

HM62A16100I Series

Wide Temperature Range Version 16 M SRAM (1-Mword × 16-bit)

REJ03C0053-0001Z Preliminary Rev. 0.01 Jun.02.2003

Description

The Renesas HM62A16100I Series is 16-Mbit static RAM organized 1-Mword × 16-bit. HM62A16100I Series has realized higher density, higher performance and low power consumption by employing CMOS process technology (6-transistor memory cell). It offers low power standby power dissipation; therefore, it is suitable for battery backup systems. It has the package variations of 48-bump chip size package with 0.75 mm bump pitch for high density surface mounting.

Features

• Single 1.8 V supply: 1.65 V to 2.2 V

• Fast access time: 70 ns (max)

• Power dissipation:

— Active: 3.6 mW/MHz (typ)

— Standby: 0.9 μW (typ)

• Completely static memory.

No clock or timing strobe required

• Equal access and cycle times

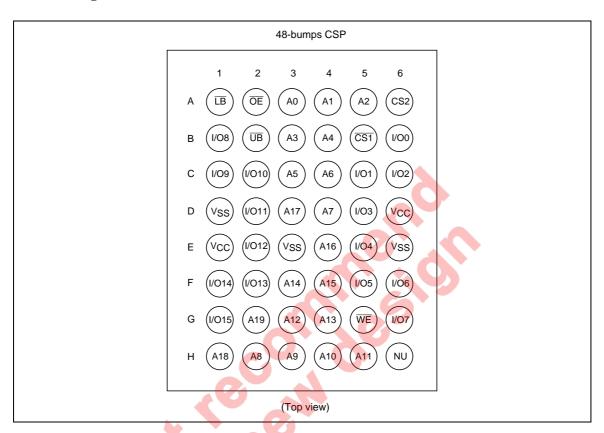
• Common data input and output.

— Three state output

• Battery backup operation.

— 2 chip selection for battery backup

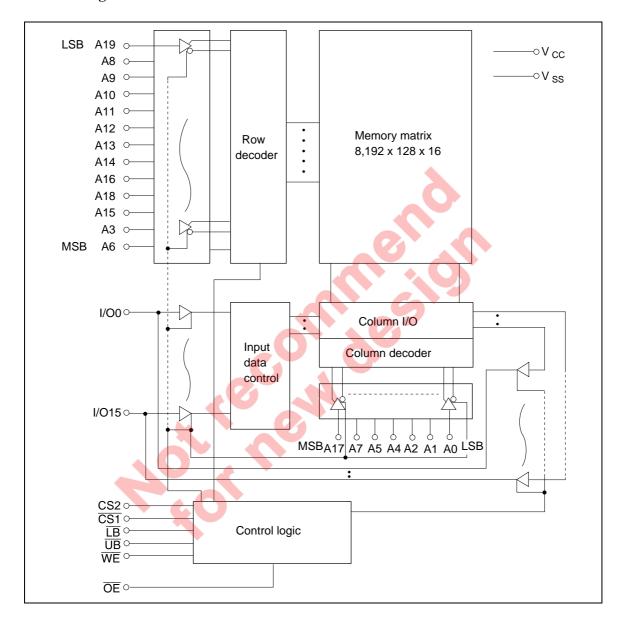
• Temperature range: -40 to +85°C


Preliminary: The specification of this device are subject to change without notice. Please contact your nearest Renesas Technology's Sales Dept. regarding specification.

Ordering Information

Type No.	Access time	Package
HM62A16100LBPI-7	70 ns	48-bump CSP with 0.75 mm bump pitch (TBP-48F)
HM62A16100LBPI-7SL	70 ns	_

Pin Arrangement



Pin Description

Pin name	Function
A0 to A19	Address input
I/O0 to I/O15	Data input/output
CS1	Chip select 1
CS2	Chip select 2
WE	Write enable
OE	Output enable
LB	Lower byte select
UB	Upper byte select
V _{cc}	Power supply
V _{ss}	Ground
NU*1	Not used (test mode pin)

Note: 1. This pin should be connected to a ground (V_{ss}) , or not be connected (open).

