is therefore synchronized with the overall operation of the microcontroller. In this

mode, when the appropriate timer register is full, the microcontroller will generate an internal inter-

rupt signal directing the program flow to the respective internal interrupt vector. For the pulse width

measurement mode, the internal system clock is also used as the timer clock source but the timer

will only run when the correct logic condition appears on the external timer input pin. As this is an

external event and not synchronised with the internal timer clock, the microcontroller will only see

this external event when the next timer clock pulse arrives. As a result there may be small differ-

ences in measured values requiring programmers to take this into account during programming.

The same applies if the timer is configured to be in the event counting mode which again is an ex-

ternal event and not synchronised with the internal system or timer clock.

Chapter 1 Hardware Structure

53

� � � � � � � - � � & � � F

+ � , , � � � � � � � "

� + 7 � � 	
 	

+ 8 � � �
 $ �
 � 	
 � � + 7

+ 8 � � �
 $ �
 � 	
 � � + 4

PFD Output Control

When the 8-bit Timer/Event Counter or the high byte of the 16-bit Timer/Event Counter is read or if

data is written to the preload registers, the clock is inhibited to avoid errors, however as this may re-

sult in a counting error, this should be taken into account by the programmer. Care must be taken

to ensure that the timers are properly initialised before using them for the first time. The associated

timer enable bits in the interrupt control register must be properly set otherwise the internal inter-

rupt associated with the timer will remain inactive. The edge select, timer mode and clock source

control bits in timer control register must also be correctly set to ensure the timer is properly config-

ured for the required application. It is also important to ensure that an initial value is first loaded

into the timer registers before the timer is switched on; this is because after power-on the initial val-

ues of the timer registers are unknown. After the timer has been initialised the timer can be turned

on and off by controlling the enable bit in the timer control register.

Timer Program Example

The following example program section is based on the HT48E50 device, which contains one inter-

nal 8-bit Timer/Event Counter and one internal 16-bit Timer/Event Counter. Programming the

Timer/Event Counters for other devices is conducted in a very similar way. The program shows

how the Timer/Event Counter registers are setup along with how the interrupts are enabled and

managed. Points to note in the example are how, for the 16-bit Timer/Event Counters, the low byte

must be written first, this is because the 16-bit data will only be written into the actual timer register

when the high byte is loaded. Also note how the Timer/Event Counter is turned on, by setting bit 4

of the respective Timer Control Register. The Timer/Event Counter can be turned off in a similar

way by clearing the same bit. This example program sets the Timer/Event Counters to be in the

timer mode, which uses the internal system clock as their clock source.

include ht48e50.inc
jmp begin

:
:

org 04h ; external interrupt vector
reti
org 08h ; Timer Counter 0 interrupt vector
jmp tmr0int ; jump here when Timer 0 overflows
org 0ch ; Timer Counter 1 interrupt vector
jmp tmr1int ; jump here when Timer 1 overflows

:
:

org 20h ; main program
:
:

;internal Timer 0 interrupt routine
tmr0int:

:
; Timer 0 main program placed here

:
reti

:
;internal Timer 1 interrupt routine
tmr1int:

:
; Timer 1 main program placed here

:
reti

:
:

54

I/O Type MTP MCU with EEPROM

begin:
;setup Timer 0 registers

mov a,09bh ; setup Timer 0 preload value
mov tmr0,a;
mov a,081h ; setup Timer 0 control register
mov tmr0c,a ; timer mode and prescaler set to /4

;setup Timer 1 registers
clr tmr1l ; clear both low and high bytes to give maximum

; count
clr tmr1h
mov a,080h ; setup Timer 1 control register
mov tmr1c,a ; Timer 1 has no prescaler

;setup interrupt register
mov a,00dh ; enable master interrupt and both timer

; interrupts
mov intc,a

:
:

set tmr0c.4 ; start Timer 0
set tmr1c.4 ; start Timer 1

:
:

Interrupts

The I/O Type MTP MCU with EEPROM series each contains a range of both external and internal

interrupt functions. The external interrupt is controlled by the action of an external interrupt pin,

which is present on all devices. One internal interrupt control register contains the control bits,

which manage the enable/disable function of the individual interrupts and their corresponding inter-

rupt request flags.

Interrupt Registers

A single interrupt control register, known as INTC is provided to control all the interrupt control fea-

tures.

Once an interrupt subroutine is serviced, all the other interrupts will be blocked, as the EMI bit will

be cleared automatically. This will prevent any further interrupt nesting from occurring. However, if

other interrupt requests occur during this interval, although the interrupt will not be immediately ser-

viced, the request flag will still be recorded. If an interrupt requires immediate servicing while the

program is already in another interrupt service routine, the EMI bit should be set after entering the

routine, to allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged,

even if the related interrupt is enabled, until the Stack Pointer is decremented. If immediate ser-

vice is desired, the stack must be prevented from becoming full.

All interrupts have the capability of waking up the processor when in the Power Down Mode. As an

interrupt is serviced, a control transfer occurs by pushing the Program Counter onto the stack, fol-

lowed by a branch to a subroutine at a specified location in the Program Memory. Only the Pro-

gram Counter is pushed onto the stack. If the contents of the accumulator or status register or

other registers are altered by the interrupt service program, which may corrupt the desired control

sequence, then the contents should be saved in advance.

Chapter 1 Hardware Structure

55

56

I/O Type MTP MCU with EEPROM

� . � ' � # $ � % � ! � � � � � � � � � � � � � � � - � � � � � � � �

% 2 % 7

. � 7 � . . � . � �. � ;� � 7 ;� 4 ; . � 4 �

� 	 �
 � � � � �
 � � � � $
 � � � � % 	 � � . � 	 % � �
4 A � � � � % 	 � � � � 	 % � �
7 A � � � � % 	 � � � � � 	 % � �

. >
 � � � 	 � � � �
 � � � � $
 � . � 	 % � �
4 A � � � 	 % � �
7 A � � � � 	 % � �

� � � � � � . - � �
 � � � � �
 � � � 7 � � �
 � � � � $
 � . � 	 % � �
4 A � � � 	 % � �
7 A � � � � 	 % � �

� � � � � � . - � �
 � � � � �
 � � � 4 � � �
 � � � � $
 � . � 	 % � �
4 A � � � 	 % � �
7 A � � � � 	 % � �

. >
 � � � 	 � � � �
 � � � � $
 � � � L � � �
 � ; � 	 �
4 A � 	 �
 � - �
7 A � � � 	 �
 � - �

� � � � � � . - � �
 � � � � �
 � � � 7 � � �
 � � � � $
 � � � L � � �
 � ; � 	 �
4 A � 	 �
 � - �
7 A � � � 	 �
 � - �

� � � � � � . - � �
 � � � � �
 � � � 4 � � �
 � � � � $
 � � � L � � �
 � ; � 	 �
4 A � 	 �
 � - �
7 A � � � 	 �
 � - �

5 �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � G 7 G

� . � ' � # $ � % � ! � � � � � � � � � � � � , � � � � � � � � � � � - � � � � � � � �

% 2 % 7

. � � . . � . � �. � ;� � ;

� 	 �
 � � � � �
 � � � � $
 � � � � % 	 � � . � 	 % � �
4 A � � � � % 	 � � � � 	 % � �
7 A � � � � % 	 � � � � � 	 % � �

. >
 � � � 	 � � � �
 � � � � $
 � . � 	 % � �
4 A � � � 	 % � �
7 A � � � � 	 % � �

� � � � � � . - � �
 � � � � �
 � � � � �
 � � � � $
 � . � 	 % � �
4 A � � � 	 % � �
7 A � � � � 	 % � �

5 �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � G 7 G

. >
 � � � 	 � � � �
 � � � � $
 � � � L � � �
 � ; � 	 �
4 A � 	 �
 � - �
7 A � � � 	 �
 � - �

� � � � � � . - � �
 � � � � �
 � � � � �
 � � � � $
 � � � L � � �
 � ; � 	 �
4 A � 	 �
 � - �
7 A � � � 	 �
 � - �

5 �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � G 7 G

The various interrupt enable bits, together with their associated request flags, are shown in the fol-

lowing diagrams with their order of priority.

Interrupt Priority

Interrupts, occurring in the interval between the rising edges of two consecutive T2 pulses, will be

serviced on the latter of the two T2 pulses, if the corresponding interrupts are enabled. In case of si-

multaneous requests, the following table shows the priority that is applied.

Interrupt Source
HT48E06
Priority

HT48E10
Priority

HT48E30
Priority

HT48E50
Priority

HT48E70
Priority

External Interrupt 1 1 1 1 1

Timer/Event Counter or
Timer/Event Counter 0 Overflow

2 2 2 2 2

Timer/Event Counter 1 Overflow N/A N/A N/A 3 3

Note For the HT48E06, HT48E10 and HT48E30 devices, there is only one timer. The HT48E50 and

HT48E70 devices have two internal timers.

In cases where several interrupts are enabled, and where more than one interrupt occur simulta-

neously, the interrupt that is serviced first will follow the order shown in the table. Suitable masking

of the individual interrupts using the INTC register can prevent simultaneous occurrences.

Chapter 1 Hardware Structure

57

� �
 � � 	
 � � 	 � � � � � � 	 � � � � % � � � �
� 	 � � 	 � � � � �
 � � � � � � � 	 � � � � % � � � &
 F 	 � �

. >
 � � � 	 � � � �
 � � � � $

� � L � � �
 � ; � 	 � � . � ;

� � � � � � . - � �
 � � � � �
 � �
� �
 � � � � $
 � � � L � � �
 � ; � 	 � � � ;

. . �

. � �

. � �

� �
 � � 	
 � � 	 � � � � � � 	 % � � � � % � � � �
� 	 � � % � � . � 	 % � � � � � 	 � � 	 � �

� � � � � �

D � � (

! � F

� �
 � � � � $

� � � � � � �

Interrupt Scheme � HT48E06, HT48E10 and HT48E30

� �
 � � 	
 � � 	 � � � � � � 	 � � � � % � � � �
� 	 � � 	 � � � � �
 � � � � � � � 	 � � � � % � � � &
 F 	 � �

. >
 � � � 	 � � � �
 � � � � $

� � L � � �
 � ; � 	 � � . � ;

� � � � � � . - � �
 � � � � �
 � � � 7
� �
 � � � � $
 � � � L � � �
 � ; � 	 � � � 7 ;

� � � � � � . - � �
 � � � � �
 � � � 4
� �
 � � � � $
 � � � L � � �
 � ; � 	 � � � 4 ;

. . �

. � 7 �

. � 4 �

. � �

� �
 � � 	
 � � 	 � � � � � � 	 % � � � � % � � � �
� 	 � � % � � . � 	 % � � � � � 	 � � 	 � �

� � � � � �

D � � (

! � F

� �
 � � � � $

� � � � � � �

Interrupt Scheme � HT48E50 and HT48E70

External Interrupt

For an external interrupt to occur, the corresponding external interrupt enable bit must be first set.

This enable bit is bit 1 of the INTC register and is known as EEI. An external interrupt is triggered

by a high to low transition on the external interrupt pin, after which the related interrupt request flag

will be set. This is bit 4 of the INTC register and is known as EIF. When the master interrupt and ex-

ternal interrupt bits are enabled, the stack is not full and a high to low transition occurs on the exter-

nal interrupt pin, a subroutine call to the corresponding external interrupt vector, which is located

at 04H, will occur. After entering the interrupt execution routine, the corresponding interrupt re-

quest flag, EIF, will be reset and the EMI bit will be cleared to disable other interrupts. Depending

upon which device is selected, the INT pin may be pin-shared with PC0 or PG0 or may exist as an

independent pin. If pin-shared, the pin must first be setup as an input to enable correct operation.

Timer/Event Counter Interrupt

For a timer generated internal interrupt to occur, the corresponding timer interrupt enable bit must

be first set. For devices with a single timer, this is bit 2 of the INTC register and is known as ETI.

For devices with two timers, the Timer/Event Counter 0 interrupt enable is bit 2 of the INTC register

and known as ET0I while the Timer 1 interrupt enable is bit 3 of the INTC register and known as

ET1I. An actual Timer/Event Counter interrupt will be initialised when the Timer/Event Counter in-

terrupt request flag is set, caused by a timer overflow. For devices which have a single timer, this is

bit 5 of the INTC register and is known as TF. For devices which have two timers, the Timer/Event

Counter 0 request flag is bit 5 of the INTC register and known as T0F, while the Timer/Event Coun-

ter 1 request flag is bit 6 of the INTC register and known as T1F. When the master interrupt global

enable bit is set, the stack is not full and the corresponding timer interrupt enable bit is set, an inter-

nal interrupt will be generated when the corresponding timer overflows. This will create a subrou-

tine call to location 08H for devices with a single timer. For devices with two timers, a subroutine

call to location 08H will occur for Timer/Event Counter 0 and a subroutine call to location 0CH for

Timer/Event Counter 1. After entering the timer interrupt execution routine, the corresponding

timer interrupt request flag, either, TF, T0F or T1F will be reset and the EMI bit will be cleared to dis-

able other interrupts.

Programming Considerations

The interrupt request flags, TF, T0F, T1F and EIF, together with the interrupt enable bits ETI, ET0I,

ET1I, EEI and EMI, form the interrupt control register INTC, which is located in the Data Memory.

By disabling the interrupt enable bits, a requested interrupt can be prevented from being serviced,

however, once an interrupt request flag is set, it will remain in this condition in the INTC register un-

til the corresponding interrupt is serviced or until the request flag is cleared by a software instruc-

tion.

It is recommended that programs do not use the �CALL subroutine� instruction within the interrupt

subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately

in some applications. If only one stack is left and the interrupt is not well controlled, the original con-

trol sequence will be damaged once a �CALL subroutine� is executed in the interrupt subroutine.

