
The HD74LS77 is ideally suited for use as temporary storage for binary information between processing units and input/ output or indicator units. Information present at a data(D) input is transferred to the Q output when the enable (G) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high.

■BLOCK DIAGRAM

EPIN ARRANGEMENT

INFUNCTION TABLE

Inp	Output	
D	G	Q
L	Н	L
Н	Н	Н
X	L	Qo

Notes) H; high level, L; low level, X; irrelevant

Qo; level of Q before the indicated steady-state input conditions were established.

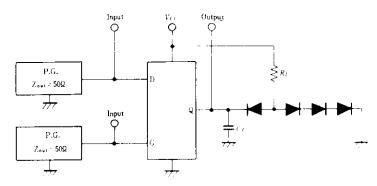
MRECOMMENDED OPERATING CONDITIONS

Item	Symbol	min	typ	max	Unit	
Pulse width	tic	20	_	_	ns	
Setup time	ts u	20	-	_	ns	
Hold time	th	5	_	_	ns	

ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75 ^{\circ}\text{C}$)

Item		Symbol	Test Conditions			typ*	max	Unit
Input voltage		ViH			2.0	_		v
		V_{IL}			_	_	0.8	V
Output voltage		Voн	$V_{CC} = 4.75 \text{V}, V_{IH} = 2 \text{V}, V_{IL} = 0.8 \text{V}, I_{OH} = -400 \mu\text{A}$		2.7	-		V
		17	$V_{CC}=4.75V$, $V_{IH}=2V$, $I_{OL}=4mA$			_	0.4	v
		Vol	$V_{IL}=0.8V$	IoL = 8mA		_	0.5	٧
Input current G	D		1/ F 0511 1/ 0 511	-	-	20	μΑ	
	G	IIн	$V_{CC} = 5.25 \text{ V}, V_I = 2.7 \text{ V}$		_	_		80
	D	7	$V_{CC} = 5.25 \text{V}, V_I = 0.4 \text{V}$		-		-0.4	mA
	G	In.					-1.6	
	D		7. CON 11. DV		_		0.1	
G		- Iı	$V_{CC} = 5.25 \text{V}, V_I = 7 \text{V}$			-	0.4	mA.
Short-circuit outpu	it current	los	$V_{CC} = 5.25 \text{V}$		- 20	_	-100	mΑ
Supply current **		I ce	$V_{CC} = 5.25 \text{V}$		-	6.9	13	mΑ
Input clamp voltage	· · · · · · · · · · · · · · · · · · ·	VIK	$Vcc = 4.75V$, $I_{IN} = -18mA$		_	_	-1.5	v

^{*} VCC=5V, Ta=25°C

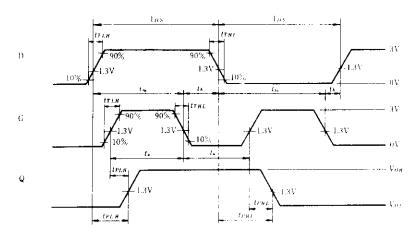

^{**} ICC is measured with all outputs open and all inputs grounded.

ESWITCHING CHARACTERISTICS ($V_{CC} = 5V$, $T_{a} - 25^{\circ}C$)

Item	Symbol i	Input	Output	Test Conditions	min	typ	max	Unit
Propagation delay time	tri.#	T)			-	11	19	
	trнi.	i D	! Ч -	Ci 15pF		9	17] .
	tri.n	1 0		$R_L = 2k\Omega$	1	10	18	ns
	tent	G	,			10	18	

TESTING METHOD

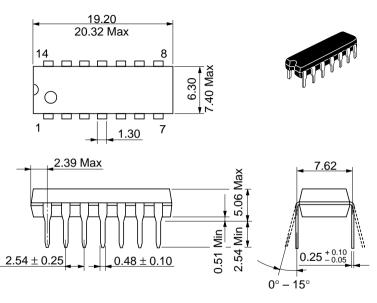
1) Test Circuit



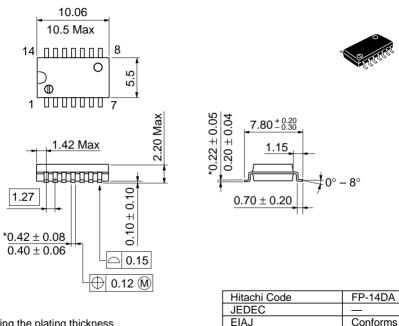
Notes) 1. Test is put into the each latch

2. All diodes are 1S2074 (B).

3. C_L includes probe and jig capacitance.


Waveform

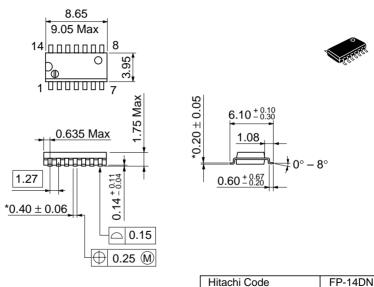
Notes) 1. Input pulse; $t_{TLH} \le 15 \text{ns}$, $t_{THL} \le 6 \text{ns}$.


2. When measuring propagation delay times from the D input, the corresponding G input must be held high.

Unit: mm

Hitachi Code	DP-14
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.97 g

Unit: mm



Weight (reference value)

0.23 g

*Dimension including the plating thickness
Base material dimension

Unit: mm

*Pd plating

JEDEC Conforms

EIAJ Conforms

Weight (reference value) 0.13 g

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HTACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

http:semiconductor.hitachi.com/

NorthAmerica URL Europe Asia (Singapore)

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead

Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218

Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.