Block Diagram

Operation Table

CS1	CS2	WE	OE	UB	LB	I/O0 to I/O7	I/O8 to I/O15	Operation
Н	×	×	×	×	×	High-Z	High-Z	Standby
×	L	×	×	×	×	High-Z	High-Z	Standby
×	×	×	×	Н	Н	High-Z	High-Z	Standby
L	Н	Н	L	L	L	Dout	Dout	Read
L	Н	Н	L	Н	L	Dout	High-Z	Lower byte read
L	Н	Н	L	L	Н	High-Z	Dout	Upper byte read
L	Н	L	×	L	L	Din	Din	Write
L	Н	L	×	Н	L	Din	High-Z	Lower byte write
L	Н	L	×	L	Н	High-Z	Din	Upper byte write
L	Н	Н	Н	×	×	High-Z	High-Z	Output disable

Note: H: V_{IH} , L: V_{IL} , \times : V_{IH} or V_{IL}

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage relative to $V_{\rm ss}$	V _{cc}	-0.3 to + 2.6	V
Terminal voltage on any pin relative to V _{ss}	V _T	-0.3^{*1} to $V_{cc} + 0.3^{*2}$	V
Power dissipation	P _r	1.0	W
Storage temperature range	Tstg	-55 to +125	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Notes: 1. V_{τ} min: -2.0 V for pulse half-width \leq 10 ns.

2. Maximum voltage is +2.6 V.

DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	V _{cc}	1.65	1.8	2.2	V	
	V _{ss}	0	0	0	V	
Input high voltage	V _{IH}	$0.75 \times V_{cc}$. —	V _{cc} + 0.3	V	
Input low voltage	$V_{_{\rm IL}}$	-0.3	_	$0.25 \times V_{c}$	_c V	1
Ambient temperature range	Та	-40	_	85	°C	

Note: 1. V_{IL} min: -2.0 V for pulse half-width ≤ 10 ns.

DC Characteristics

Parameter	Symbol	Min	Typ*1	Max	Unit	Test conditions
Input leakage current	I _{LI}	_	_	1	μΑ	$Vin = V_{ss} to V_{cc}$
Output leakage current	I _{LO}	_	_	1	μА	$CS1 = V_{IH}$ or $CS2 = V_{IL}$ or $OE = V_{IH}$ or $WE = V_{IL}$ or $LB = UB = V_{IH}$, $V_{I/O} = V_{SS}$ to V_{CC}
Operating current	I _{cc}	_	_	8	mA	$CS1 = V_{IL}, CS2 = V_{IH},$ Others = $V_{IH}, V_{IL}, I_{I/O} = 0 \text{ mA}$
Average operating current	I _{CC1}		20	30	mA	Min. cycle, duty = 100%, $I_{IO} = 0$ mA, CS1 = V_{IL} , CS2 = V_{IH} , Others = V_{IH}/V_{IL}
	I _{CC2}	_	2	5	mA	Cycle time = 1 μ s, duty = 100%, I_{IO} = 0 mA, CS1 \leq 0.2 V, CS2 \geq V _{cc} - 0.2 V $V_{IH} \geq$ V _{cc} - 0.2 V, $V_{IL} \leq$ 0.2 V
Standby current	I _{SB}	_	0.1	0.5	mA	CS2 = V _{IL}
Standby current	*2 SB1	-	0.5	25	μΑ	$ \begin{array}{l} 0 \ V \leq Vin \\ (1) \ 0 \ V \leq CS2 \leq 0.2 \ V \ or \\ (2) \ CS1 \geq V_{cc} - 0.2 \ V, \\ CS2 \geq V_{cc} - 0.2 \ V \ or \\ (3) \ LB = UB \geq V_{cc} - 0.2 \ V, \\ CS2 \geq V_{cc} - 0.2 \ V, \\ CS1 \leq 0.2 \ V \\ Average \ value \\ \end{array} $
	SB1	_	0.5	8	μΑ	
Output high voltage	V _{OH}	$V_{cc} - 0.2$		_	V	$I_{OH} = -100 \mu A$
Output low voltage	V _{oL}		_	0.2	V	$I_{OL} = 100 \mu\text{A}$