58

I/O Type MTP MCU with EEPROM

Reset and Initialization

A reset function is a fundamental part of any microcontroller ensuring that the device can be set to

some predetermined condition irrespective of outside parameters. The most important reset condi-

tion is after power is first applied to the microcontroller. In this case, internal circuitry will ensure

that the microcontroller, after a short delay, will be in a well defined state and ready to execute the

first program instruction. After this power-on reset, certain important internal registers will be set to

defined states before the program commences. One of these registers is the Program Counter,

which will be reset to zero forcing the microcontroller to begin program execution from the lowest

Program Memory address.

In addition to the power-on reset, situations may arise where it is necessary to forcefully apply a re-

set condition when the microcontroller is running. One example of this is where after power has

been applied and the microcontroller is already running, the RES line is forcefully pulled low. In

such a case, known as a normal operation reset, some of the microcontroller registers remain un-

changed allowing the microcontroller to proceed with normal operation after the reset line is al-

lowed to return high. Another type of reset is when the Watchdog Timer overflows and resets the

microcontroller. All types of reset operations result in different register conditions being setup.

Another reset exists in the form of a Low Voltage Reset, LVR, where a full reset, similar to the RES

reset is implemented in situations where the power supply voltage falls below a certain threshold.

Reset Functions

There are five ways in which a microcontroller reset can occur, through events occurring both inter-

nally and externally:

Power-on Reset

The most fundamental and unavoidable reset is the one that occurs after power is first applied to

the microcontroller. As well as ensuring that the Program Memory begins execution from the first

memory address, a power-on reset also ensures that certain other registers are preset to known

conditions. All the I/O port and port control registers will power-up in a high condition ensuring that

all pins will be first set to inputs.

Although the microcontroller has an internal RC reset function, if the VDD power supply rise time is

not fast enough or does not stabilise quickly at power-on, the internal reset function may be incapa-

ble of providing proper reset operation. For this reason it is recommended that an external RC net-

work is connected to the RES pin, whose additional time delay will ensure that the RES pin

remains low for an extended period to allow the power supply to stabilise. During this time delay,

normal operation of the microcontroller will be inhibited. After the RES line reaches a certain volt-

age value, the reset delay time tRSTD is invoked to provide an extra delay time after which the

microcontroller will begin normal operation. The abbreviation SST in the figures stands for System

Start-up Timer.

Chapter 1 Hardware Structure

59

For most circuits a resistor connected between VDD and the RES pin and a capacitor connected

between VSS and the RES pin will suffice, however for more reliable operation the following circuit

is recommended.

RES Pin Reset

This type of reset occurs when the microcontroller is already running and the RES pin is forcefully

pulled low by external hardware such as an external switch. In this case, as in the case of other re-

sets, the Program Counter will reset to zero and program execution initiated from this point.

Low Voltage Reset � LVR

The microcontroller contains a low voltage reset circuit in order to monitor the supply voltage of the

device, which is selected via a configuration option. If the supply voltage of the device drops to within

a range of 0.9V~VLVR such as might occur when changing the battery, the LVR will automatically re-

set the device internally. The LVR includes the following specifications: For a valid LVR signal, a low

voltage, i.e., a voltage in the range between 0.9V~VLVR must exist for greater than 1ms. If the low volt-

age state does not exceed 1ms, the LVR will ignore it and will not perform a reset function.

60

I/O Type MTP MCU with EEPROM

� . �

� � � � � � � � # � �

� �
 � � � 	 � � � � � �

7 ' 9 � * � �

7 ' / � * � �

 � � � �

RES Reset Timing Chart

� . �

* � �

� � � � � � � � # � �

� �
 � � � 	 � � � � � �

7 ' 9 � * � �

 � � � �

Power-On Reset Timing Chart

� . �

7 ' 4 � ;

4 7 7 " �

* � �

* � �

7 ' 7 4 � ;

4 7 " �

Reset Circuit

! * �

� � � � � � � � # � �

� �
 � � � 	 � � � � � �

 � � � �

Low Voltage Reset Timing Chart

Watchdog Time-out Reset during Normal Operation

The Watchdog time-out Reset during normal operation is the same as a hardware RES pin reset

except that the Watchdog time-out flag TO will be set to �1�.

Watchdog Time-out Reset during Power Down

The Watchdog time-out Reset during Power Down is a little different from other kinds of reset.

Most of the conditions remain unchanged except that the Program Counter and the Stack Pointer

will be cleared to �0� and the TO flag will be set to �1�. Refer to the A.C. Characteristics for tSST de-

tails.

The different types of reset described affect the reset flags in different ways. These flags, known

as PDF and TO are located in the status register and are controlled by various microcontroller op-

erations, such as the Power Down function or Watchdog Timer. The reset flags are shown in the ta-

ble:

TO PDF RESET Conditions

0 0 RES reset during power-on

u u RES or LVR reset during normal operation

1 u WDT time-out reset during normal operation

1 1 WDT time-out reset during Power Down

�u� stands for unchanged

The following table indicates the way in which the various components of the microcontroller are af-

fected after a power-on reset occurs.

Item Condition After RESET

Program Counter Reset to zero

Interrupts All interrupts will be disabled

WDT Clear after reset, WDT begins counting

Timer/Event Counter All Timer Counters will be turned off

Prescaler The Timer Counter Prescaler will be cleared

Input/Output Ports All I/O ports will be setup as inputs

Stack Pointer Stack Pointer will point to the top of the stack

Chapter 1 Hardware Structure

61

� � � � � � � � # � �

� � � � � � � � # � �

� �
 � � � 	 � � � � � �

 � � � �

WDT Time-out Reset during Normal Operation Timing Chart

� � � � � � � � # � �

� � � � � � � � # � �

 � � �

WDT Time-out Reset during Power Down Timing Chart

The different kinds of resets all affect the internal registers of the microcontroller in different ways.

To ensure reliable continuation of normal program execution after a reset occurs, it is important to

know what condition the microcontroller is in after a particular reset occurs. The following table de-

scribes how each type of reset affects each of the microcontroller internal registers. Note that

where more than one package type exists the table will reflect the situation for the larger package

type.

HT48E06 and HT48E10

Register Reset (Power-on) RES or LVR Reset
WDT Time-out

(Normal Operation)
WDT Time-out

(HALT)

MP0 1 x x x x x x x 1 u u u u u u u 1 u u u u u u u 1 u u u u u u u

MP1 1 x x x x x x x 1 u u u u u u u 1 u u u u u u u 1 u u u u u u u

BP 0 u u u u u u u u

ACC x x x x x x x x u

PCL 0

TBLP x x x x x x x x u

TBLH x x x x x x x x x x u u u u u u x x u u u u u u x x u u u u u u

WDTS 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 u u u u u u u u

STATUS ��� 0 0 x x x x ��� u u u u u u ��� 1 u u u u u ��� 1 1 u u u u

INTC ��� 0 0 � 0 0 0 ��� 0 0 � 0 0 0 ��� 0 0 � 0 0 0 � � u u � u u u

TMR x u u u u u u u u

TMRC 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

PA 1 u u u u u u u u

PAC 1 u u u u u u u u

PB 1 u u u u u u u u

PBC 1 u u u u u u u u

PC � � � � � 1 1 1 � � � � � 1 1 1 � � � � � 1 1 1 ��� � � � u u u

PCC � � � � � 1 1 1 � � � � � 1 1 1 � � � � � 1 1 1 ��� � � � u u u

EECR 1 0 0 0 � � � � 1 0 0 0 � � � � 1 0 0 0 � � � � u u u u � � � �

�u� stands for unchanged

�x� stands for unknown

��� stands for unimplemented

62

I/O Type MTP MCU with EEPROM

HT48E30

Register Reset (Power-on) RES or LVR Reset
WDT Time-out

(Normal Operation)
WDT Time-out

(HALT)

MP0 1 x x x x x x x 1 u u u u u u u 1 u u u u u u u 1 u u u u u u u

MP1 1 x x x x x x x 1 u u u u u u u 1 u u u u u u u 1 u u u u u u u

BP 0 u u u u u u u u

ACC x x x x x x x x u

PCL 0

TBLP x x x x x x x x u

TBLH x x x x x x x x x x u u u u u u x x u u u u u u x x u u u u u u

WDTS 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 u u u u u u u u

STATUS ��� 0 0 x x x x ��� u u u u u u ��� 1 u u u u u ��� 1 1 u u u u

INTC ��� 0 0 � 0 0 0 ��� 0 0 � 0 0 0 ��� 0 0 � 0 0 0 � � u u � u u u

TMR x u u u u u u u u

TMRC 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

PA 1 u u u u u u u u

PAC 1 u u u u u u u u

PB 1 u u u u u u u u

PBC 1 u u u u u u u u

PC � � 1 1 1 1 1 1 � � 1 1 1 1 1 1 � � 1 1 1 1 1 1 � � u u u u u u

PCC � � 1 1 1 1 1 1 � � 1 1 1 1 1 1 � � 1 1 1 1 1 1 � � u u u u u u

PG � � � � � � � 1 � � � � � � � 1 � � � � � � � 1 � � � � � � � u

PGC � � � � � � � 1 � � � � � � � 1 � � � � � � � 1 � � � � � � � u

EECR 1 0 0 0 � � � � 1 0 0 0 � � � � 1 0 0 0 � � � � u u u u � � � �

�u� stands for unchanged

�x� stands for unknown

��� stands for unimplemented

Chapter 1 Hardware Structure

63

HT48E50

Register Reset (Power-on) RES or LVR Reset
WDT Time-out

(Normal Operation)
WDT Time-out

(HALT)

MP0 x x x x x x x x u

MP1 x x x x x x x x u

BP 0 u u u u u u u u

ACC x x x x x x x x u

PCL 0

TBLP x x x x x x x x u

TBLH x x x x x x x x x x u u u u u u x x u u u u u u x x u u u u u u

WDTS 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 u u u u u u u u

STATUS � � 0 0 x x x x ��� u u u u u u � � 1 u u u u u ��� 1 1 u u u u

INTC � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � u u u u u u u

TMR0 x u u u u u u u u

TMR0C 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

TMR1H x u u u u u u u u

TMR1L x u u u u u u u u

TMR1C 0 0 � 0 1 � � � 0 0 � 0 1 � ��� 0 0 � 0 1 � ��� u u � u u � � �

PA 1 u u u u u u u u

PAC 1 u u u u u u u u

PB 1 u u u u u u u u

PBC 1 u u u u u u u u

PC 1 u u u u u u u u

PCC 1 u u u u u u u u

PD 1 u u u u u u u u

PDC 1 u u u u u u u u

PG � � � � � � � 1 � � � � � � � 1 � � � � � � � 1 � � � � � � � u

PGC � � � � � � � 1 � � � � � � � 1 � � � � � � � 1 � � � � � � � u

EECR 1 0 0 0 � � � � 1 0 0 0 � � � � 1 0 0 0 � � � � u u u u � � � �

�u� stands for unchanged

�x� stands for unknown

��� stands for unimplemented

64

I/O Type MTP MCU with EEPROM

HT48E70

Register Reset (Power-on) RES or LVR Reset
WDT Time-out

(Normal Operation)
WDT Time-out

(HALT)

MP0 x x x x x x x x u

MP1 x x x x x x x x u

BP 0 u u u u u u u u

ACC x x x x x x x x u

PCL 0

TBLP x x x x x x x x u

TBLH x x x x x x x x u

WDTS 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 u u u u u u u u

STATUS � � 0 0 x x x x �� u u u u u u �� 1 u u u u u �� 1 1 u u u u

INTC � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � u u u u u u u

TMR0H x u u u u u u u u

TMR0L x u u u u u u u u

TMR0C 0 0 � 0 1 � � � 0 0 � 0 1 � � � 0 0 � 0 1 � � � u u � u u � � �

TMR1H x u u u u u u u u

TMR1L x u u u u u u u u

TMR1C 0 0 � 0 1 � � � 0 0 � 0 1 � �� 0 0 � 0 1 � �� u u � u u � � �

PA 1 u u u u u u u u

PAC 1 u u u u u u u u

PB 1 u u u u u u u u

PBC 1 u u u u u u u u

PC 1 u u u u u u u u

PCC 1 u u u u u u u u

PD 1 u u u u u u u u

PDC 1 u u u u u u u u

PE 1 u u u u u u u u

PEC 1 u u u u u u u u

PF 1 u u u u u u u u

PFC 1 u u u u u u u u

PG 1 u u u u u u u u

PGC 1 u u u u u u u u

EECR 1 0 0 0 � � � � 1 0 0 0 � � � � 1 0 0 0 � � � � u u u u � � � �

�u� stands for unchanged

�x� stands for unknown

��� stands for unimplemented

Chapter 1 Hardware Structure

65

Oscillator

Various oscillator options offer the user a wide range of functions according to their various applica-

tion requirements. Two types of system clocks can be selected while various clock source options

for the Watchdog Timer, are provided for maximum flexibility. All oscillator options are selected

through the configuration options.

System Clock Configurations

There are two methods of generating the system clock, using an external crystal/ceramic oscilla-

tor or an external RC network. The chosen method is selected through the configuration options.

System Crystal/Ceramic Oscillator

For most crystal oscillator configurations, the simple connection of a crystal across OSC1 and

OSC2 will create the necessary phase shift and feedback for oscillation. However, to ensure oscil-

lation for certain lower crystal frequencies and for all ceramic resonator applications, it is recom-

mended that two small value capacitors and a resistor, the values of which are shown in the table,

should be connected as shown in the diagram.

The table below shows the C1, C2 and R1 values for various crystal/ceramic oscillating frequencies.

