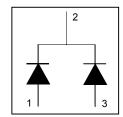
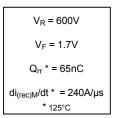


HFA16TA60CS

HEXFRED™


Ultrafast, Soft Recovery Diode


Features


- · Ultrafast Recovery
- · Ultrasoft Recovery
- Very Low I_{RRM}
- Very Low Q_{rr}
- · Specified at Operating Conditions

Benefits

- · Reduced RFI and EMI
- Reduced Power Loss in Diode and Switching Transistor
- · Higher Frequency Operation
- Reduced Snubbing
- · Reduced Parts Count

Description

International Rectifier's HFA16TA60CS is a state of the art center tap ultra fast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 volts and 8 amps per Leg continuous current, the HFA16TA60CS is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultra fast recovery time, the HEXFRED product line features extremely low values of peak recovery current (IRRM) and does not exhibit any tendency to "snap-off" during the to portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA16TA60CS is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

Absolute Maximum Ratings (per Leg)

Parameter		Max	Units	
V _R	Cathode-to-Anode Voltage	600	V	
I _F @ T _C = 100°C	Continuous Forward Current	8.0		
I _{FSM}	Single Pulse Forward Current	60	Α	
I _{FRM}	Maximum Repetitive Forward Current	24		
P _D @ T _C = 25°C	Maximum Power Dissipation	36	w	
P _D @ T _C = 100°C	Maximum Power Dissipation	14	**	
TJ	Operating Junction and	FF to 11F0	°C	
T _{STG}	Storage Temperature Range	- 55 to +150		

Electrical Characteristics (per Leg) @ T_J = 25°C (unless otherwise specified)

	Parameter	Min	Тур	Max	Units	Test Conditions	
V_{BR}	Cathode Anode Breakdown Voltage	600			V	I _R = 100μA	
V _{FM}	Max Forward Voltage		1.4	1.7		I _F = 8A	See Fig. 1
			1.7	2.1	V	I _F = 16A	
			1.4	1.7		I _F = 8A, T _J = 125°C	
I _{RM}	Max Reverse Leakage Current		0.3	5	μA	V _R = V _R Rated	See Fig. 2
			100	500	μΛ	$T_J = 125$ °C, $V_R = 0.8 \times V_R$ Rated	
Ст	Junction Capacitance		10	25	pF	V _R = 200V	See Fig. 3
Ls	Series Inductance		8.0		nH	Measured lead to lead package body	5mm from

Dynamic Recovery Characteristics (per Leg) @ T_J = 25°C (unless otherwise specified)

	Parameter	Min	Тур	Max	Units	Test Conditions		
t _{rr}	Reverse Recovery Time		18			$I_F = 1.0A$, $di_f/dt = 200A$	/μs, V _R = 30V	
t _{rr1}	See Fig. 5, 6 & 16		37	55	ns	$T_J = 25^{\circ}C$		
t _{rr2}			55	90		T _J = 125°C	I _F = 8A	
I _{RRM1}	Peak Recovery Current		3.5	5.0	Α	T _J = 25°C		
I _{RRM2}	See Fig. 7& 8		4.5	8.0		T _J = 125°C	V _R = 200V	
Q _{rr1}	Reverse Recovery Charge		65	138	nC	T _J = 25°C		
Q _{rr2}	See Fig. 9 & 10		124	360	IIC	T _J = 125°C	di _f /dt = 200A/µs	
di _{(rec)M} /dt1	Peak Rate of Fall of Recovery Current		240		Δ/110	T _J = 25°C		
di _{(rec)M} /dt2	During t _b See Fig. 11 & 12		210		A/µs	T _J = 125°C		

Thermal - Mechanical Characteristics

	Parameter	Min	Тур	Max	Units
T _{lead} ①	Lead Temperature			300	ů
R _{th} JC	Junction-to-Case, Single Leg Conducting			3.5	
	Junction-to-Case, Both Legs Conducting			1.75	K/W
R _{thJA} @	Thermal Resistance, Junction to Ambient			80	
Wt	Weight		2		g
			0.07		(oz)
	Mounting Torque	6		12	Kg-cm
		5		10	lbf•in

 $^{\, \, \}oplus \,$ 0.063 in. from Case (1.6mm) for 10 sec

2 www.irf.com

② Typical Socket Mount

0.00001

0.0001

Bulletin PD-20373 01/01

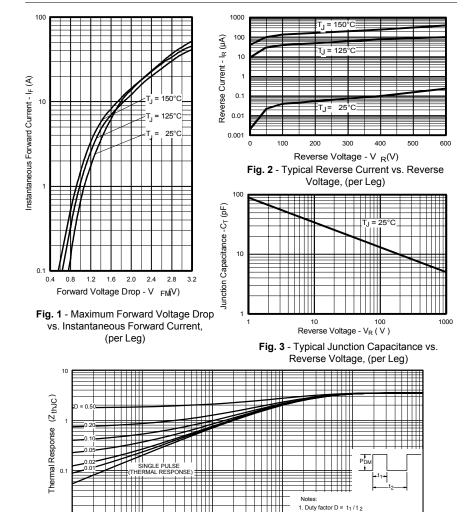


Fig. 4 - Maximum Thermal Impedance Z_{thjc} Characteristics, (per Leg)

www.irf.com 3

t₁, Rectangular Pulse Duration (sec)

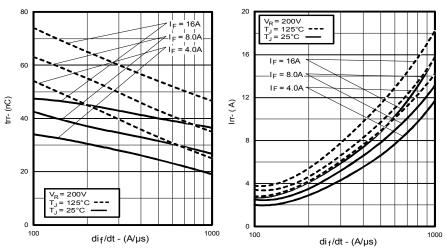
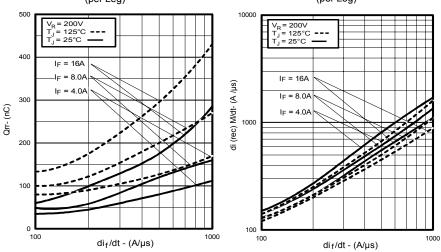



Fig. 5 - Typical Reverse Recovery vs. di_f/dt, (per Leg)

Fig. 6 - Typical Recovery Current vs. di_f/dt, (per Leg)

Fig. 7 - Typical Stored Charge vs. di_f/dt, (per Leg)

Fig. 8 - Typical di_{(rec)M}/dt vs. di_f/dt, (per Leg)

Bulletin PD-20373 01/01

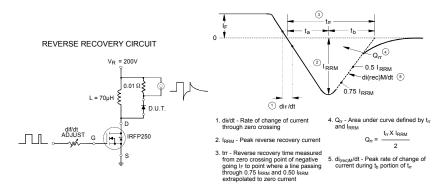
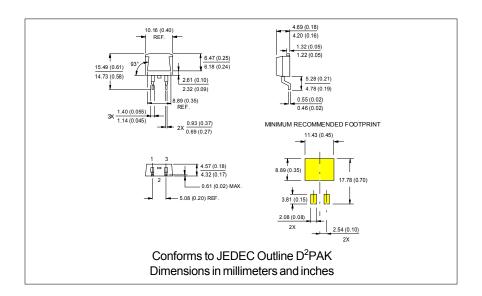



Fig. 9 - Reverse Recovery Parameter Test Circuit

Fig. 10 - Reverse Recovery Waveform and Definitions

www.irf.com 5

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309

Visit us at www.irf.com for sales contact information. 01/01

6 www.irf.com