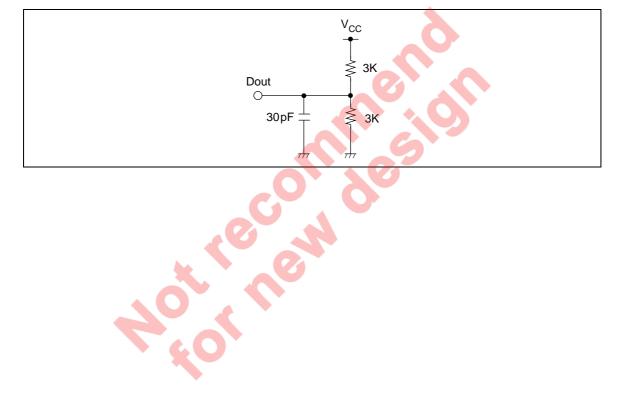
Notes: 1. Typical values are at $V_{cc} = 1.8 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and not guaranteed. 2. This characteristic is guaranteed only for L-version.

- 3. This characteristic is guaranteed only for L-SL version.

Capacitance

 $(Ta = +25^{\circ}C, f = 1.0 \text{ MHz})$

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	Note
Input capacitance	Cin		_	8	pF	Vin = 0 V	1
Input/output capacitance	C _{I/O}	_	_	10	pF	$V_{I/O} = 0 V$	1


Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics

(Ta = -40 to +85°C, V_{CC} = 1.65 V to 2.2 V, unless otherwise noted.)

Test Conditions

- Input pulse levels: $V_{IL} = 0.2 \text{ V}, V_{IH} = V_{CC} 0.2 \text{ V}$
- Input rise and fall time: 3 ns
- Input and output timing reference levels: $0.5 \times V_{\rm cc}$
- Output load: See figures (Including scope and jig)

HM62A16100I Series

Read Cycle

HM62A16100I

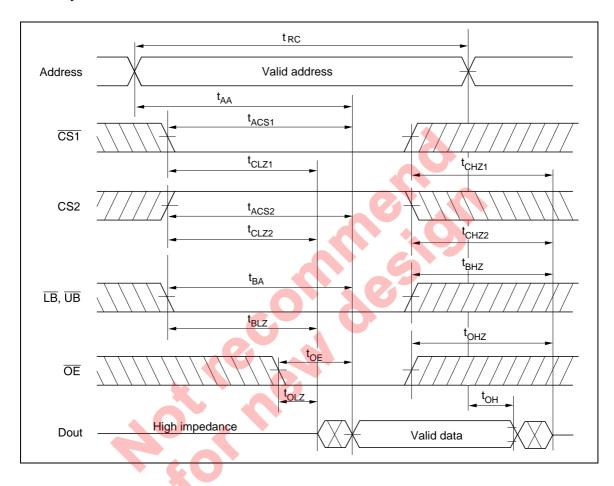
		-7			
Parameter	Symbol	Min	Max	Unit	Notes
Read cycle time	t _{RC}	70	_	ns	
Address access time	t _{AA}	_	70	ns	
Chip select access time	t _{ACS1}	_	70	ns	
	t _{ACS2}	_	70	ns	
Output enable to output valid	t _{oe}	_	35	ns	
Output hold from address change	t _{oh}	10	-	ns	
LB, UB access time	t _{BA}	_	70	ns	
Chip select to output in low-Z	t _{CLZ1}	10	A	ns	2, 3
	t _{CLZ2}	10		ns	2, 3
LB, UB enable to low-Z	t _{BLZ}	5	C-A	ns	2, 3
Output enable to output in low-Z	t _{oLZ}	5	7 401	ns	2, 3
Chip deselect to output in high-Z	t _{CHZ1}	0	25	ns	1, 2, 3
	t _{CHZ2}	0	25	ns	1, 2, 3
LB, UB disable to high-Z	t _{BHZ}	0	25	ns	1, 2, 3
Output disable to output in high-Z	tonz	0	25	ns	1, 2, 3