Crystal or Resonator C1, C2 R1

4MHz Crystal 0pF 10k

4MHz Resonator 10pF 12k

3.58MHz Crystal 0pF 10k

3.58MHz Resonator 25pF 10k

2MHz Crystal and Resonator 25pF 10k

1MHz Crystal 35pF 27k

480kHz Resonator 300pF 9.1k

455kHz Resonator 300pF 10k

429kHz Resonator 300pF 10k

The function of the resistor R1 is to ensure that the oscillator will switch off should low voltage conditions oc-
cur. Such a low voltage, as mentioned here, is one which is less than the lowest value of the MCU operating
voltage. Note however that if the LVR is enabled then R1 can be removed.

66

I/O Type MTP MCU with EEPROM

� � � 3

� � � 4

� 3

� 4

� 4

Crystal/Ceramic Oscillator

System RC Oscillator

Using the external RC network as an oscillator requires that a resistor, with a value between 24k

and 1M
, is connected between OSC1 and VDD, and a 470pF capacitor is connected to ground.

The generated system clock divided by 4 will be provided on OSC2 as an output which can be

used for external synchronization purposes. Note that as the OSC2 output is an NMOS open-drain

type, a pull high resistor should be connected if it to be used to monitor the internal frequency.

Although this is a cost effective oscillator configuration, the oscillation frequency can vary with

VDD, temperature and process variations on the device itself and is therefore not suitable for appli-

cations where timing is critical or where accurate oscillator frequencies are required. For the value

of the external resistor ROSC please refer to the Appendix section for typical RC Oscillator vs. Tem-

perature and VDD characteristics graphics.

Note An internal capacitor together with the external resistor, ROSC, are the components which deter-

mine the frequency of the oscillator. The external capacitor shown on the diagram does not influ-

ence the frequency of oscillation. This external capacitor should be added to improve oscillator

stability if the open-drain OSC2 output is utilised in the application circuit.

Watchdog Timer Oscillator

The WDT oscillator is a fully integrated free running RC oscillator with a typical period of 65�s at

5V, requiring no external components. It is selected via configuration option. If selected, when the

device enters the Power Down Mode, the system clock will stop running, however the WDT oscilla-

tor will continue to run and keep the watchdog function active. However, as the WDT will consume

a certain amount of power when in the Power Down Mode, for low power applications, it may be de-

sirable to disable the WDT oscillator by configuration option.

Chapter 1 Hardware Structure

67

� � � 4

� � � 3& � @ � � / � 5 � � � � � $ � � � � � 	 � �

/ 2 7 $;

* � �

� � � �

RC Oscillator

Power Down Mode and Wake-up

Power Down Mode

All of the Holtek microcontrollers have the ability to enter a Power Down Mode, also known as the

HALT Mode or Sleep Mode. When the device enters this mode, the normal operating current, will

be reduced to an extremely low standby current level. This occurs because when the device en-

ters the Power Down Mode, the system oscillator is stopped which reduces the power consump-

tion to extremely low levels, however, as the device maintains its present internal condition, it can

be woken up at a later stage and continue running, without requiring a full reset. This feature is ex-

tremely important in application areas where the MCU must have its power supply constantly main-

tained to keep the device in a known condition but where the power supply capacity is limited such

as in battery applications.

Entering the Power Down Mode

There is only one way for the device to enter the Power Down Mode and that is to execute the

�HALT� instruction in the application program. When this instruction is executed, the following will

occur:

� The system oscillator will stop running and the application program will stop at the �HALT� in-

struction.

� The Data Memory contents and registers will maintain their present condition.

� The WDT will be cleared and resume counting if the WDT clock source is selected to come from

the WDT oscillator. The WDT will stop if its clock source originates from the system clock.

� The I/O ports will maintain their present condition.

� In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO,

will be cleared.

Standby Current Considerations

As the main reason for entering the Power Down Mode is to keep the current consumption of the

MCU to as low a value as possible, perhaps only in the order of several micro-amps, there are

other considerations which must also be taken into account by the circuit designer if the power con-

sumption is to be minimized. Special attention must be made to the I/O pins on the device. All

high-impedance input pins must be connected to either a fixed high or low level as any floating in-

put pins could create internal oscillations and result in increased current consumption. Care must

also be taken with the loads, which are connected to I/Os, which are setup as outputs. These

should be placed in a condition in which minimum current is drawn or connected only to external

circuits that do not draw current, such as other CMOS inputs. Also note that additional standby cur-

rent will also be required if the configuration options have enabled the Watchdog Timer internal os-

cillator.

68

I/O Type MTP MCU with EEPROM

Wake-up

After the system enters the Power Down Mode, it can be woken up from one of various sources

listed as follows:

� An external reset

� An external falling edge on Port A

� A system interrupt

� A WDT overflow

If the system is woken up by an external reset, the device will experience a full system reset, how-

ever, if the device is woken up by a WDT overflow, a Watchdog Timer reset will be initiated. Al-

though both of these wake-up methods will initiate a reset operation, the actual source of the

wake-up can be determined by examining the TO and PDF flags. The PDF flag is cleared by a sys-

tem power-up or executing the clear Watchdog Timer instructions and is set when executing the

�HALT� instruction. The TO flag is set if a WDT time-out occurs, and causes a wake-up that only re-

sets the Program Counter and Stack Pointer, the other flags remain in their original status.

Each pin on Port A can be setup via an individual configuration option to permit a negative transi-

tion on the pin to wake-up the system. When a Port A pin wake-up occurs, the program will resume

execution at the instruction following the �HALT� instruction.

If the system is woken up by an interrupt, then two possible situations may occur. The first is where

the related interrupt is disabled or the interrupt is enabled but the stack is full, in which case the pro-

gram will resume execution at the instruction following the �HALT� instruction. In this situation, the

interrupt which woke-up the device will not be immediately serviced, but will rather be serviced

later when the related interrupt is finally enabled or when a stack level becomes free. The other sit-

uation is where the related interrupt is enabled and the stack is not full, in which case the regular in-

terrupt response takes place. If an interrupt request flag is set to �1� before entering the Power

Down Mode, the wake-up function of the related interrupt will be disabled.

No matter what the source of the wake-up event is, once a wake-up situation occurs, a time period

equal to 1024 system clock periods will be required before normal system operation resumes.

However, if the wake-up has originated due to an interrupt, the actual interrupt subroutine execu-

tion will be delayed by an additional one or more cycles. If the wake-up results in the execution of

the next instruction following the �HALT� instruction, this will be executed immediately after the

1024 system clock period delay has ended.

Watchdog Timer

The Watchdog Timer is provided to prevent program malfunctions or sequences from jumping to

unknown locations, due to certain uncontrollable external events such as electrical noise. It oper-

ates by providing a device reset when the WDT counter overflows. The WDT clock is supplied by

one of two sources selected by configuration option: its own self-contained dedicated internal

WDT oscillator, or the instruction clock which is the system clock divided by 4. Note that if the WDT

configuration option has been disabled, then any instruction relating to its operation will result in

no operation.

Chapter 1 Hardware Structure

69

The internal WDT oscillator has an approximate period of 65�s at a supply voltage of 5V. If se-

lected, it is first divided by 256 via an 8-stage counter to give a nominal period of 17ms. Note that

this period can vary with VDD, temperature and process variations. For longer WDT time-out peri-

ods the WDT prescaler can be utilized. By writing the required value to bits 0, 1 and 2 of the WDTS

register, known as WS0, WS1 and WS2, longer time-out periods can be achieved. with WS0, WS1

and WS2 all equal to 1, the division ratio is 1:128 which gives a maximum time-out period of about

2.1s.

A configuration option can select the instruction clock, which is the system clock divided by 4, as

the WDT clock source instead of the internal WDT oscillator. If the instruction clock is used as the

clock source, it must be noted that when the system enters the Power Down Mode, as the system

clock is stopped, then the WDT clock source will also be stopped. Therefore the WDT will lose its

protecting purposes. In such cases the system cannot be restarted by the WDT and can only be re-

started using external signals. For systems that operate in noisy environments, using the internal

WDT oscillator is therefore the recommended choice.

Under normal program operation, a WDT time-out will initialise a device reset and set the status bit

TO. However, if the system is in the Power Down Mode, when a WDT time-out occurs, only the Pro-

gram Counter and Stack Pointer will be reset. Three methods can be adopted to clear the contents

of the WDT and the WDT prescaler. The first is an external hardware reset, which means a low

level on the RES pin, the second is using the watchdog software instructions and the third is via a

�HALT� instruction.

70

I/O Type MTP MCU with EEPROM

& � @ � � /

: # + �
 � � � � �
 � �

� � � � � < � 3 0 1 =
2 # + �
 � � � � � � 	 � � �

: #
 � # 4 � � �

� � � � � � � � # � �

� � 7 K � � 3

� � � � � � � � " � � � � � � �

� � � & � � � � 	
 � � � � � $
 � � �
� � � � � � � � � � 	
 � �

� � � � � � � � " � � � � � � �

� � � 	 � � � � � � � $ �

� � � & � � � � 	
 � � � � � $
 � � �

� ! � � � � � 4 � ; � 	 � �

� ! � � � � � 3 � ; � 	 � �

4 � � � � 3 � � � �
 � � �
 � � � � �

� ! � �
� ! � �

Watchdog Timer

� � 3 / � �
 � # $ � % � !

% 2 % 7

� � � � $ � � � � 	 � � � � � 	
 � � � � � � �

� � 3
7
7
7
7
4
4
4
4

� � 4
7
7
4
4
7
7
4
4

� � 7
7
4
7
4
7
4
7
4

� � � � � 	
 �
� � � � � � 4 A 4
� � � � � � 4 A 3
� � � � � � 4 A /
� � � � � � 4 A :
� � � � � � 4 A 4 1
� � � � � � 4 A 6 3
� � � � � � 4 A 1 /
� � � � � � 4 A 4 3 :

5 �
 � � � � �

� � 4 � � 7

There are two methods of using software instructions to clear the Watchdog Timer, one of which

must be chosen by configuration option. The first option is to use the single �CLR WDT� instruction

while the second is to use the two commands �CLR WDT1� and �CLR WDT2�. For the first option,

a simple execution of �CLR WDT� will clear the WDT while for the second option, both �CLR

WDT1� and �CLR WDT2� must both be executed to successfully clear the WDT. Note that for this

second option, if �CLR WDT1� is used to clear the WDT, successive executions of this instruction

will have no effect, only the execution of a �CLR WDT2� instruction will clear the WDT. Similarly, af-

ter the �CLR WDT2� instruction has been executed, only a successive �CLR WDT1� instruction

can clear the Watchdog Timer.

Configuration Options

Configuration options refer to certain options within the MCU that are programmed into the MTP

Program Memory device during the programming process. During the development process,

these options are selected using the HT-IDE software development tools. As these options are pro-

grammed into the device using the hardware programming tools, once they are selected they can-

not be changed later by the application software.

All options must be defined for proper system function, the details of which are shown in the table.

No. Options

1 Watchdog Timer: enable or disable

2 Watchdog Timer clock source: WDT oscillator or fSYS/4

3 CLRWDT instructions: 1 or 2 instructions

4 PA0~PA7: wake-up enable or disable (bit option)

5 PA, PB, PC, PD, PE, PF and PG: pull-high enable or disable (port numbers are device dependent)

6 PA input type: CMOS or Schmitt Trigger (HT48E06 excepted)

7 Buzzer function: enable or normal I/O

8 Buzzer clock source: Timer/Event Counter 0 or Timer/Event Counter 1 (HT48E50 and HT48E70 only)

9 System oscillator: Crystal or RC

10 LVR function: enable or disable

Chapter 1 Hardware Structure

71

Application Circuits

The following application circuits although based around the HT48E50 device equally apply to all

devices in the I/O Type MTP MCU with EEPROM series.

72

I/O Type MTP MCU with EEPROM

� � � 4

� � � 3

' ! 0 % � � (�
 0 % �) � � % 1 � ((� � � !
; � � � � � � $ � � � �
 � - 	 � � � � B
� � � � � �
 � � � � � � � 	
 � � � � � �
 � � �

� 4

� 4

� 3

� � 7 K � � 2

� + 3 K � + 2

� � 7 K � � 2

� � 7 K � � 2

� + 7 � + 8

� + 4 � + 8

� � � 7

� � � 4
� � � 4

� � � 3

� � �
� � � � � �

� . �

7 ' 4 � ;

4 7 7 " �

* � �

* � �

7 ' 4 � ;

* � �

7 ' 7 4 � ;

4 7 " �

� � 7 � � 5 �

� � � � � � �

 � � (� 2

�
 ' � ' � ! 1 + � �

' �
 0 % �) � � % 1 � ((� � � !

3 / " � M � � � � M 4 � �

* � �

� � � �

� � � 4

� � � 3
/ 2 7 $;

5 � � � � � $ � � � � � 	 � �

P a r t I I

Programming Language

Part II Programming Language

73

74

I/O Type MTP MCU with EEPROM

C h a p t e r 2

Instruction Set Introduction

Instruction Set

Central to the successful operation of any microcontroller is its instruction set, which is a set of pro-

gram instruction codes that directs the microcontroller to perform certain operations. In the case of

Holtek microcontrollers, a comprehensive and flexible set of over 60 instructions is provided to en-

able programmers to implement their application with the minimum of programming overheads.

For easier understanding of the various instruction codes, they have been subdivided into several

functional groupings.

