

Mil-cots DC DC converters-HFL28 Series

1 FEATURES of Mil-cots DC DC converters-HFL28 Series

- > 16 to 40 VDC input, typical 28V
- > 50W to 65W output power
- > -55°C to +125°C operation
- > Fully isolated
- \triangleright 100M Ω minimum (500V DC) isolation
- > Inhibit and indefinite short circuit protection
- **→** 43W/in³ power density
- **Equivalent with Interpoint's MFL Series**
- > Hermetically sealed meatal cases

Size: $76.33 \times 38.23 \times 10.16$ mm³

Weight: 80 grams

Figure 1 HFL28 series DC/DC converters

2 DESCRIPTION of Mil-cots DC DC

converters-HFL28 Series

The HFL28 Series of DC/DC converters offer up to 65 watts of output power with high reliability. The converters are packaged in hermetically sealed metal cases, making them ideal for use in aviation, aerospace and other high reliability applications.

The HFL28 series of converters use a pulse width modulated and single ended forward topology design. The operating principle is that the sampling signal of output voltage, coupled by the opto-coupler, works together with the sampling signal of input loop current to regulate the pulse width of the controller. The magnetic feedback technology can avoid magnetic saturation and improve products reliability effectively.

Thick film hybrid techniques provide the HFL 28 Series of converters with reliability levels and optimum miniaturazation. The design and manufacturing process of HFL28 Series of converters

Table 1 Pro	oduct models						
MOD	MODELS						
SINGLE	DUAL						
HFL28S5	HFL28D5						
HFL28S12	HFL28D12						
HFL28S15	HFL28D15						
HFL28S28							

ABSOLUTE MAXIMUM RATINGS

• Input Voltage: 16 to 40 VDC

• Power Dissipation: 65 watts

Lead Soldering Temperature:300°C(10s)

• Storage Temperature Range: -55 $^{\circ}\mathrm{C}$ to +125 $^{\circ}\mathrm{C}$

Inhibit Voltage: 0.2V max

• External Synchronous Signals:

Frequency Range: 400k to 600kHz Duty Ratio: 40% to 60%

Level: 0.8 V≤V≤5V

RECOMMENDED OPERATING CONDITIONS

• Input VDC: 16 to 40 V

• Case Temperature(Tc): -55 °C to

are in compliance with General Standards of Hybrid Integrated Circuits and detailed standards of manufacturing. Connected to a HFD-CE03 filter, the HFL28 Series of converters can achieve better electromagnetic compatibility(EMC) performance.

3 ELECTRICAL PERFORMANCE of Mil-cots DC DC converters-HFL28

Series

HFL28S5, HFL28S12

Table 2 Electrical Characteristics: (TCASE = -55°C to +125°C, VIN = 28V ± 0.5V, Full Loads, Unless Otherwise Specified)

Sin	HFL	HFL28S5		HFL28S12		
Parameter	Conditions			Max	Min	Max
Output Voltage(V)	lo=full load	Ambient temperature high and low temperature	4.950 4.875	5.050 5.125	11.88 11.76	12.12 12.24
Output Current(A)	V _{in} = 16 TO 40 V	DC	_	10	_	5
Output Power(W)	_		_	50	_	60
Output Ripple Voltage (mV)	BW=10 kHz to 2 MHz	Ambient temperature	_	35	_	75
Line Breede Control	I _o =full load	high and low temperature	_	50		100
Line Regulation(mV)	V _{in} = 16 TO 40 V		_	20	_	20
Load Regulation(mV)	lo=No load to loa	ad ⊤	_	20	_	20
Input Ripple Current (mA)	$BW=10$ kHz to 10 MHz $I_0=full\ load$	Ambient temperature high and low temperature	_	45 50	_	45 50
Efficiency (%)	I₀=full load	Ambient temperature high and low temperature	77	_	83	_
Isolation (M Ω)	Input to output o	100	_	100	_	
Inhibit Function	T _A = 25° C, Inhi	0	0.2	0	0.2	
Protection Function	T _A = 25° C		5		5	_
Start-up Overshoot(mV pk)	V _{in} =0 to 28V, I _o =	full load	_	25	_	50
Start-up Delay(ms)	V _{in} =0 to 28V, I _o =full load		_	6	_	6
Capacitive Load(µ F)	·	ffect on DC performance	_	1000	_	1000
Switching Frequency(kHz)	I _o =full load		400	600	400	600
Step Load Response Transient (mV pK)	50% load full lo	-350	350	_	600	
Step Load Response Recovery (µs)	50% load full lo	_	3000	_	3000	
Step Line Response Transient (mV pK)	V _{in} =16~40V, I _o =f V _{in} =40~16V, I _o =f	_	300	_	400	
Step Line Response Recovery (μs)	V _{in} =16~40V, I _o =f V _{in} =40~16V, I _o =f	_	300	_	300	
Load Fault recovery (ms)	I _O :short circuit to		4		4	