Write Cycle

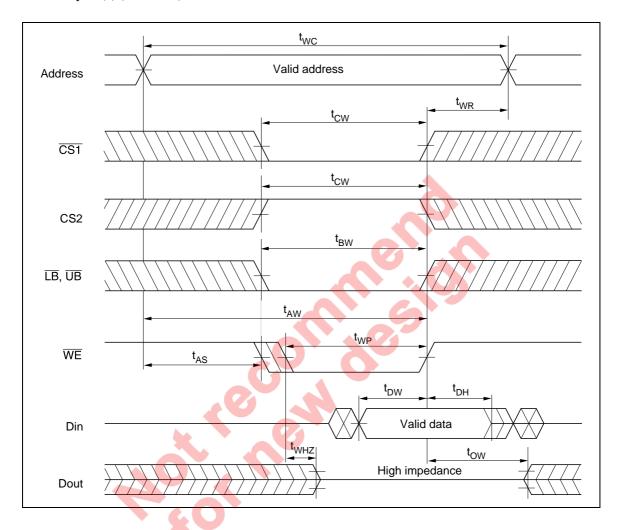
HM62A16100I

		-/			
Parameter	Symbol	Min	Max	Unit	Notes
Write cycle time	t _{wc}	70	_	ns	
Address valid to end of write	t _{AW}	60		ns	
Chip selection to end of write	t _{cw}	60		ns	5
Write pulse width	t _{wP}	50	_	ns	4
LB, UB valid to end of write	t _{BW}	60	_	ns	
Address setup time	t _{AS}	0		ns	6
Write recovery time	t _{wR}	0		ns	7
Data to write time overlap	t _{DW}	30		ns	
Data hold from write time	t _{DH}	0		ns	
Output active from end of write	t _{ow}	5		ns	2
Output disable to output in high-Z	t _{ohz}	0	25	ns	1, 2
Write to output in high-Z	t _{whz}	0	25	ns	1, 2
	•				

