Preliminary GaN Hybrid Power Amplifier HR2933-70A

Product Features

Applications

• Frequency from $2.9 \sim 3.3 GHz$

- High output power : 48.5dBm(Typ)
- High gain : 23.5dB(Typ)
- High efficiency
- High thermal stability
- Internally matched for ease of use
- 10% Duty Cycle, 500us Pulse Width
- Small Size & Light Weight
- Surface mount Hybrid type

Description

Radar System

Package Type : NP-1E

The HR2933-70A is designed for Radar system application frequencies from $2.9 \sim 3.3$ GHz and GaN HEMT technology has been used that performs high breakdown voltage, wide bandwidth and high efficiency. HR2933-70A has been designed 2 stages to have higher Gain at the wide frequency range of $2.9 \sim 3.3$ GHz. GaN HEMT technology has been used to every amplifier in it for better reliability. Since it is high efficiency amplifier, it can perform at max 10% duty cycle and 500us of pulse width. A droop feature is below 1dB for long pulse usages.

Electrical Specifications @ Vds=50V, Ta=25°C, 50Ω System

PARAMETER	UNIT	MIN	ТҮР	MAX	CONDITION
Operating Frequency	MHz	2900	3100	3300	
Operating Bandwidth	MHz	-	400	-	
Output Pulse Power	W	60	70	-	
Input Pulse Power	dBm	-	25		
Power Gain	dB	-	23.5	-	
Gain Flatness	dB	-	-	-	
Duty Cycle	%	11 m	5	10	
Pulse Width	us	V. I I	100	500	$Idq1 = 100 \sim 150 \text{ mA}$ $Idq2 = 100 \sim 150 \text{ mA}$
Drain Efficiency	%	45	50	-	100 130 HIL
Amplitude Pulse Droop	dB	-0.5	0.5	1	
Harmonics 1 to N	dBc	-	-20	-	
Spurious Level	dBc	-	-	-60	
Rise Time	ns	-	-	200	
Fall Time	ns	-	-	200	
Phase Deviation	o	-20	-	20	

Caution

The drain voltage must be supplied to the device after the gate voltage is supplied

Turn on → Turn on the Gate Voltage supply and last turn On the Drain voltage supplies

Turn off \rightarrow Turn off the Drain Voltage and last turn off the Gate voltage

Note

* Test Pulse conditions = 100us, 10%

* Above electrical specifications is measured by connecting electrolytic condenser 200uF to DC. Please make sure that electrolytic condenser is connected properly while testing the module.

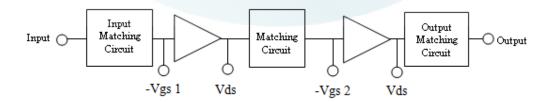
Preliminary GaN Hybrid Power Amplifier HR2933-70A

Mechanical Specifications

PARAMETER	UNIT	ТҮР	REMARK
Mass	g	2	-
Dimension	mm	20.5 x 15 x 4.8	-

Absolute Maximum Ratings

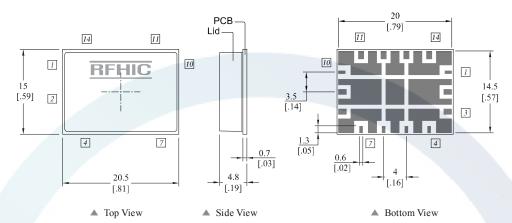
PARAMETER	UNIT	RATING	SYMBOL
Gate-Source Voltage	V	-10 ~ 0	Vgs1 Vgs2
Drain-Source Voltage	V	100	Vds
Gate Current	mA	50	Ig
Operating Junction Temperature	°C	225	T _J
Operating Case Temperature	°C	-30 ~ 80	T _C
Storage Temperature	°C	$-55 \sim 150$	T _{STG}


Operating Voltages

PARAMETER	UNIT	MIN	ТҮР	MAX	SYMBOL
Drain Voltage	V	49	50	51	Vds
Gate Voltage (on-stage)	V	-	Vgs1@Idq1	-2	Vgs 1
Gate Voltage (on-stage)	V	-	Vgs2@Idq2	-2	Vgs 2
Gate Voltage (off-stage)	V	EL.	-8	-	Vgs 1
Gate Voltage (off-stage)	V	-	-8		Vgs 2

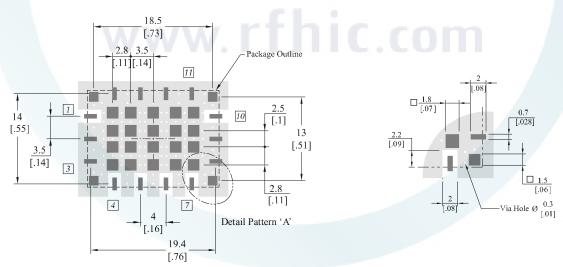
Power Supply

PARAMETER	UNIT	MIN	ТҮР	MAX	SYMBOL
Drain-Source current	А	-	-	3	Ids
Gate-Source Current (on-stage)	А	-	-	0.02	Igs
Gate-Source Current (off-stage)	mA	-	-	0.04	Igs