Notes to Specifications:

- ① The step load transition time should be greater than or equal to $10\mu s$.
- 2 The step line transition time should be greater than or equal to $10\mu s$.
- 3 Recovery time is measured from application of the transient to point at which V_{OUT} is within 1% of V_{OUT} at final value.

HFL28S15, HFL28S28

Table 3 Electrical Characteristics: (TCASE = -55°C to +125°C, VIN = 28V ± 0.5V, Full Loads, Unless Otherwise Specified)

Single output models			HFL28S15		HFL28S28	
Parameter	Conditions			Max	Min	Max
Output Voltage (V)	lo=full load	Io=full load Ambient temperature high and low temperature		15.15 15.45	27.72 27.16	28.28 28.84
Output Current(A)	V _{in} = 16 TO 40 V	DC	_	4.33	_	2.32
Output Power(W)	_		_	65	_	65
Output Ripple Voltage(mV)	BW=10 kHz to 2 MHz I₀=full load	Ambient temperature high and low temperature	_	85 110	_	200 300
Line Regulation(mV)	$V_{in} = 16 \text{ TO } 40 \text{ V}$			20		120
Load Regulation(mV)	Io=No load to loa			20		150
Input Ripple Current (mA)	BW=10 kHz to 10 MHz l₀=full load	BW=10 kHz o 10 MHz Ambient temperature		45 50		50 60
Efficiency (%)	I _o =full load	Ambient temperature high and low temperature	84 82	_	83 79	_
Isolation (M Ω)	Input to output of case ground pin)	100	_	100	_	
Inhibit Function	T _A = 25° C, Inhi	0	0.2	0	0.2	
Protection Function	T _A = 25° C		5	_	5	
Start-up Overshoot (mV pk)	V _{in} =0 to 28V, I _o =full load		_	50	_	100
Start-up Delay(ms)	V _{in} =0 to 28V, I _o =	_	6	_	6	
Capacitive Load(µ F)	T _A = 25° C, No e	ffect on DC performance		1000		500
Switching Frequency(kHz)	I _o =full load	·		600	400	600
Step Load Response Transient (mV pK)	50% load full lo	_	600	_	1400	
Step Load Response Recovery (µs)	50% load full lo	_	3000	_	3000	
Step Line Response Transient (mV pK)	V _{in} =16~40V, I _o =f V _{in} =40~16V, I _o =f	_	400	_	800	
Step Line Response Recovery (µs)	V _{in} =16~40V, I₀=full load, V _{in} =40~16V, I₀=full load		_	300	_	400
Load Fault recovery (ms)	Io:short circuit to		4	_	4	

Notes to Specifications:

- 1 The step load transition time should be greater than or equal to $10\mu s.$
- ② The step line transition time should be greater than or equal to $10\mu s$.