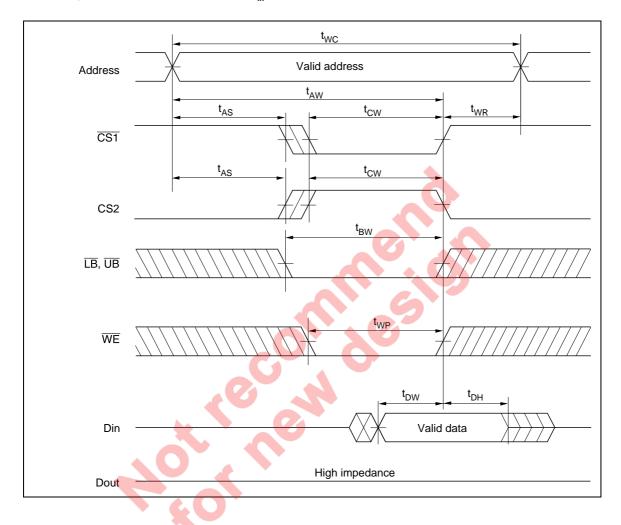
HM62A16100I Series

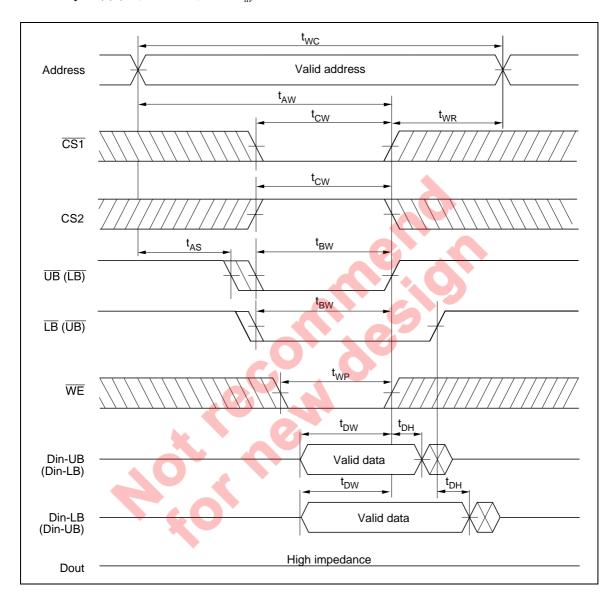

Notes: 1. t_{CHZ} , t_{OHZ} , t_{WHZ} and t_{BHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

- 2. This parameter is sampled and not 100% tested.
- 3. At any given temperature and voltage condition, $t_{\rm HZ}$ max is less than $t_{\rm LZ}$ min both for a given device and from device to device.
- 4. A write occurs during the overlap of a low CS1, a high CS2, a low WE and a low LB or a low UB. A write begins at the latest transition among CS1 going low, CS2 going high, WE going low and LB going low or UB going low. A write ends at the earliest transition among CS1 going high, CS2 going low, WE going high and LB going high or UB going high. t_{WP} is measured from the beginning of write to the end of write.
- 5. $t_{\scriptscriptstyle CW}$ is measured from the later of CS1 going low or CS2 going high to the end of write.
- 6. t_{AS} is measured from the address valid to the beginning of write.
- t_{wR} is measured from the earliest of CS1 or WE going high or CS2 going low to the end of write cycle.



Timing Waveform

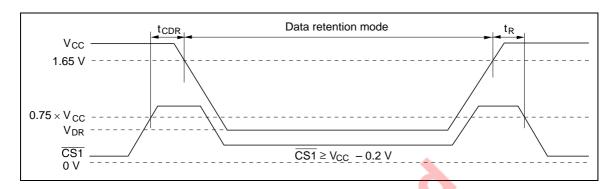

Read Cycle


Write Cycle (1) (WE Clock)

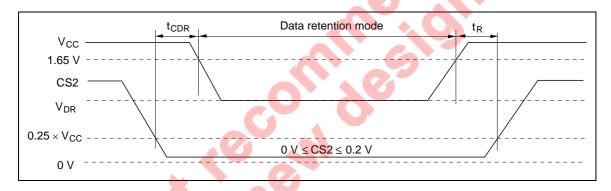
Write Cycle (2) (CS1, CS2 Clock, OE = $V_{_{IH}}$)

Write Cycle (3) (LB, UB Clock, OE = $V_{_{IH}}$)

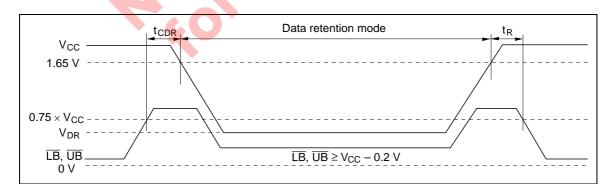
Low $V_{\rm cc}$ Data Retention Characteristics