Instruction Timing

Most instructions are implemented within one instruction cycle. The exceptions to this are branch,

call, or table read instructions where two instruction cycles are required. One instruction cycle is

equal to 4 system clock cycles, therefore in the case of an 8MHz system oscillator, most instruc-

tions would be implemented within 0.5�s and branch or call instructions would be implemented

within 1�s. Although instructions which require one more cycle to implement are generally limited

to the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other in-

structions which involve manipulation of the Program Counter Low register or PCL will also take

one more cycle to implement. As instructions which change the contents of the PCL will imply a di-

rect jump to that new address, one more cycle will be required. Examples of such instructions

would be �CLR PCL� or �MOV PCL, A�. For the case of skip instructions, it must be noted that if

the result of the comparison involves a skip operation then this will also take one more cycle, if no

skip is involved then only one cycle is required.

Chapter 2 Instruction Set Introduction

75

2

Moving and Transferring Data

The transfer of data within the microcontroller program is one of the most frequently used opera-

tions. Making use of three kinds of MOV instructions, data can be transferred from registers to the

Accumulator and vice-versa as well as being able to move specific immediate data directly into the

Accumulator. One of the most important data transfer applications is to receive data from the input

ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and data manipulation is a necessary feature

of most microcontroller applications. Within the Holtek microcontroller instruction set are a range

of add and subtract instruction mnemonics to enable the necessary arithmetic to be carried out.

Care must be taken to ensure correct handling of Carry and borrow data when results exceed 255

for addition and less than 0 for subtraction. The increment and decrement instructions INC, INCA,

DEC and DECA provide a simple means of increasing or decreasing by a value of one of the val-

ues in the destination specified.

Logical and Rotate Operations

The standard logical operations such as AND, OR, XOR and CPL all have their own instruction

within the Holtek microcontroller instruction set. As with the case of most instructions involving

data manipulation, data must pass through the Accumulator which may involve additional pro-

gramming steps. In all logical data operations, the zero flag may be set if the result of the operation

is zero. Another form of logical data manipulation comes from the rotate instructions such as RR,

RL, RRC and RLC which provide a simple means of rotating one bit right or left. Different rotate

instructions exist depending on program requirements. Rotate instructions are useful for serial

port programming applications where data can be rotated from an internal register into the Carry

bit from where it can be examined and the necessary serial bit set high or low. Another application

where rotate data operations are used is to implement multiplication and division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to specified locations using the JMP instruction

or to a subroutine using the CALL instruction. They differ in the sense that in the case of a subrou-

tine call, the program must return to the instruction immediately when the subroutine has been car-

ried out. This is done by placing a return instruction RET in the subroutine which will cause the

program to jump back to the address right after the CALL instruction. In the case of a JMP instruc-

tion, the program simply jumps to the desired location. There is no requirement to jump back to the

original jumping off point as in the case of the CALL. One special and extremely useful set of

branch instructions are the conditional branches. Here a decision is first made regarding the condi-

tion of a certain Data Memory or individual bits. Depending upon the conditions, the program will

continue with the next instruction or skip over it and jump to the following instruction. These instruc-

tions are the key to decision making and branching within the program perhaps determined by the

condition of certain input switches or by the condition of internal data bits.

76

I/O Type MTP MCU with EEPROM

Bit Operations

The ability to provide single bit operations on Data Memory is an extremely flexible feature of all

Holtek microcontrollers. This feature is especially useful for output port bit programming where in-

dividual bits or port pins can be directly set high or low using either the �SET [m].i� or �CLR [m].i� in-

structions respectively. The feature removes the need for programmers to first read the 8-bit

output port, manipulate the input data to ensure that other bits are not changed and then output

the port with the correct new data. This read-modify-write process is taken care of automatically

when these bit operation instructions are used.

Table Read Operations

Data storage is normally implemented by using registers. However, when working with large

amounts of fixed data, the volume involved often makes it inconvenient to store the fixed data in in-

dividual memory. To overcome this problem, Holtek microcontrollers allow an area of Program

Memory to be setup as a table where data can be directly stored. A set of easy to use instructions

provides the means by which this fixed data can be referenced and retrieved from the Program

Memory.

Other Operations

In addition to the above functional instructions, a range of other instructions also exist such as

�HALT� instruction for power-down operation and instructions to control the operation of the

Watchdog Timer for reliable program operations under extreme electric or electromagnetic envi-

ronment. For their relevant operations, refer to the functional related sections.

Instruction Set Summary

Convention

x: Bits immediate data

m: Data Memory address

A: Accumulator

i: 0~7 number of bits

addr: Program Memory address

Mnemonic Description Cycles Flag Affected

Arithmetic

ADD A,[m]

ADDM A,[m]

ADD A,x

ADC A,[m]

ADCM A,[m]

SUB A,x

SUB A,[m]

SUBM A,[m]

SBC A,[m]

SBCM A,[m]

DAA [m]

Add Data Memory to ACC

Add ACC to Data Memory

Add immediate data to ACC

Add Data Memory to ACC with Carry

Add ACC to Data Memory with Carry

Subtract immediate data from the ACC

Subtract Data Memory from ACC

Subtract Data Memory from ACC with result in Data Memory

Subtract Data Memory from ACC with Carry

Subtract Data Memory from ACC with Carry, result in Data Memory

Decimal adjust ACC for Addition with result in Data Memory

1

1Note

1

1

1Note

1

1

1Note

1

1Note

1Note

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

C

Chapter 2 Instruction Set Introduction

77

Mnemonic Description Cycles Flag Affected

Logic Operation

AND A,[m]

OR A,[m]

XOR A,[m]

ANDM A,[m]

ORM A,[m]

XORM A,[m]

AND A,x

OR A,x

XOR A,x

CPL [m]

CPLA [m]

Logical AND Data Memory to ACC

Logical OR Data Memory to ACC

Logical XOR Data Memory to ACC

Logical AND ACC to Data Memory

Logical OR ACC to Data Memory

Logical XOR ACC to Data Memory

Logical AND immediate Data to ACC

Logical OR immediate Data to ACC

Logical XOR immediate Data to ACC

Complement Data Memory

Complement Data Memory with result in ACC

1

1

1

1Note

1Note

1Note

1

1

1

1Note

1

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Increment & Decrement

INCA [m]

INC [m]

DECA [m]

DEC [m]

Increment Data Memory with result in ACC

Increment Data Memory

Decrement Data Memory with result in ACC

Decrement Data Memory

1

1Note

1

1Note

Z

Z

Z

Z

Rotate

RRA [m]

RR [m]

RRCA [m]

RRC [m]

RLA [m]

RL [m]

RLCA [m]

RLC [m]

Rotate Data Memory right with result in ACC

Rotate Data Memory right

Rotate Data Memory right through Carry with result in ACC

Rotate Data Memory right through Carry

Rotate Data Memory left with result in ACC

Rotate Data Memory left

Rotate Data Memory left through Carry with result in ACC

Rotate Data Memory left through Carry

1

1Note

1

1Note

1

1Note

1

1Note

None

None

C

C

None

None

C

C

Data Move

MOV A,[m]

MOV [m],A

MOV A,x

Move Data Memory to ACC

Move ACC to Data Memory

Move immediate data to ACC

1

1Note

1

None

None

None

Bit Operation

CLR [m].i

SET [m].i

Clear bit of Data Memory

Set bit of Data Memory

1Note

1Note

None

None

78

I/O Type MTP MCU with EEPROM

Mnemonic Description Cycles Flag Affected

Branch

JMP addr

SZ [m]

SZA [m]

SZ [m].i

SNZ [m].i

SIZ [m]

SDZ [m]

SIZA [m]

SDZA [m]

CALL addr

RET

RET A,x

RETI

Jump unconditionally

Skip if Data Memory is zero

Skip if Data Memory is zero with data movement to ACC

Skip if bit i of Data Memory is zero

Skip if bit i of Data Memory is not zero

Skip if increment Data Memory is zero

Skip if decrement Data Memory is zero

Skip if increment Data Memory is zero with result in ACC

Skip if decrement Data Memory is zero with result in ACC

Subroutine call

Return from subroutine

Return from subroutine and load immediate data to ACC

Return from interrupt

2

1Note

1Note

1Note

1Note

1Note

1Note

1Note

1Note

2

2

2

2

None

None

None

None

None

None

None

None

None

None

None

None

None

Table Read

TABRDC [m]

TABRDL [m]

Read table (current page) to TBLH and Data Memory

Read table (last page) to TBLH and Data Memory

2Note

2Note

None

None

Miscellaneous

NOP

CLR [m]

SET [m]

CLR WDT

CLR WDT1

CLR WDT2

SWAP [m]

SWAPA [m]

HALT

No operation

Clear Data Memory

Set Data Memory

Clear Watchdog Timer

Pre-clear Watchdog Timer

Pre-clear Watchdog Timer

Swap nibbles of Data Memory

Swap nibbles of Data Memory with result in ACC

Enter Power Down Mode

1

1Note

1Note

1

1

1

1Note

1

1

None

None

None

TO, PDF

TO, PDF

TO, PDF

None

None

TO, PDF

Note 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required

if no skip takes place only one cycle is required.

2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

3. For the �CLR WDT1� and �CLR WDT2� instructions, the TO and PDF flags may be affected by

the execution status. The TO and PDF flags are cleared after both �CLR WDT1� and

�CLR WDT2� instructions are consecutively executed. Otherwise the TO and PDF flags

remain unchanged.

Chapter 2 Instruction Set Introduction

79

80

I/O Type MTP MCU with EEPROM

C h a p t e r 3

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the Accumulator.

Operation ACC � ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the specified Data Memory.

Operation [m] � ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the Accumulator.

Operation ACC � ACC + [m]

Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added. The result is

stored in the Accumulator.

Operation ACC � ACC + x

Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the specified Data Memory.

Operation [m] � ACC + [m]

Affected flag(s) OV, Z, AC, C

Chapter 3 Instruction Definition

81

3

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC �AND� [m]

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation ACC � ACC �AND� x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND op-

eration. The result is stored in the Data Memory.

Operation [m] � ACC �AND� [m]

Affected flag(s) Z

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then in-

crements by 1 to obtain the address of the next instruction which is then pushed onto the

stack. The specified address is then loaded and the program continues execution from this

new address. As this instruction requires an additional operation, it is a two cycle instruc-

tion.

Operation Stack � Program Counter + 1

Program Counter � addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation [m] � 00H

Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i � 0

Affected flag(s) None

82

I/O Type MTP MCU with EEPROM

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT2 will have no

effect.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa.

Operation [m] � [m]

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa. The complemented result

is stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC � [m]

Affected flag(s) Z

Chapter 3 Instruction Definition

83

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value re-

sulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or

if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble

remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of

6 will be added to the high nibble. Essentially, the decimal conversion is performed by add-

ing 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C

flag may be affected by this instruction which indicates that if the original BCD sum is

greater than 100, it allows multiple precision decimal addition.

Operation [m] � ACC + 00H or

[m] � ACC + 06H or

[m] � ACC + 60H or

[m] � ACC + 66H

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation [m] � [m] � 1

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the Accu-

mulator. The contents of the Data Memory remain unchanged.

Operation ACC � [m] � 1

Affected flag(s) Z

HALT Enter Power Down Mode

Description This instruction stops the program execution and turns off the system clock. The contents

of the Data Memory and registers are retained. The WDT and prescaler are cleared. The

power down flag PDF is set and the WDT time-out flag TO is cleared.

Operation TO � 0

PDF � 1

Affected flag(s) TO, PDF

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation [m] � [m] � 1

Affected flag(s) Z

84

I/O Type MTP MCU with EEPROM

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumu-

lator. The contents of the Data Memory remain unchanged.

Operation ACC � [m] � 1

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter � addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation ACC � [m]

Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation ACC � x

Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation [m] � ACC

Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation

Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical OR oper-

ation. The result is stored in the Accumulator.

Operation ACC � ACC �OR� [m]

Affected flag(s) Z

Chapter 3 Instruction Definition

85

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC �OR� x

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR oper-

ation. The result is stored in the Data Memory.

Operation [m] � ACC �OR� [m]

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the

restored address.

Operation Program Counter � Stack

Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the

specified immediate data. Program execution continues at the restored address.

Operation Program Counter � Stack

ACC � x

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by set-

ting the EMI bit. EMI is the enable master (global) interrupt bit (bit 0; register INTC). If an in-

terrupt was pending when the RETI instruction is executed, the pending interrupt routine

will be processed before returning to the main program.

Operation Program Counter � Stack

EMI � 1

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0.

Operation [m].(i+1) � [m].i; (i = 0~6)

[m].0 � [m].7

Affected flag(s) None

86

I/O Type MTP MCU with EEPROM

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0. The rotated result is stored in the Accumulator and the contents of the Data Memory re-

main unchanged.

Operation ACC.(i+1) � [m].i; (i = 0~6)

ACC.0 � [m].7

Affected flag(s) None

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation [m].(i+1) � [m].i; (i = 0~6)

[m].0 � C

C � [m].7

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces

the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1) � [m].i; (i = 0~6)

ACC.0 � C

C � [m].7

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into

bit 7.

Operation [m].i � [m].(i+1); (i = 0~6)

[m].7 � [m].0

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 ro-

tated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data

Memory remain unchanged.

Operation ACC.i � [m].(i+1); (i = 0~6)

ACC.7 � [m].0

Affected flag(s) None

Chapter 3 Instruction Definition

87

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation [m].i � [m].(i+1); (i = 0~6)

[m].7 � C

C � [m].0

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 re-

places the Carry bit and the original carry flag is rotated into bit 7. The rotated result is

stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i � [m].(i+1); (i = 0~6)

ACC.7 � C

C � [m].0

Affected flag(s) C

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the

result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is pos-

itive or zero, the C flag will be set to 1.

Operation ACC � ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Data Memory. Note that if the re-

sult of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation [m] � ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] � [m] � 1

Skip if [m] = 0

Affected flag(s) None

88

I/O Type MTP MCU with EEPROM

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0, the program proceeds with the following instruction.