HFL28D5 HFL28D12 HFL28D15

Table 4 Electrical Characteristics: ($T_{CASE} = -55^{\circ}C$ to $+125^{\circ}C$, $V_{IN} = +28V \pm 0.5V$, Full Loads, Unless Otherwise Specified)

Dual output models				HFL28D5		HFL28D12		HFL28D15	
Parameter	Conditions			Min	Max	Min	Max	Min	Max
		Ambient tempera	ature	4.95	5.05	11.88	12.12	14.85	15.15
Output Voltage	put Voltage Io ₁ = Io ₂ = full high and low temperature		4.85	5.15	11.64	12.36	14.55	15.45	
(V)	load	Ambient tempera	ature	-5.08	-4.92	-12.18	-11.82	-15.23	-14.77
		high and low ten	nperature	-5.18	-4.82	-12.42	-11.58	-15.53	-14.47
Output Current(A)	V _{IN} = 16 TO 40 VD	С		_	5	_	2.5	_	2.17
Output Power(W)	-			_	50	_	60	_	65
	BW=10 kHz to	Ambient tempera	ature	_	50	_	80	_	100
Output Ripple	2 MHz	high and low temperature		_	100	-	120	_	150
Voltage(mV)	Io ₁ = Io ₂ = full	Ambient tempera	ature	_	50		80	_	100
5 ()	load	high and low ten		_	100	_	120	_	150
Line Regulation	V _{IN} = 16 TO 40 VD		+V _{out}		50	_	50	_	50
(mV)	$lo_1 = lo_2 = full load$	О,		_	100		100	_	100
(1117)	101-102-10111080		-V _{out}			_			
Load Regulation	Io ₁ = Io ₂ =No load to full load		+V _{out}	_	50	_	50	_	50
(mV)			-V _{out}	_	100	_	120	_	150
	BW=10 kHz to								
Input Ripple	10 MHz	Ambient tempera		_	45	_	45	-	45
Current(mA)	lo ₁ = lo ₂ =full load high and low temperatur			_	50	_	50	_	50
	101 102 1011 1000								
Efficiency (%)	Io ₁ = Io ₂ =full load Ambient temperature		77	—	83	_	84		
Linciency (70)	high and low temperature			75	-	81	-	82	
Isolation (MΩ)	Input to output or	any pin to case (except case		100	_	100	_	100	
isolation (ivi 52)	ground pin) at 500	VDC, T _A = 25° C		100		100		100	
Inhibit Function	$T_A = 25^{\circ} C$, Inhibi	t voltage, output disabled		0	0.2	0	0.2	0	0.2
Protection Function	T _A = 25° C			5	_	5	_	5	_
Start-up Overshoot (mV pk)	V _{in} =0 to 28V, Io ₁	=lo ₂ =full load		-25	25	-50	50	-50	50
Start-up delay (ms)	V _{in} =0 to 28V, Io ₁	=lo ₂ =full load		_	6	_	6	_	6
Capacitive Load(µF)	T _A = 25° C, No effe	ect on DC perform	ance	_	500	_	500	_	500
Switching	.,,,,,,,								
Frequency(kHz)	lo ₁ =lo ₂ =full load			400	600	400	600	400	600
Step Load Response	50% load to full loa	load or full load to 50% load,							
Transient(mV pK)	Each V _{out} has balanced load		-350	350	-600	600	-600	600	
Step Load Response	50% load to full load or full load to 50% load,			1					
Recovery (μs)	Each Vout has balanced load		_	3000	-	3000	_	3000	
Step Line Response	V _{in} =16~40V, Io ₁ = Io ₂ =full load		200	200	400	400	400	400	
Transient (mV pK)	V _{in} =40~16V, I ₀₁ =	=40~16V, lo ₁ = lo ₂ =full load		-300	300	-400	400	-400	400
Step Line Response	V _{in} =16~40V, lo	Io ₁ =Io ₂ =full load V _{in} =40~16V,		_	300	_	300	_	300
Recovery (μs)	lo ₁ = lo ₂ =full load				300		300		300
Load Fault									
Short Circuit	Io ₁ = Io ₂ short cir	cuit to full load		_	4	—	4	—	4
recovery (ms)									

Notes to Specifications:

- ①The step load transition time should be greater than or equal to $10\mu s.\,$
- 2 The step line transition time should be greater than or equal to $10\mu s$.
- $\@$ Recovery time is measured from application of the transient to point at which V_{OUT} is within 1% of V_{OUT} at final value.