 $(Ta = -40 \text{ to } +85^{\circ}C)$

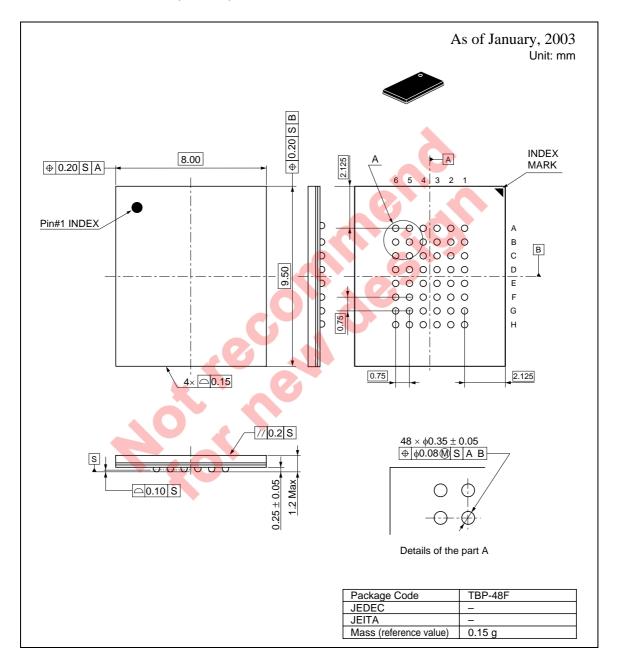
Parameter	Symbol	Min	Typ* ⁴	Max	Unit	Test conditions*3
V _{cc} for data retention	V_{DR}	1.0	_	2.2	V	$\begin{aligned} &\text{Vin} \ge 0 \text{ V} \\ &\text{(1)} \ 0 \ \text{V} \le \text{CS2} \le 0.2 \text{ V or} \\ &\text{(2)} \ \text{CS2} \ge \text{V}_{\text{cc}} - 0.2 \text{ V}, \\ &\text{CS1} \ge \text{V}_{\text{cc}} - 0.2 \text{ V or} \\ &\text{(3)} \ \text{LB} = \text{UB} \ge \text{V}_{\text{cc}} - 0.2 \text{ V}, \\ &\text{CS2} \ge \text{V}_{\text{cc}} - 0.2 \text{ V}, \\ &\text{CS1} \le 0.2 \text{ V} \end{aligned}$
Data retention current	1 *1 CCDR	_	0.5	25	μΑ	$V_{cc} = 1.5 \text{ V}, \text{ Vin } \ge 0 \text{ V}$ $(1) \ 0 \ \text{V} \le \text{CS2} \le 0.2 \text{ V or}$ $(2) \ \text{CS2} \ge V_{cc} - 0.2 \text{ V},$ $\text{CS1} \ge V_{cc} - 0.2 \text{ V or}$ $(3) \ \text{LB} = \text{UB} \ge V_{cc} - 0.2 \text{ V},$ $\text{CS2} \ge V_{cc} - 0.2 \text{ V},$ $\text{CS1} \le 0.2 \text{ V}$ Average value
	CCDR		0.5	8	μΑ	
Chip deselect to data retention time	t _{CDR}	0		10	ns	See retention waveforms
Operation recovery time	$t_{_{\rm R}}$	5	/_ (-	ms	


Notes: 1. This characteristic is guaranteed only for L-version.

- 2. This characteristic is guaranteed only for L-SL version.
- 3. CS2 controls address buffer, WE buffer, CS1 buffer, OE buffer, LB, UB buffer and Din buffer. If CS2 controls data retention mode, Vin levels (address, WE, OE, CS1, LB, UB, I/O) can be in the high impedance state. If CS1 controls data retention mode, CS2 must be CS2 \geq V $_{cc}-0.2$ V or 0 V \leq CS2 \leq 0.2 V. The other input levels (address, WE, OE, LB, UB, I/O) can be in the high impedance state.
- 4. Typical values are at V_{cc} = 1.5 V, Ta = +25°C and not guaranteed.


 $\textbf{Low}~\textbf{V}_{cc}~\textbf{Data}~\textbf{Retention}~\textbf{Timing}~\textbf{Waveform}~\textbf{(1)}~(\text{CS1}~\text{Controlled})$

Low V_{cc} Data Retention Timing Waveform (2) (CS2 Controlled)



 $\textbf{Low V}_{cc} \, \textbf{Data Retention Timing Waveform (3)} \, (\text{LB, UB Controlled})$

Package Dimensions

HM62A16100LBPI Series (TBP-48F)

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials

 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.

 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to charge by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
- contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.
 Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destinat

http://www.renesas.com

Copyright © 2003. Renesas Technology Corporation, All rights reserved. Printed in Japan. Colophon 0.0