INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

HEF4007UB gates

DESCRIPTION

The HEF4007UB is a dual complementary pair and an inverter with access to each device. It has three n-channel and three p-channel enhancement mode MOS transistors.

HEF4007UBP(N):	14-lead DIL; plastic
	(SOT27-1)
HEF4007UBD(F):	14-lead DIL; ceramic (cerdip)
	(SOT73)
HEF4007UBT(D):	14-lead SO; plastic
	(SOT108-1)
	- to a Nio atha Alas a a' a a

(): Package Designator North America

PINNING

S _{P2} , S _{P3}	source connections to 2nd and 3rd
	p-channel transistors
D _{P1} , D _{P2}	drain connections from the 1st and 2nd

- p-channel transistors
- $D_{N1}, \, D_{N2} \quad \mbox{ drain connections from the 1st and 2nd } \\ n\mbox{-channel transistors}$
- $S_{N2}, \, S_{N3} \quad \mbox{ source connections to the 2nd and 3rd} \\ n\mbox{-channel transistors}$
- D_{N/P3} common connection to the 3rd p-channel and n-channel transistor drains
- $\begin{array}{lll} G_1 \text{ to } G_3 & \text{gate connections to n-channel and} \\ \text{ p-channel of the three transistor pairs} \end{array}$

FAMILY DATA, IDD LIMITS category GATES

See Family Specifications for $V_{\text{IH}}/V_{\text{IL}}$ unbuffered stages

HEF4007UB gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$G_n \rightarrow D_N$; D_P	5		40	80	ns	13 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	20	40	ns	9 ns + (0,23 ns/pF) C _L
	15		15	30	ns	7 ns + (0,16 ns/pF) C _L
	5		40	75	ns	13 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	20	40	ns	9 ns + (0,23 ns/pF) C _L
	15		15	30	ns	7 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	4500 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	20 000 $f_i + \Sigma ~(f_o C_L) \times V_{DD}{}^2$	f _i = input freq. (MHz)
package (P)	15	50 000 $f_i + \Sigma ~(f_o C_L) \times V_{DD}{}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\Sigma(f_oC_L) = sum of outputs$
			V _{DD} = supply voltage (V)

gates

HEF4007UB

Dual complementary pair and inverter

)		
	Fig.3	Typical drain current I_D and output voltage V_O as functions of input voltage; V_{DD} = 5 V; T_{amb} = 25 °C.

HEF4007UB gates

APPLICATION INFORMATION

Some examples of applications for the HEF4007UB are:

- High input impedance amplifiers
- Linear amplifiers
- (Crystal) oscillators
- High-current sink and source drivers
- High impedance buffers.

HEF4007UB gates

HEF4007UB gates

Figures 11 to 14 show some applications in which the HEF4007UB is used.

gates

HEF4007UB

Dual complementary pair and inverter

FUNCTION TABLE for Fig.14.

INPUT	DISABLE	OUTPUT
Н	L	L
L	L	н
X	Н	open

Notes

 H = HIGH state (the more positive voltage) L = LOW state (the less positive voltage) X = state is immaterial

NOTE

Rules for maintaining electrical isolation between transistors and monolithic substrate:

- Pin number 14 must be maintained at the most positive (or equally positive) potential with respect to any other pin of the HEF4007UB.
- Pin number 7 must be maintained at the most negative (or equally negative) potential with respect to any other pin of the HEF4007UB.

Violation of these rules will result in improper transistor operation and/or possible permanent damage to the HEF4007UB.