Operation ACC � [m] � 1

Skip if ACC = 0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation [m] � FFH

Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

Operation [m].i � 1

Affected flag(s) None

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] � [m] + 1

Skip if [m] = 0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation ACC � [m] + 1

Skip if ACC = 0

Affected flag(s) None

Chapter 3 Instruction Definition

89

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m].i � 0

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation ACC � ACC � [m]

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation [m] � ACC � [m]

Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumu-

lator. The result is stored in the Accumulator. Note that if the result of subtraction is nega-

tive, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will

be set to 1.

Operation ACC � ACC � x

Affected flag(s) OV, Z, AC, C

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation [m].3~[m].0 � [m].7 ~ [m].4

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation ACC.3 ~ ACC.0 � [m].7 ~ [m].4

ACC.7 ~ ACC.4 � [m].3 ~ [m].0

Affected flag(s) None

90

I/O Type MTP MCU with EEPROM

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As

this requires the insertion of a dummy instruction while the next instruction is fetched, it is a

two cycle instruction. If the result is not 0 the program proceeds with the following instruc-

tion.

Operation Skip if [m] = 0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is

zero, the following instruction is skipped. As this requires the insertion of a dummy instruc-

tion while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation ACC � [m]

Skip if [m] = 0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i = 0

Affected flag(s) None

TABRDC [m] Read table (current page) to TBLH and Data Memory

Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] � program code (low byte)

TBLH � program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] � program code (low byte)

TBLH � program code (high byte)

Affected flag(s) None

Chapter 3 Instruction Definition

91

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC �XOR� [m]

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR op-

eration. The result is stored in the Data Memory.

Operation [m] � ACC �XOR� [m]

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation ACC � ACC �XOR� x

Affected flag(s) Z

92

I/O Type MTP MCU with EEPROM

C h a p t e r 4

Assembly Language and

Cross Assembler

Assembly-Language programs are written as source files. They can be assembled into object files

by the Holtek Cross Assembler. Object files are combined by the Cross Linker to generate a task

file.

A source program is made up of statements and look up tables, giving directions to the Cross As-

sembler at assembly time or to the processor at run time. Statements are constituted by mnemon-

ics (operations), operands and comments.

Notational Conventions

The following list describes the notations used by this document.

Example of Convention Description of Convention

[optional items]

Syntax elements that are enclosed by a pair of brackets are

optional. For example, the syntax of the command line is as

follows:

HASM [options] filename [;]

In the above command line, options and semicolon; are both

optional, but filename is required, except for the following

case:

Brackets in the instruction operands. In this case,

the brackets refer to memory address.

{choice1 | choice2}

Braces and vertical bars stand for a choice between two or

more items. Braces enclose the choices whereas vertical

bars separate the choices. Only one item can be chosen.

Chapter 4 Assembly Language and Cross Assembler

93

4

Example of Convention Description of Convention

Repeating elements...

Three dots following an item signify that more items with the

same form may be entered. For example, the directive PUB-

LIC has the following form:

PUBLIC name1 [,name2 [,...]]

In the above form, the three dots following name2 indicate

that many names can be entered as long as each is pre-

ceded by a comma.

Statement Syntax

The construction of each statement is as follows:

[name] [operation] [operands] [;comment]

	 All fields are optional.

	 Each field (except the comment field) must be separated from other fields by at least one space

or one tab character.

	 Fields are not case-sensitive, i.e., lower-case characters are changed to upper-case characters

before processing.

Name

Statements can be assigned labels to enable easy access by other statements. A name consists

of the following characters:

A~Z a~z 0~9 ? _ @

with the following restrictions :

	 0~9 cannot be the first character of a name

	 ? cannot stand alone as a name

	 Only the first 31 characters are recognized

Operation

The operation defines the statement action of which two types exist, directives and instructions. Di-

rectives give directions to the Cross Assembler, specifying the manner in which the Cross Assem-

bler is to generate the object code at assembly time. Instructions, on the other hand, give

directions to the processor. They are translated to object code at assembly time, the object code in

turn controls the behavior of the processor at run time.

Operand

Operands define the data used by directives and instructions. They can be made up of symbols,

constants, expressions and registers.

94

I/O Type MTP MCU with EEPROM

Comment

Comments are the descriptions of codes. They are used for documentation only and are ignored

by the Cross Assembler. Any text following a semicolon is considered a comment.

Assembly Directives

Directives give direction to the Cross Assembler, specifying the manner in which the Cross Assem-

bler generates object code at assembly time. Directives can be further classified according to their

behavior as described below.

Conditional Assembly Directives

The conditional block has the following form:

IF

statements

[ELSE

statements]

ENDIF

Syntax

IF expression

IFE expression

	 Description

The directives IF and IFE test the expression following them.

The IF directive grants assembly if the value of the expression is true, i.e. non-zero.

The IFE directive grants assembly if the value of the expression is false, i.e. zero.

	 Example
IF debugcase

ACC1 equ 5

extern username: byte

ENDIF

In this example, the value of the variable ACC1 is set to 5 and the username is declared as an

external variable if the symbol debugcase is evaluated as true, i.e. nonzero.

Syntax

IFDEF name

IFNDEF name

	 Description

The directives IFDEF and IFNDEF test whether or not the given name has been defined. The

IFDEF directive grants assembly only if the name is a label, a variable or a symbol. The IFNDEF di-

rective grants assembly only if the name has not yet been defined. The conditional assembly direc-

tives support a nesting structure, with a maximum nesting level of 7.

	 Example
IFDEF buf_flag

buffer DB 20 dup(?)

ENDIF

In this example, the buffer is allocated only if the buf_flag has been previously defined.

Chapter 4 Assembly Language and Cross Assembler

95

File Control Directives

Syntax

INCLUDE file-name

or

INCLUDE �file-name�

	 Description

This directive inserts source codes from the source file given by file-name into the current

source file during assembly. Cross Assembler supports at most 7 nesting levels.

	 Example
INCLUDE macro.def

In this example, the Cross Assembler inserts the source codes from the file macro.def into the

current source file.

Syntax

PAGE size

	 Description

This directive specifies the number of the lines in a page of the program listing file. The page

size must be within the range from 10 to 255, the default page size is 60.

	 Example

PAGE 57

This example sets the maximum page size of the listing file to 57 lines.

Syntax

.LIST

.NOLIST

	 Description

The directives .LIST and .NOLIST decide whether or not the source program lines are to be

copied to the program listing file. .NOLIST suppresses copying of subsequent source lines to

the program listing file. .LIST restores the copying of subsequent source lines to the program

listing file. The default is .LIST.

	 Example
.NOLIST

mov a, 1

mov b1, a

.LIST

In this example, the two instructions in the block enclosed by .NOLIST and .LIST are sup-

pressed from copying to the source listing file.

Syntax

.LISTMACRO

.NOLISTMACRO

	 Description

The directive .LISTMACRO causes the Cross Assembler to list all the source statements, in-

cluding comments, in a macro. The directive .NOLISTMACRO suppresses the listing of all macro

expansions. The default is .NOLISTMACRO.

96

I/O Type MTP MCU with EEPROM

Syntax

.LISTINCLUDE

.NOLISTINCLUDE

	 Description

The directive .LISTINCLUDE inserts the contents of all included files into the program listing.

The directive .NOLISTINCLUDE suppresses the addition of included files. The default is

.NOLISTINCLUDE.

Syntax

MESSAGE �text-string�

	 Description

The directive MESSAGE directs the Cross Assembler to display the text-string on the

screen. The characters in the text-string must be enclosed by a pair of single quotation

marks.

Syntax

ERRMESSAGE �error-string�

	 Description

The directive ERRMESSAGE directs the Cross Assembler to issue an error. The characters in the

error-string must be enclosed by a pair of single quotation marks.

Program Directives

Syntax (comment)

; text

	 Description

A comment consists of characters preceded by a semicolon (;) and terminated by an embedded

carriage-return/line-feed.

Syntax

name .SECTION [align] [combine] �class�

	 Description

The .SECTION directive marks the beginning of a program section. A program section is a col-

lection of instructions and/or data whose addresses are relative to the section beginning with the

name which defines that section. The name of a section can be unique or be the same as the

name given to other sections in the program. Sections with the same complete names are

treated as the same section.

The optional align type defines the alignment of the given section. It can be one of the follow-

ing:

BYTE uses any byte address (the default align type)

WORD uses any word address

PARA uses a paragraph address

PAGE uses a page address

For the CODE section, the byte address is in a single instruction unit. BYTE aligns the section at

any instruction address, WORD aligns the section at any even instruction address, PARA aligns

the section at any instruction address which is a multiple of 16, and PAGE aligns the section at

any instruction address with a multiple of 256.

Chapter 4 Assembly Language and Cross Assembler

97

For DATA sections, the byte address is in one byte units (8 bits/byte). BYTE aligns the section at

any byte address, WORD aligns the section at any even address, PARA aligns the section at

any address which is a multiple of 16, and PAGE aligns the section at any address which is a

multiple of 256.

The optional combine type defines the way of combining sections having the same complete

name (section and class name). It can be any one of the following:

� COMMON

Creates overlapping sections by placing the start of all sections with the same complete name

at the same address. The length of the resulting area is the length of the longest section.

� AT address

Causes all label and variable addresses defined in a section to be relative to the given ad-

dress. The address can be any valid expression except a forward reference. It is an absolute

address in a specified ROM/RAM bank and must be within the ROM/RAM range.

If no combine type is given, the section is combinative, i.e., this section can be concatenated

with all sections having the same complete name to form a single, contiguous section.

The class type defines the sections that are to be loaded in the contiguous memory. Sections

with the same class name are loaded into the memory one after another. The class name CODE

is used for sections stored in ROM, and the class name DATA is used for sections stored in

RAM. The complete name of a section consists of a section name and a class name. The named

section includes all codes and data below (after) it until the next section is defined.

Syntax

ROMBANK banknum section-name [,section-name,...]

	 Description

This directive declares which sections are allocated to the specified ROM bank. The banknum

specifies the ROM bank, ranging from 0 to the maximum bank number of the destination MCU.

The section-name is the name of the section defined previously in the program. More than

one section can be declared in a bank as long as the total size of the sections does not exceed

the bank size of 8K words. If this directive is not declared, bank 0 is assumed and all CODE sec-

tions defined in this program will be in bank 0. If a CODE section is not declared in any ROM

bank, then bank 0 is assumed.

Syntax

RAMBANK banknum section-name [,section-name,...]

	 Description

This directive is similar to ROMBANK except that it specifies the RAM bank, the size of RAM bank

is 256 bytes.

Syntax

END

	 Description

This directive marks the end of a program. Adding this directive to any included file should be

avoided.

98

I/O Type MTP MCU with EEPROM

Syntax

ORG expression

	 Description

This directive sets the location counter to expression. The subsequent code and data offsets

begin at the new offset specified by expression. The code or data offset is relative to the be-

ginning of the section where the directive ORG is defined. The attribute of a section determines

the actual value of offset, absolute or relative.

	 Example
ORG 8

mov A, 1

In this example, the statement mov A, 1 begins at location 8 in the current section.

Syntax

PUBLIC name1 [,name2 [,...]]

EXTERN name1:type [,name2:type [, ...]]

	 Description

The PUBLIC directive marks the variable or label specified by a name that is available to other

modules in the program. The EXTERN directive, on the other hand, declares an external vari-

able, label or symbol of the specified name and type. The type can be one of the four types:

BYTE, WORD and BIT (these three types are for data variables), and NEAR (a label type and

used by call or jmp).

	 Example
PUBLIC start, setflag

EXTERN tmpbuf:byte

CODE .SECTION �CODE�

start:

mov a, 55h

call setflag

....

setflag proc

mov tmpbuf, a

ret

setflag endp

end

In this example, both the label start and the procedure setflag are declared as public vari-

ables. Programs in other sources may refer to these variables. The variable tmpbuf is also de-

clared as external. There should be a source file defining a byte that is named tmpbuf and is

declared as a public variable.

Chapter 4 Assembly Language and Cross Assembler

99

Syntax

name PROC

name ENDP

	 Description

The PROC and ENDP directives mark a block of code which can be called or jumped to from other

modules. The PROC creates a label name which stands for the address of the first instruction of a

procedure. The Cross Assembler will set the value of the label to the current value of the location

counter.

	 Example
toggle PROC

mov tmpbuf, a

mov a, 1

xorm a, flag

mov a, tmpbuf

ret

toggle ENDP

Syntax

[label:] DC expression1 [,expression2 [,...]]

	 Description

The DC directive stores the value of expression1, expression2 etc. in consecutive mem-

ory locations. This directive is used for the CODE section only. The bit size of the result value is

dependent on the ROM size of the MCU. The Cross Assembler will clear any redundant bits;

expression1 has to be a value or a label. This directive may also be employed to setup the ta-

ble in the code section.

	 Example
table1: DC 0128h, 025CH

In this example, the Cross Assembler reserves two units of ROM space and also stores 0128H

and 025CH into these two ROM units.

Data Definition Directives

An assembly language program consists of one or more statements and comments. A statement or

comment is a composition of characters, numbers, and names. The assembly language supports inte-

ger numbers. An integer number is a collection of binary, octal, decimal, or hexadecimal digits along

with an optional radix. If no radix is given, the Cross Assembler uses the default radix (decimal). The ta-

ble lists the digits that can be used with each radix.

Radix Type Digits

B Binary 01

O Octal 01234567

D Decimal 0123456789

H Hexadecimal 0123456789ABCDEF

100

I/O Type MTP MCU with EEPROM

Syntax

[name] DB value1 [,value2 [, ...]]

[name] DW value1 [,value2 [, ...]]