4 TYPICAL PERFORMANCE CURVES of Mil-cots DC DC

converters-HFL28 Series

(1) Single output model (HFL28S15F)

Figure 2 Efficiency (OUTPUT POWER)

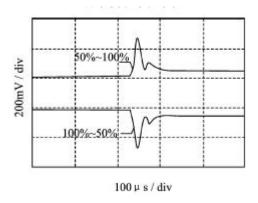


Figure 4 STEP LOAD RESPONSE

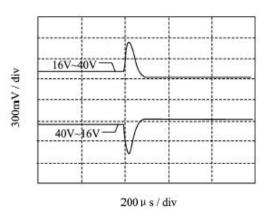


Figure 3 STEP LINE RESPONSE

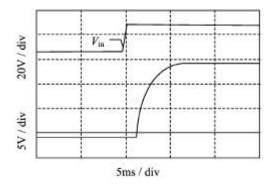


Figure 5 START-UP OVERSHOOT/ DELAY

(2) Dual output model (HFL28D15)

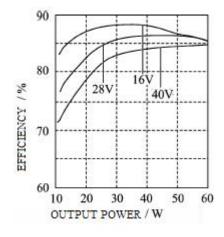


Figure 6 EFFICIENCY(OUTPUT POWER)

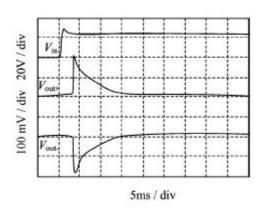


Figure 7 STEP LINE RESPONSE

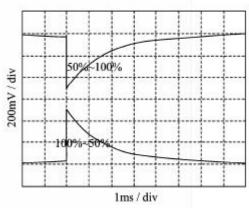


Figure 8 STEP LOAD RESPONSE

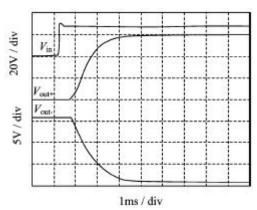


Figure 9 START-UP OVERSHOOT/DELAY

5 TYPICAL MTBF CURVES of Mil-cots DC DC converters-HFL28 Series

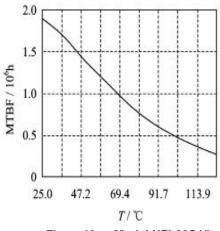
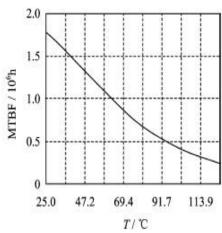
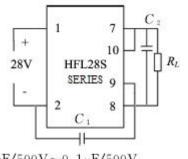
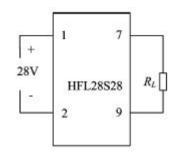


Figure 10 Model HFL 28S15

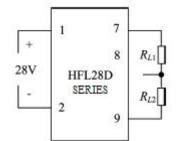



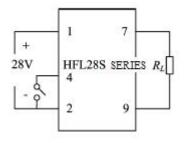

Figure 11 Model HFL28D15

6 TYPICAL CONNECTION DIAGRAM of Mil-cots DC DC

converters-HFL28 Series

 $C_1 100 \text{pF}/500 \text{V} \sim 0.1 \mu\text{F}/500 \text{V}$ $C_2 0.01 \mu\text{F}/50 \text{V} \sim 100 \mu\text{F}/50 \text{V}$




Figure 12 Application Connection

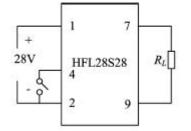

Diagram For Single Output Models

Figure 13 Application Connection Diagram For Model HFL 28S 28

Figure 14 Application Connection Diagram For Dual Output Models

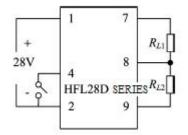
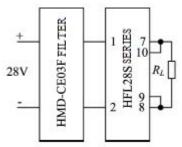
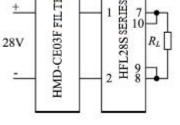