Block Diagram

RFHIC

Package Dimensions (Type: NP-1E)


* Unit: mm[inch] | Tolerance: ±0.15[.006]

Pin Description							
Function	Pin No	Function	Pin No	Function	Pin No	Function	
RF Input	4	Vgs1	8	GND	11	GND	
GND	5	Vds1	9	GND	12	GND	
GND	6	Vgs2	10	RF Output	13	GND	
-	7	Vds2	- 1	-	14	GND	
	RF Input GND	GND 5	FunctionPin NoFunctionRF Input4Vgs1GND5Vds1GND6Vgs2	FunctionPin NoFunctionPin NoRF Input4Vgs18GND5Vds19GND6Vgs210	FunctionPin NoFunctionPin NoFunctionRF Input4Vgs18GNDGND5Vds19GNDGND6Vgs210RF Output	FunctionPin NoFunctionPin NoFunctionPin NoRF Input4Vgs18GND11GND5Vds19GND12GND6Vgs210RF Output13	

Recommended Pattern

Recommended Pattern Detail 'A'

* Mounting Configuration Notes

1. For the proper performance of the device, Ground / Thermal via holes must be designed to remove heat.

- 2. To properly use heatsink, ensure the ground/thermal via hole region to contact the heatsink. We recommend the mounting screws
- be added near the heatsink to mount the board
- 3. In designing the necessary RF trace, width will depend upon the PCB material and construction.
- 4. Use 1 oz. Copper minimum thickness for the heatsink.
- 5. Do not put solder mask on the backside of the PCB in the region where the board contacts the heatsink
- 6. We recommend adding as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.

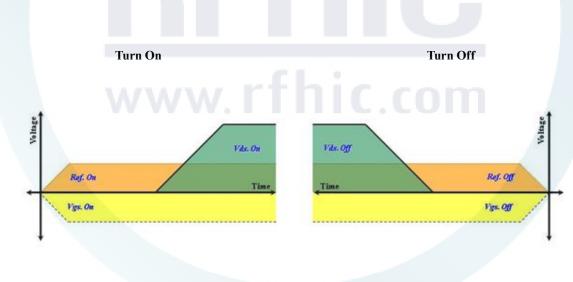
Precautions

This product is a Gallium Nitride Transistor.

The Gallium Nitride Transistor requires a Negative Voltage Bias which operates alongside a Positive Voltage Bias. These Biases are applied in accordance to the Sequence during Turn-On and Turn-Off.

The Pallet Amplifier does not have a built-in Bias Sequence Circuit. Therefore, users need to either apply positive voltages and negative voltages in the required sequence, or add an external Bias Circuit to this Amplifier.

The required sequence for power supply is as follows.

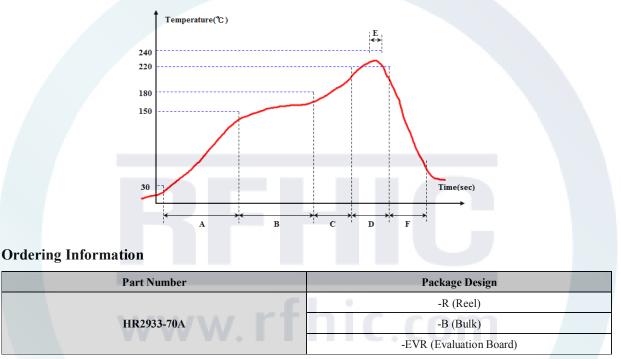

During Turn-On

- 1. Connect GND.
- 2. Apply Vgs1 and Vgs2.
- 3. Apply Vds1 and Vds2.
- 4. Apply the RF Power.

During Turn-Off

1. Turn off RF power.

- 2. Turn off Vds1,2 and then, turn off the Vgs1 and Vgs2.
- 3. Remove all connections.


- Sequence Timing Diagram -

Reflow profile

* Reflow oven settings

Zone	Α	В	С	D	Е	F
Temperature(°C)	30 ∼150 °C	150 ~ 180 ℃	180∼220 °C	220∼220 °C	235∼240 °C	2~6 °C/ Sec Drop
Belt speed	55 ~ 115 sec	55 ~ 75 sec	30 ~ 50 sec	30 ~ 50 sec	$5 \sim 10 \text{ sec}$	60 ~ 90 sec

* Measured reflow profile

Revision History

Part Number	Release Date	Version	Modification	Data Sheet Status
HR2933-70A	2014.9.10	0.1	New datasheet format.	Preliminary

RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product at any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclams any and all liability, including without limitation consequential or incidental damages. RFHIC products are not intended for use in life support equipment or application where malfunction of the product can be expected to result in personal injury or death. Buyer uses or sells such products for any such unintended or unauthorized application, buyer shall indemify, protect and hold RFHIC Corporation and its directors, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use.

Sales, inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US Sales Team at 919-677-8780. For all other inquiries, please contact the International Sales Team at 82-31-8069-3036.