[name] DBIT

[name] DB repeated-count DUP(?)

[name] DW repeated-count DUP(?)

	 Description

These directives reserve the number of bytes/words specified by the repeated-count or reserve

bytes/words only. value1 and value2 should be ? due to the microcontroller RAM . The Cross

Assembler will not initialize the RAM data. DBIT reserves a bit. The content ? denotes

uninitialized data, i.e., reserves the space of the data. The Cross Assembler will gather every 8

DBIT together and reserve a byte for these 8 DBIT variables.

	 Example

DATA .SECTION �DATA�

tbuf DB ?

chksum DW ?

flag1 DBIT

sbuf DB ?

cflag DBIT

In this example, the Cross Assembler reserves byte location 0 for tbuf, location 1 and 2 for

chksum, bit 0 of location 3 for flag1, location 4 for sbuf and bit 1 of location 3 for cflag.

Syntax

name LABEL {BIT|BYTE|WORD}

	 Description

The name with the data type has the same address as the following data variable

	 Example
lab1 LABEL WORD

d1 DB ?

d2 DB ?

In this example, d1 is the low byte of lab1 and d2 is the high byte of lab1.

Syntax

name EQU expression

	 Description

The EQU directive creates absolute symbols, aliases, or text symbols by assigning an expres-

sion to name. An absolute symbol is a name standing for a 16-bit value; an alias is a name rep-

resenting another symbol; a text symbol is a name for another combination of characters. The

namemust be unique, i.e. not having been defined previously. The expression can be an inte-

ger, a string constant, an instruction mnemonic, a constant expression, or an address expres-

sion.

	 Example
accreg EQU 5

bmove EQU mov

In this example, the variable accreg is equal to 5, and bmove is equal to the instruction mov.

Chapter 4 Assembly Language and Cross Assembler

101

Macro Directives

Macro directives enable a block of source statements to be named, and then that name to be

re-used in the source file to represent the statements. During assembly, the Cross Assembler auto-

matically replaces each occurrence of the macro name with the statements in the macro definition.

A macro can be defined at any place in the source file as long as the definition precedes the first

source line that calls this macro. In the macro definition, the macro to be defined may refer to other

macros which have been previously defined. The Cross Assembler supports a maximum of 7 nest-

ing levels.

Syntax

name MACRO [dummy-parameter [, ...]]
statements
ENDM

The Cross Assembler supports a directive LOCAL for the macro definition.

Syntax

name LOCAL dummy-name [, ...]

	 Description

The LOCAL directive defines symbols available only in the defined macro. It must be the first line

following the MACRO directive, if it is present. The dummy-name is a temporary name that is re-

placed by a unique name when the macro is expanded. The Cross Assembler creates a new ac-

tual name for dummy-name each time the macro is expanded. The actual name has the form

??digit, where digit is a hexadecimal number within the range from 0000 to FFFF. A label

should be added to the LOCAL directive when labels are used within the MACRO/ENDM block.

Otherwise, the Cross Assembler will issue an error if this MACRO is referred to more than once in

the source file.

In the following example, tmp1 and tmp2 are both dummy parameters, and are replaced by ac-

tual parameters when calling this macro. label1 and label2 are both declared LOCAL, and

are replaced by ??0000 and ??0001 respectively at the first reference, if no other MACRO is re-

ferred. If no LOCAL declaration takes place, label1 and label2will be referred to labels, simi-

lar to the declaration in the source program. At the second reference of this macro, a multiple

define error message is displayed.

Delay MACRO tmp1, tmp2

LOCAL label1, label2

mov a, 70h

mov tmp1, a

label1:

mov tmp2, a

label2:

clr wdt1

clr wdt2

sdz tmp2

jmp label2

sdz tmp1

jmp label1

ENDM

102

I/O Type MTP MCU with EEPROM

The following source program refers to the macro Delay:

The Cross Assembler will expand the macro Delay as shown in the following listing file. Note that

the offset of each line in the macro body, from line 4 to line 17, is 0000. Line 24 is expanded to 11

lines and forms the macro body. In addition the formal parameters, tmp1 and tmp2, are replaced

with the actual parameters, BCnt and SCnt, respectively.

Chapter 4 Assembly Language and Cross Assembler

103

� � � � � � �

� � � � � 	
 � � �
 � � � 	 � � � � � � � � � �

� � � � � � � � �

� � � � � � � � � � � � � � 	
 � � � � 	
 �

� �

� � � � � � 	 � � � � � � � � � ! "

� � � � � � 	 � � � � � � � 	
 � � � �

� � � � � � #

� � � � � � 	 � � � � � � � 	
 � � � �

� � � � � � #

� � � � � � � � � � � � $ % � �

� � � � � � � � � � � � $ % � �

� � � � � � � % & � � � � � 	
 �

� � � � � � ' 	
 � � � � � � � � � �

� � � � � � � % & � � � � � 	
 �

� � � � � � ' 	
 � � � � � � � � � �

� � � � � � () � �

% � � � � � � � � � � � * � + % � � � +

, � * � � % � � -

� � * � � % � � -

� � % � � � � � � � � � * � � � � ! � + � � % � +

� � � � � � , � * � � � � � * �

� * %

. � � � # � � � � � 	 � � � � � � � � � / � � � � 0 � � � � � 1 � � � � 	 � � � � � 2 � � � � * � � � 3 ! � � � � � � 4 � � � � �

� � � � � � ! ! ! ! �

� � � � � � ! ! ! ! � � � � � � � � � � � � � � � � � � � 	
 � � �
 � � � 	 � � � � � � � � � �

� � � 5 � � ! ! ! ! � �

� � � 6 � � ! ! ! ! � 	
 � � � � 	
 �

� � � 7 � � ! ! ! ! �

� � � 8 � � ! ! ! ! � 	 � � � � � � � � � ! "

� � � � � ! ! ! ! � 	 � � � � � � � 	
 � � � �

� � � 3 � � ! ! ! ! � #

� � � 9 � � ! ! ! ! � 	 � � � � � � � 	
 � � � �

� � � ! � � ! ! ! ! � #

� � � � � � ! ! ! ! � � � � � $ % � �

� � � � � � ! ! ! ! � � � � � $ % � �

� � � 5 � � ! ! ! ! � % & � � � � � 	
 �

� � � 6 � � ! ! ! ! � ' 	
 � � � � � � � � � �

� � � 7 � � ! ! ! ! � % & � � � � � 	
 �

� � � 8 � � ! ! ! ! � ' 	
 � � � � � � � � � �

� � � � � ! ! ! ! � () � �

� � � 3 � � ! ! ! !

� � � 9 � � ! ! ! ! � � � � � � � � � � � � � � % � � � � � � � � � � � * � + % � � � +

� � � ! � � ! ! ! ! � � ! ! � � � � � � � � � � , � * � � % � � -

� � � � � � ! ! ! � � � ! ! � � � � � � � � � � � � * � � % � � -

� � � � � � ! ! ! �

� � � 5 � � ! ! ! ! � � � � � � � � � � � � � � � � % � � � � � � � � � * � � � � ! � + � � % � +

� � � 6 � � ! ! ! ! � , � * � � � � � * �

� � � 6 � � ! ! ! ! � � ! . ! � � � � � � � � � � � � � � 	 � � � � � � � � � ! "

� � � 6 � � ! ! ! � � � ! ! 3 ! � � � � � � � � � � � � � � 	 � � � � � � , � * � � � �

� � � 6 � � ! ! ! � � � � � � � � � � � � � � � � - - ! ! ! ! #

� � � 6 � � ! ! ! � � � ! ! 3 ! � � � � � � � � � � � � � � 	 � � � � � � � � * � � � �

� � � 6 � � ! ! ! 5 � � � � � � � � � � � � � � � - - ! ! ! � #

� � � 6 � � ! ! ! 5 � � ! ! ! � � � � � � � � � � � � � � � � � � � � � $ % � �

� � � 6 � � ! ! ! 6 � � ! ! ! 7 � � � � � � � � � � � � � � � � � � � � $ % � �

� � � 6 � � ! ! ! 7 � � � 3 ! � � � � � � � � � � � � � � � % & � � � � � � * �

� � � 6 � � ! ! ! 8 � � � 3 ! 5 � � � � � � � � � � � � � � ' 	
 � � � � - - ! ! ! �

� � � 6 � � ! ! ! � � � 3 ! � � � � � � � � � � � � � � � % & � � � � , � * �

� � � 6 � � ! ! ! 3 � � � 3 ! � � � � � � � � � � � � � � � ' 	
 � � � � - - ! ! ! !

� � � 7 � � ! ! ! 9 � � � � � � � � � � � � � � � * %

� � � � � � � � ! � (� �

Assembly Instructions

The syntax of an instruction has the following form:

[name:] mnemonic [operand1[,operand2]] [;comment]

where

name:
 label name

mnemonic
 instruction name (keywords)

operand1
 registers

memory address

operand2
 registers

memory address

immediate value

Name

A name is made up of letters, digits, and special characters, and is used as a label.

Mnemonic

Mnemonic is an instruction name dependent upon the type of the MCU used in the source pro-

gram.

Operand, Operator and Expression

Operands (source or destination) are the argument defining values that are to be acted on by in-

structions. They can be constants, variables, registers, expressions or keywords. When using the

instruction statements, care must be taken to select the correct operand type, i.e. source operand

or destination operand. The dollar sign $ is a special operand, namely the current location oper-

and.

An expression consists of many operands that are combined to describe a value or a memory loca-

tion. The combined operators are evaluated at assembly time. They can contain constants, sym-

bols, or any combination of constants and symbols that are separated by arithmetic operators.

Operators specify the operations to be performed while combining the operands of an expression.

The Cross Assembler provides many operators to combine and evaluate operands. Some opera-

tors work with integer constants, some with memory values, and some with both. Operators han-

dle the calculation of constant values that are known at the assembly time. The following are some

operators provided by the Cross Assembler.

	 Arithmetic operators + - * / % (MOD)

	 SHL and SHR operators

� Syntax
expression SHR count
expression SHL count

104

I/O Type MTP MCU with EEPROM

The values of these shift bit operators are all constant values. The expression is shifted right

SHR or left SHL by the number of bits specified by count. If bits are shifted out of position, the

corresponding bits that are shifted in are zero-filled. The following are such examples:

mov A, 01110111b SHR 3 ; result ACC=00001110b

mov A, 01110111b SHL 4 ; result ACC=01110000b

	 Bitwise operators NOT, AND, OR, XOR

� Syntax
NOT expression
expression1 AND expression2
expression1 OR expression2
expression1 XOR expression2

NOT is a bitwise complement.

AND is a bitwise AND.

OR is a bitwise inclusive OR.

XOR is a bitwise exclusive OR.

	 OFFSET operator

� Syntax
OFFSET expression

The OFFSET operator returns the offset address of an expression. The expression can be

a label, a variable, or other direct memory operand. The value returned by the OFFSET operator

is an immediate operand.

	 LOW, MID and HIGH operator

� Syntax
LOW expression
MID expression
HIGH expression

The LOW/MID/HIGH operator returns the value of an expression if the result of the expres-

sion is an immediate value. The LOW/MID/HIGH operators will then take the low/middle/high

byte of this value. But if the expression is a label, the LOW/MID/HIGH operator will take the

values of the low/middle/high byte of the program count of this label.

	 BANK operator

� Syntax
BANK name

The BANK operator returns the bank number allocated to the section of the name declared. If the

name is a label then it returns the rom bank number. If the name is a data variable then it returns

the ram bank number. The format of the bank number is the same as the BP defined. For more

information of the format please refer to the data sheets of the corresponding MCUs. (Note: The

format of the BP might be different between MCUs.)

Example 1:

mov A, BANK start
mov BP,A
jmp start

Chapter 4 Assembly Language and Cross Assembler

105

Example 2:

mov A, BANK var
mov BP,A
mov A, OFFSET var
mov MP1,A
mov A,IAR1

	 Operator precedence

Precedence Operators

1 (Highest)

2

3

4

5

6

7

8

9 (Lowest)

(), []

+, � (unary), LOW, MID, HIGH, OFFSET, BANK

*, /, %, SHL, SHR

+, � (binary)

> (greater than), >= (greater than or equal to),

< (less than), <= (less than or equal to)

== (equal to), != (not equal to)

! (bitwise NOT)

& (bitwise AND)

|(bitwise OR), ^(bitwise XOR)

Miscellaneous

Forward References

The Cross Assembler allows reference to labels, variable names, and other symbols before they

are declared in the source code (forward named references). But symbols to the right of EQU are

not allowed to be forward referenced.

Local Labels

A local label is a label with a fixed form such as $number. The number can be 0~29. The function of

a local label is the same as a label except that the local label can be used repeatedly. The local la-

bel should be used between any two consecutive labels and the same local label name may used

between other two consecutive labels. The Cross Assembler will transfer every local label into a

unique label before assembling the source file. At most 30 local labels can be defined between two

consecutive labels.

Example.

Label1: ; label

$1: ;; local label

mov a, 1

jmp $3

$2: ;; local label

mov a, 2

jmp $1

$3: ;; local label

jmp $2

Label2: ; label

jmp $1

$0: ;; local label

jmp Label1

$1: jmp $0

Label3:

106

I/O Type MTP MCU with EEPROM

Reserved Assembly Language Words

The following tables list all reserved words used by the assembly language.