Figure 15 Inhibit Drive Connection **Diagram for Single Output Models**

Figure 16 Inhibit Drive Connection Diagram for Model HFL28S28

Figure 17 Inhibit Drive Connection **Diagram for Dual Output Models**

HMD-CE03F FILTER HFL28S28 R_L 28V

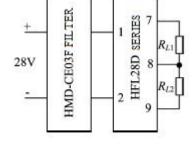


Figure 18 Connection Diagram for Single Output Converter with EMI **Filter**

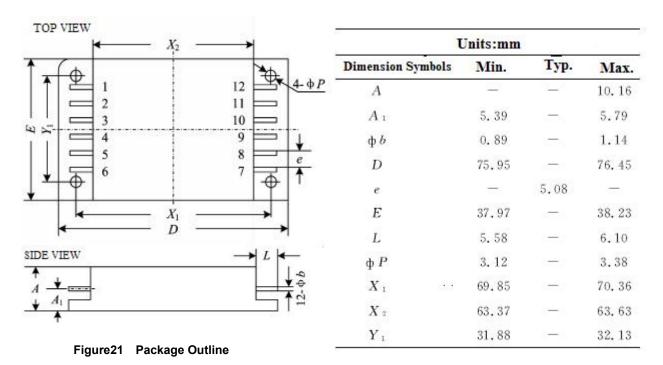
Figure 19 Connection Diagram for Model HFL28S28 Converter with **EMI Filter**

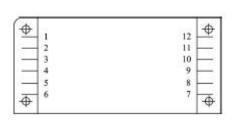
Figure 20 Connection Diagram for **Dual Output Converter with EMI Filter**

- 7 -

7 PACKAGE SPECIFICATIONS of Mil-cots DC DC converters-HFL28

Series




Table 5 Case Materials

Case Model	Header	Header Plating	Cover	Cover Plating	Pin	Pin Plating	Sealing Style	Notes
FPP6438-12	Cold Rolled Steel	Nickel	Iron/Nickel Alloy(4J42)	Nickel	Copper Compound	Nickel/Gold	Compression Seal	

Notes:Solder pins individually with heat application not exceeding 300° C for 10 seconds per pin.

8 PIN DESIGNATION of

Mil-cots DC DC converters-HFL28 Series

Figue 22 Bottom View of Pin Out

Table 6 Pin Designation

Pin	Single Output	Dual Output
1	Positive Input	Positive Input
2	Input Common	Input Common
3	NC	NC
4	Inhibit 1	Inhibit 1
5	NC	NC
6	Synchronous Input	Synchronous Input
7	Output	Positive Output
8	Output Common	Output Common
9	Negative Output Sense	Negative Output
10	Positive Output Sense	NC
11	NC	NC
12	Inhibit 2	Inhibit 2

9 ORDERING INFORMATION of Mil-cots DC DC converters-HFL28

Series

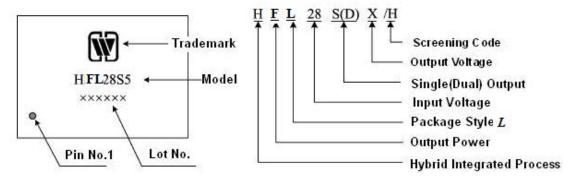


Figure 23 Part Numbering Key

Application Notes:

- The correct power supply is to be ensured that may not cause permanent damage to the device.
- > When the electrical performance is tested, the testing position should be pin of the device.
- ➤ When the device is mounted, the bottom of the device should be closely attached to the circuit board. So as to avoid the damage of the pins, the shockproof should be increased when it is required
- The pin should not be bending to avoid the glass insulator breaking and case leakage.
- ➤ When the case temperature is at 105°C, it is suggested that thickness of the thermal sinking plate(copper material) is 5mm, the dimension is greater than 120mm×100mm.
- ➤ When the case temperature is at 125 °C , it is suggested that thickness of the thermal sinking plate is 5mm, the dimension is greater than 120mm×80mm.

To request a quotation or place orders ,please contact our sales representative or the ECRIM SalesDepartment at:

E-mail: sales@ecrim.cn