	 Reserved Names (directives, operators)

$ DUP INCLUDE NOT

* DW LABEL OFFSET

+ ELSE .LIST OR

� END .LISTINCLUDE ORG

. ENDIF .LISTMACRO PAGE

/ ENDM LOCAL PARA

= ENDP LOW PROC

? EQU MACRO PUBLIC

[] ERRMESSAGE MESSAGE RAMBANK

AND EXTERN MID ROMBANK

BANK HIGH MOD .SECTION

BYTE IF NEAR SHL

DB IFDEF .NOLIST SHR

DBIT IFE .NOLISTINCLUDE WORD

DC IFNDEF .NOLISTMACRO XOR

	 Reserved Names (instruction mnemonics)

ADC HALT RLCA SUB

ADCM INC RR SUBM

ADD INCA RRA SWAP

ADDM JMP RRC SWAPA

AND MOV RRCA SZ

ANDM NOP SBC SZA

CALL OR SBCM TABRDC

CLR ORM SDZ TABRDL

CPL RET SDZA XOR

CPLA RETI SET XORM

DAA RL SIZ

DEC RLA SIZA

DECA RLC SNZ

	 Reserved Names (registers names)

A WDT WDT1 WDT2

Chapter 4 Assembly Language and Cross Assembler

107

Cross Assembler Options

The Cross Assembler options can be set via the Options menu Project command in HT-IDE3000.

The Cross Assembler Options is located on the center part of the Project Option dialog box.

The symbols could be defined in the Define Symbol edit box.

Syntax

symbol1[=value1] [, symbol2[=value2] [, ...]]

	 Example,
debugflag=1, newver=3

The check box of the Generate listing file is used to decide whether the listing file should be gener-

ated or not. If the check box is checked, the listing file will be generated. Otherwise, it won�t be gen-

erated.

Assembly Listing File Format

The Assembly Listing File contains the source program listing and summary information. The first

line of each page is a title line which include company name, the Cross Assembler version num-

ber, source file name, date/time of assembly and page number.

Source Program Listing

Each line in the source program has the following syntax:

line-number offset [code] statement

	 Line-number is the number of the line starting from the first statement in the assembly source

file (4 decimal digits).

	 The 2nd field � offset � is the offset from the beginning of the current section to the code (4

hexadecimal digits)

	 The 3rd field � code � is present only if the statement generates code or data (two hexadecimal

4-digit data)

The code shows the numeric value in hexadecimal if the value is known at assembly time. Oth-

erwise, a proper flag will indicate the action required to compute the value. The following two

flags may appear behind the code field.

R
 relocatable address (Cross Linker must resolve)

E
 external symbol (Cross Linker must resolve)

The following flag may appear before the code field

=
 EQU or equal-sign directive

The following 2 flags may appear in the code field

 section address (Cross Linker must resolve)

nn[xx]
 DUP expression: nn DUP(?)

	 The 4th field � statement � is the source statement shown exactly as it appears in the source

file, or as expanded by a macro. The following flags may appear before a statement.

n
 Macro-expansion nesting level

C
 line from INCLUDE file

108

I/O Type MTP MCU with EEPROM

	 Summary

l l l l
 line number (4 digits, right alignment)

oooo
 offset of code (4 digits)

hhhh
 two 4-digits for opcode

E
 external reference

C
 statement from included file

R
 relocatable name

n
 Macro-expansion nesting level

Summary of Assembly

The total warning number and total error number is the information provided at the end of the

Cross Assembler listing file.

Miscellaneous

If any errors occur during assembly, each error message and error number will appear directly be-

low the statement where the error occurred.

Chapter 4 Assembly Language and Cross Assembler

109

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	

 � � � � � �

� � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �

� � � �

Example of assembly listing file

110

I/O Type MTP MCU with EEPROM

. � � � # � � � � 4 � (� � � � � � � � / � � � � 0 � � � � � 1 � � � � 	 � � � � � 2 � � � � * � � � 3 8 � � � � � � 4 � � � � �

�

�

5

6

7

8

�

�

5

6

7

8

3

9

� !

� �

� �

� 5

� 6

� 7

� 8

�

� 3

� 9

� !

� �

� �

� 5

� 6

� 7

� 8

�

� 3

� 9

5 !

5 �

5 �

5 5

5 5

5 5

5 5

5 5

5 6

5 7

5 8

5

5 3

5 9

6 !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! �

! ! ! �

! ! ! 5

! ! ! !

! ! ! !

! ! ! �

! ! ! �

! ! ! 5

! ! ! 6

! ! ! 7

! ! ! 7

! ! ! 8

! ! !

! ! !

! ! ! 3

! ! ! 9

! ! ! �

! ! ! ,

! ! ! �

! ! ! �

! ! � !

� � !

�

�

�

�

�

�

�

! !

! !

! !

! . 7 7

! ! 3 !

! ! 3 !

! . � �

! ! 9 5

! . ! !

! ! 9 �

� . � 6

! ! !

! . ! !

! . ! !

� 3 ! !

� � 5 6

� , � �

(� �

 � � � � 8 !

� � � � � � * � � : % �
� � � � � 	 � � �

 �

 � �

 �

 � �

 �

 � �

� ; :

� ; :

� ; :

� ; :

� ; :

� ; :

< � � " =

< � 5 " =

< � 6 " =

< � 7 " =

< � 8 " =

< � " =

> � * � � : % � ? � � 	
 � � � � * � ?

� @ � � *

� @ � � *

� �
 �

� � �
 �

� * % 	

	 � � �

� @ � � � �

� @ � � �

* � �

� � � �

� �
 �

	 � � � � �

	 � � �
 � �

� �
 �

� * % 	

% � � �

� �

� �

� � � �

� � % �

	 � �

	 � �

	 � �

	 � �

	 � �

� �
 �

	 � � � �

	 � �

� �
 �

� �

	 � �

	 � �

	 � �

' 	

7 8 3

(. � �

�

(

(

(

�

(

�

�

�

�

� � � � � � � * � + % � � � +

� % � � -

� % � � -

� % � � �

� � � � � � � * � + � � % � +

� � � ! 7 7 "

� � � � �

� @ � � � � � �

� � � ! � � "

 � � � � �

� � ! ! "

� � � � �

� � � � � * 0 � � @ � � � �

� � � � � � � � � � � @ � � �

� @ � � � �

� � 5 6 " � � 7 8 3 " � � ! � � � % " � � ! � � � � "

	 � � � � � � + � � 	
 � � � 4 � � � 	 � � +

#

#

	 � � �

! ! "
�

< � � " = � � �

< � 6 " =

� * %

% $

P a r t I I I

Development Tools

Part III Development Tools

111

112

I/O Type MTP MCU with EEPROM

C h a p t e r 5

MCU Programming Tools

To ease the process of application development, the importance and availability of supporting

tools for microcontrollers cannot be underestimated. To support its range of MCUs, Holtek is fully

committed to the development and release of easy to use and fully functional tools for its full range

of devices. The overall development environment is known as the HT-IDE, while the operating soft-

ware is known as the HT-IDE3000. The software provides an extremely user friendly Windows

based approach for program editing and debugging while the HT-ICE emulator hardware provides

full real time emulation with multi functional trace, stepping and breakpoint functions. With a com-

plete set of interface cards for its full device range and regular software Service Pack updates, the

HT-IDE development environment ensures that designers have the best tools to maximise effi-

ciency in the design and release of their microcontroller applications.

HT-IDE Development Environment

The Holtek Integrated Development Environment, otherwise known as the HT-IDE, is a high per-

formance integrated development environment designed around Holtek�s series of 8-bit MCU de-

vices. Incorporated within the system is the hardware and software tools necessary for rapid and

easy development of applications based on the Holtek range of 8-bit MCUs. The key component

within the HT-IDE system is the HT-ICE In-Circuit Emulator, capable of emulating the Holtek 8-bit

MCUs in real time, in addition to providing powerful debugging and trace features. The HT-ICE

In-Circuit Emulator also incorporates a device programmer which provides the user with all the

tools required to design, debug and program their MTP devices.

As for the software, the HT-IDE3000 provides a friendly workbench to ease the process of applica-

tion program development, by integrating all of the software tools, such as editor, Cross Assem-

bler, Cross Linker, library and symbolic debugger into a user friendly Windows based

environment.

As the HT-IDE3000 development system software includes the latest level Service Pack, it is only

necessary to install the latest version of the HT-IDE3000 development system, which will automati-

cally install the latest version Service Pack information. It is not necessary to install the Service

Pack in a separate operation. The latest HT-IDE3000 development system software can be down-

loaded from the Holtek website. More detailed information on the development system is con-

tained within the HT-IDE3000 User�s Guide.

Chapter 5 MCU Programming Tools

113

5

Some of the special features provided by the HT-IDE3000 include:

Emulation

	 Real-time program instruction emulation

Hardware

	 Easy installation and usage

	 Either internal or external oscillator

	 Breakpoint mechanism

	 Trace functions and trigger qualification supported by trace emulation chip

	 Printer port for connecting the HT-ICE to a host computer

	 I/O interface card for connecting the user�s application board to the HT-ICE

	 Programmer hardware integrated within the HT-ICE

Software

	 Windows based software utilities

	 Source program level debugger (symbolic debugger)

	 Multiple source program files workbench allows several program source files in a single applica-

tion

	 All tools are included for the development, debug, evaluation and generation of the final applica-

tion program code

	 Library for the setting up of common procedures which can be linked at a later date to other pro-

jects.

	 Virtual Peripheral Manager, VPM, simulates the behavior of peripheral devices.

Holtek In-Circuit Emulator � HT-ICE

Developed alongside the Holtek 8-bit microcontroller device range, the Holtek ICE is a fully func-

tional in-circuit emulator for Holtek�s 8-bit microcontroller devices. Incorporated within the system

are a comprehensive set of hardware and software tools for rapid and easy development of user

applications. Central to the system is the in-circuit hardware emulator, capable of emulating all of

Holtek�s 8-bit devices in real-time, while also providing a range of powerful debugging and trace fa-

cilities. Regarding software functions, the system incorporates a user-friendly Windows based

workbench which integrates together functions, such as program editor, Cross Assembler, Cross

Linker and library manager.

HT-ICE Interface Card

The interface card supplied with the HT-ICE can be used for most applications, however, it is possi-

ble for the user to omit the supplied interface card and design their own interface card. By includ-

ing the necessary interface circuitry on their own interface card, the user has a means of directly

connecting their target boards to the CN1 and CN2 connectors of the HT-ICE.

114

I/O Type MTP MCU with EEPROM

Programmer

The HT-ICE In-Circuit Emulator has an integrated programmer as part of the hardware package,

facilitating complete and convenient design, debug and device programming all within the HT-ICE

environment. Holtek also supplies a stand alone programming tool which provides a quick and effi-

cient means for low volume MTP programming. Full details on the different kinds of programmers

can be found on the Holtek website.

Adapter Card

The HT-ICE on-board programmer is provided with a programming Adapter Card, which contains

a standard Textool chip socket, in which DIP packages can be inserted for convenient program-

ming. However if other package types are to be used, this standard Adapter Card can be removed

and replaced by one of the many other Holtek supplied Adapter Cards, which are available for

these other package types. Full details on the different kinds of Adapter Cards for the various pack-

age types can be found on the Holtek website.

System Configuration

The HT-IDE system configuration is shown below, in which the host computer is a Pentium compat-

ible machine with Windows 95/98/NT/2000/XP or later. Note that if Windows NT/2000/XP or later

systems are used, then the HT-IDE3000 software must be installed in the Supervisor Privilege

mode.

The HT-IDE system contains the following hardware components:

	 HT-ICE emulator box with 1 printer port connector for connecting to the host machine, I/O signal

connector and one power-on LED

	 I/O interface card for connecting the target board to the HT-ICE box

	 Power Adapter

	 25-pin D-type printer cable

	 Integrated programmer

Chapter 5 MCU Programming Tools

115

� � � � � � � � � � � � �

� � � � � � � � �

� � � � ! " � � � � �

$ � % � &
& � � � � � � � ' (

$ � � � � �
' � � "

& � � � � � �
) � � � � � � � � �

% � � � � * � � �
� � � "

+ � � � �

� , �

- � � � � .
/

� + % , $ & + � � 0 + $

� , �

1 $ � � 2 � � � � �

1 $ � � 2 � � � � �

� � � � � � 	 �
 � � 	 �
 �

� � � � � � 	 � � � � � 	 �
 �

HT-ICE Interface Card Settings

The HT-ICE interface card (CPCB48E000004A) as shown below, is a PCB used to connect the

HT-ICE emulator to the user�s target board. It has the following functions:

� External clock source

� MCU socket pin assignment

The external clock source has two modes, RC and Crystal. If a crystal clock is to be used, posi-

tions 2 and 3 should be shorted on J2 and a suitable crystal inserted into location Y1. Otherwise, if

an RC clock is to be used, positions 1 and 2 should be shorted and the system frequency adjusted

using VR1. Refer to the Tools/Mask Option Menu of the HT-IDE3000 User�s Guide for the clock

source and system frequency selection.

The J1 connector provides the I/O port connections as well as other pins. The DIP switch, SW1,

should be set according to which device is selected and in accordance with the following table:

Part No. Package Socket
SW1

1 2 3 4 5 6 7 8

HT48E06
18DIP/SOP,

20SSOP
U5, U8 OFF OFF ON OFF ON OFF OFF �

HT48E10 24SKDIP/SOP U1 OFF OFF ON OFF ON OFF OFF �

HT48E30
24SKDIP/SOP,
28SKDIP/SOP

U2, U3 ON OFF OFF ON OFF OFF OFF �

HT48E50 28SKDIP/SOP U3 ON OFF OFF ON OFF OFF ON �

HT48E50 48SSOP J1 ON OFF OFF OFF OFF OFF OFF �

HT48E70
48SSOP,
64QFP

J1 OFF OFF OFF OFF OFF OFF OFF �

The pin assignments in the DIP socket locations are defined so as to match the device pin assign-

ments. The interface card VME connectors directly interface to the CON1 and CON2 connectors

on the HT-ICE.

116

I/O Type MTP MCU with EEPROM

� �

� �

� �

� �

� �

� �

� �

	 �

 � �

	 �

	 �

� �

� �

� � � �� � � �

Installation

System Requirement

The hardware and software requirements for installing HT-IDE3000 system are as follows:

	 PC/AT compatible machine with Pentium or higher CPU

	 SVGA color monitor

	 At least 32M RAM for best performance

	 CD ROM drive (for CD installation)

	 At least 20M free disk space

	 Parallel port to connect PC and HT-ICE

	 Windows 95/98/NT/2000/XP

Windows 95/98/NT/2000/XP are trademarks of Microsoft Corporation.

Hardware Installation

	 Step 1

Plug the power adapter into the power connector of the HT-ICE

	 Step 2

Connect the target board to the HT-ICE by using the I/O interface card or flat cable

	 Step 3

Connect the HT-ICE to the host machine using the printer cable

The LED on the HT-ICE should now be lit, if not, there is an error and your dealer should be con-

tacted.

Caution Exercise care when using the power adapter. It is strongly recommended that only the power

adapter supplied by Holtek be used. First plug the power adapter to the power connector of the

HT-ICE before connecting to the PC.

Software Installation

It is recommended that the latest version of the HT-IDE3000 software should first be downloaded

from the Holtek website and installed, however the version provided on the supplied CD ROM can

also be installed. A window similar to the following will be displayed.

Chapter 5 MCU Programming Tools

117

By selecting the �Setup HT-IDE3000� option and following the on screen installation instructions

the full development system software can be installed.

The setup process will create four subdirectories under the directory which was chosen for the

software installation. These directories have the names, BIN, INCLUDE, LIB and SAMPLE. The

BIN subdirectory contains all the system executables .EXE files, dynamic link libraries .DLL files

and the configuration .CFG and .FMT files for all the supported MCU devices. The INCLUDE sub-

directory contains all the include .H and .INC files provided by Holtek. The LIB subdirectory con-

tains the library .LIB files provided by Holtek. The SAMPLE subdirectory contains a number of

sample programs.

When the computer has been restarted and the HT-IDE3000 software run for the first time, the

system will request certain user information as shown in the figure. Select appropriate area and fill

in the company name and ID. The HT-IDE3000 provider can be requested to supply an ID number.

118

I/O Type MTP MCU with EEPROM

C h a p t e r 6

Quick Start

This chapter gives a brief description of using HT-IDE3000 to develop an application project.

Step 1 � Create a New Project

	 Click on Project menu and select New command

	 Enter your project name and select an MCU from the combo box

	 Click OK button and the system will ask you to setup the configuration options

	 Setup all configuration options and click Save button

Step 2 � Add Source Program Files to the Project

	 Create your source files by using File/New command

	 Write your program and save them with a file name, say TEST.ASM

	 Click on Project menu and select Edit command

	 An Edit Project dialog will ask you to add/delete files to/from the project

	 Select a source file name, say TEST.ASM, and click Add button

	 Click OK button after you setup all files in the project

Step 3 � Build the Project

	 Click on Project menu and select Build command

	 The system will assemble/compile all source files in the project

� If there are some errors in the programs, double click on the error message line and the sys-

tem will prompt you the position where the error happened.

� If all the program files are error free, the system will create a Task file and download to the

HT-ICE for debug.

	 You may repeat this step before you finish debugging your programs

Step 4 � Programming the MTP Device

	 Build the project for creating the .MTP file

	 Click on Tools menu and select the Writer command to program the MTP devices

Chapter 6 Quick Start

119

6

120

I/O Type MTP MCU with EEPROM

Appendix

Appendix

121

122

I/O Type MTP MCU with EEPROM

A p p e n d i x A

Device Characteristic Graphics

The following characteristic graphics depicts typical device behavior. The data presented here is a

statistical summary of data gathered on units from different lots over a period of time. This is for in-

formation only and the figures were not tested during manufacturing.

In some of the graphs, the data exceeding the specified operating range are shown for information

purposes only. The device will operate properly only within the specified range.

Appendix A Device Characteristic Graphics

123

A

Typical RC OSC vs. Temperature

Typical RC Oscillator Frequency vs. VDD

124

I/O Type MTP MCU with EEPROM

+ 7 � � 8 �

+ 7 �
 8 �

+ 7 � � 8 �

+ 7 � � 8 �

+ 7 �

 8 �

+ 7 �

 8 �

+ 7 � �
 8 �

�

	

�

�

�

�

�

�

�

�

� �� � �

* 5
6
5
�9
1
#
:
;

. - - � 9 . � � � ;

$ � 9 � � ;

*0
5
�

*0
5
�
�9
�
�
� �

;

 � 	 �

 � 	 � �

 � 	 �

 � 	 � �

 � 	 	

 � 	 	 �

�

� �

 �

� �
 �

� �
 � �

� �
 �

� �
 � �

� �
 � �
 � �

 �
 �
 �
 �
 �

. - - 7 � .

. - - 7 � .

. - - 7 � .

. - - 7 � .

IOH vs. VOH, VDD=3V

IOH vs. VOH, VDD=5V

Appendix A Device Characteristic Graphics

125

%0
#
�9
�
!
;

. 0 # � 9 . � � � ;

� � � �

� � � �

 � �

� �
 � �

� �

� �

� �

� �

� �

� �

� �

� �

� 	

� � � � � � � � � � � �

%0
#
�9
�
!
;

� �

� �

� � �

� �

� � �

� �

� � �

� �

� � � � � � � � � � � � � � � �

� � � �

� � � �

 � �

� �
 � �

. 0 # � 9 . � � � ;

IOL vs. VOL, VDD=3V

IOL vs. VOL, VDD=5V

126

I/O Type MTP MCU with EEPROM

%0
<
�9
�
!
;

. 0 < � 9 . � � � ;

� � � �

� � � �

� �
 � �

 � �

�

�

�

�

�

�

�

�

 � �
 � �
 � 	 � � � � � �

%0
<
�9
�
!
;

. 0 < � 9 . � � � ;

� �

� �

�

�

�

�

�

 � � � � � � � � � �

� � � �

� � � �

� �
 � �

 � �

Typical RPH vs. VDD

Typical VIH, VIL vs. VDD in -40�C to +85�C

Appendix A Device Characteristic Graphics

127

� � � �
� � � �

 � �
� �
 � �

� �

� �

�

	

�

�

�

�

�

�

�

�

� �� � �

+
�
#
�9
8
�
;

. - - � 9 . � � � ;

�

� �� � ��

�

� � �

�

� � �

�

� � �

�

 � �

.
%#
=�
.
%<
�9
.

��
�
;

. - - � 9 . � � � ;

. % # � 9 1 � (� ;

. % # � 9 1 � � � ;

. % < � 9 1 � (� ;

. % < � 9 1 � � � ;

Typical ISTB vs. VDD Watchdog Enable

Typical tWDTOSC vs. VDD

128

I/O Type MTP MCU with EEPROM

� � � �

� � � �

 � �

� �
 � �

	

�

�

�

�

�

�

�

�

� �� � ��

% 5
$
'
�9
�
!
;

. - - � 9 . � � � ;

� �� � ��

� � � �

� � � �

 � �

� �
 � �

� �

� �

� �

� �

� �

� �

�

	

�

�

�

�

�

� 2
-
$
0
5
�
�9
�
�
;

. - - � 9 . � � � ;

Typical Internal RC OSC vs. VDD

Typical IDD vs. Frequency (External Clock, Ta=-40�C)

Appendix A Device Characteristic Graphics

129

� �� � ��

� � � �

� � � �

 � �

� �
 � �

�

� � �

�

� � �

�

� � �

�

* 5
6
5
�9
1
#
:
;

. - - � 9 . � � � ;

 �

 �

 � �

 �

�

�

�

�

�

�

�

�

� � � .
� � � .

� � � .
� .

� .

� .

� .

� � � .

% -
-
�9
�
!
;

) + & > 3 & , � 6 � 9 8 # : ;

Typical IDD vs. Frequency (External Clock, Ta=0�C)

Typical IDD vs. Frequency (External Clock, Ta=+25�C)

130

I/O Type MTP MCU with EEPROM

%-
-
�9
�
!
;

) + & > 3 & , � 6 � 9 8 # : ;

 �

 �

 � �

 �

�

�

�

�

�

�

�

�

� .

� � � .

� � � .
� .

� .

� .

� � � .
� � � .

% -
-
�9
�
!
;

) + & > 3 & , � 6 � 9 8 # : ;

 �

 �

 � �

 �

�

�

�

�

�

�

�

�

� .

� � � .

� � � .
� .

� .

� .

� � � .
� � � .

Typical IDD vs. Frequency (External Clock, Ta=+85�C)

Typical VLVR vs. Temperature

Appendix A Device Characteristic Graphics

131

% -
-
�9
�
!
;

) + & > 3 & , � 6 � 9 8 # : ;

 �

 �

 � �

 �

�

�

�

�

�

�

�

�

� .

� � � .

� � � .
� .

� .

� .

� � � .
� � � .

� �
 � �
 � �

 �
 �
 �
 �
 �

.
<
.
+
�9
.

��
�
;

$ � 9 � � ;

� �

� � �

� � �

� � �

� � �

� � �

� � �

� �

� � 	

� � �

� � �

� � �

� � �

� � �

132

I/O Type MTP MCU with EEPROM

A p p e n d i x B

Package Information

Appendix B Package Information

133

B

18-pin DIP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 895 � 915

B 240 � 260

C 125 � 135

D 125 � 145

E 16 � 20

F 50 � 70

G � 100 �

H 295 � 315

I 335 � 375

� 0 � 15

134

I/O Type MTP MCU with EEPROM

� �

�

�

	

�

!

'

�

-

&

)

?

#

%

18-pin SOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 394 � 419

B 290 � 300

C 14 � 20

C� 447 � 460

D 92 � 104

E � 50 �

F 4 � �

G 32 � 38

H 4 � 12

� 0 � 10

Appendix B Package Information

135

� �

�

�

	

! '

�

-

&)

?

#

�

� @

20-pin SSOP (150mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 228 � 244

B 150 � 158

C 8 � 12

C� 335 � 347

D 49 � 65

E � 25 �

F 4 � 10

G 15 � 50

H 7 � 10

� 0 � 8

136

I/O Type MTP MCU with EEPROM

�

�

� �

�

! '

�

-

&)

� @
?

#

�

24-pin SKDIP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 1235 � 1265

B 255 � 265

C 125 � 135

D 125 � 145

E 16 � 20

F 50 � 70

G � 100 �

H 295 � 315

I 345 � 360

� 0 � 15

Appendix B Package Information

137

� �

�

� �

� �

�

!

'

�

-

&) ?

#

%

24-pin SOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 394 � 419

B 290 � 300

C 14 � 20

C� 590 � 614

D 92 � 104

E � 50 �

F 4 � �

G 32 � 38

H 4 � 12

� 0 � 10

138

I/O Type MTP MCU with EEPROM

� �

�

� �

� �

! '

�

-

&)

� @
?

#

�

28-pin SKDIP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 1375 � 1395

B 278 � 298

C 125 � 135

D 125 � 145

E 16 � 20

F 50 � 70

G � 100 �

H 295 � 315

I 330 � 375

� 0 � 15

Appendix B Package Information

139

� �
� �

�

� �

� �

�

!

'

�

-

&) ?

#

%

28-pin SOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 394 � 419

B 290 � 300

C 14 � 20

C� 697 � 713

D 92 � 104

E � 50 �

F 4 � �

G 32 � 38

H 4 � 12

� 0 � 10

140

I/O Type MTP MCU with EEPROM

� �

�

� �

� �

! '

�

-

)

� @
?

#

�&

48-pin SSOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 395 � 420

B 291 � 299

C 8 � 12

C� 613 � 637

D 85 � 99

E � 25 �

F 4 � 10

G 25 � 35

H 4 � 12

� 0 � 8

Appendix B Package Information

141

� �

�

� �

� �

! '

�

-

)

� @
?

#

�
&

64-pin QFP (14�20) Outline Dimensions

Symbol
Dimensions in mm

Min. Nom. Max.

A 18.80 � 19.20

B 13.90 � 14.10

C 24.80 � 25.20

D 19.90 � 20.10

E � 1 �

F � 0.40 �

G 2.50 � 3.10

H � � 3.40

I � 0.10 �

J 1.15 � 1.45

K 0.10 � 0.20

� 0 � 7

142

I/O Type MTP MCU with EEPROM

� �

� �

� �

�

�

� �

� �

� 	

! '

�

-

&

)

?

#

%

4

A �

Headquarters and Subsidiaries

Copyright � 2006 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this handbook is believed to be accurate at the time of publication. However, Holtek assumes
no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for
the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without
further modification, nor recommends the use of its products for application that may present a risk to human life due to

malfunction or otherwise. Holtek�s products are not authorized for use as critical components in life support devices or sys-
tems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please
visit our web site at http://www.holtek.com.tw.

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)
7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233
Tel: 86-21-6485-5560
Fax: 86-21-6485-0313
http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5/F, Unit A, Productivity Building, Cross of Science M 3rd Road and Gaoxin M 2nd Road, Science Park, Nanshan District,
Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9533

Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 86-10-6641-0030, 86-10-6641-7751, 86-10-6641-7752
Fax: 86-10-6641-0125

Holtek Semiconductor Inc. (Chengdu Sales Office)
709, Building 3, Champagne Plaza, No.97 Dongda Street, Chengdu, Sichuan, China 610016
Tel: 86-28-6653-6590
Fax: 86-28-6653-6591

Holmate Semiconductor, Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holmate.com

I/O Type MTP MCU with EEPROM

Amendments

