inter_{sil}"

HCTS161AMS

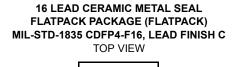
Radiation Hardened Synchronous Counter

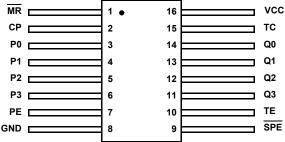
Features

- 3 Micron Radiation Hardened CMOS SOS
- Total Dose 200K RAD (Si)
- Minimum LET for SEU Upsets: >100 MEV-cm²/mg
- Single Event Upset (SEU) Immunity < 2 x 10⁻⁹ Errors/ Bit-Day (Typ)
- Dose Rate Survivability: >1 x 10¹² RAD (Si)/s
- Dose Rate Upset >10¹⁰ RAD (Si)/s 20ns Pulse
- Latch-Up Free Under Any Conditions
- Military Temperature Range: -55°C to +125°C
- Significant Power Reduction Compared to LSTTL ICs
- DC Operating Voltage Range: 4.5V to 5.5V
- Input Logic Levels
 -VIL = 0.8V Max
 -VIH = VCC/2V Min
- Input Current Levels Ii \leq 5µA at VOL, VOH

Description

The Intersil HCTS161AMS high-reliability high-speed presettable four-bit binary synchronous counter features asynchronous reset and look-ahead carry logic. The HCTS161AMS has an active-low master reset to zero, MR. A low level at the synchronous parallel enable, SPE, disables counting and allows data at the preset inputs (P0 - P3) to load the counter. The data is latched to the outputs on the positive edge of the clock input, CP. The HCTS161AMS has two count enable pins, PE and TE. TE also controls the terminal count output, TC. The terminal count output indicates a maximum count for one clock pulse and is used to enable the next cascaded stage to count.


The HCTS161AMS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of radiation hardened, high-speed, CMOS/SOS Logic Family.


The HCTS161AMS is supplied in a 16 lead Ceramic flatpack (K suffix) or a SBDIP Package (D suffix).

Ordering Information

Pinouts

PART NUMBER	TEMPERATURE RANGE	SCREENING LEVEL	PACKAGE
HCTS161ADMSR	-55°C to +125°C	Intersil Class S Equivalent	16 Lead SBDIP
HCTS161AKMSR	-55°C to +125°C	Intersil Class S Equivalent	16 Lead Ceramic Flatpack
HCTS161AD/Sample	+25°C	Sample	16 Lead SBDIP
HCTS161AK/Sample	+25°C	Sample	16 Lead Ceramic Flatpack
HCTS161AHMSR	+25°C	Die	Die

.

FN2144 Rev 2.00

September 1995

Absolute Maximum Ratings

Supply Voltage (VCC)	0.5 to +7.0V
Input Voltage Range, All Inputs	0.5V to VCC +0.5V
DC Input Current, Any One Input	±10mA
DC Drain Current, Any One Output	±25mA
(All Voltage Reference to the VSS Terminal)	
Storage Temperature Range (TSTG)	65°C to +150°C
Lead Temperature (Soldering 10sec)	+265°C
Junction Temperature (TJ)	+175°C
ESD Classification	Class 1

Reliability Information

Thermal Resistance	θ_{JA}	θ_{JC}
SBDIP Package	73°C/W	24°C/W
Ceramic Flatpack Package	114ºC/W	29°C/W
Maximum Package Power Dissipation at +125	5 ^o C Ambien	t
SBDIP Package		0.68W
Ceramic Flatpack Package		0.44W
If device power exceeds package dissipation of	capability, pr	ovide heat
sinking or derate linearly at the following rate:		
SBDIP Package	1	3.7mW/ ^o C
Ceramic Flatpack Package		8.8mW/ ^o C

CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation.

Operating Conditions

Supply Voltage (VCC)	+4.5V to +5.5V
Input Rise and Fall Times at VCC = 4.5V (TR, TF) .	100ns Max
Operating Temperature Range (T _A)	55°C to +125°C

Input Low Voltage (VIL)	0.0V to 0.8V
Input High Voltage (VIH)	VCC/2 to VCC

			GROUP		LIN	IITS	
PARAMETER	SYMBOL	(NOTE 1) CONDITIONS	A SUB- GROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	ICC	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	40	μA
			2, 3	+125°C, -55°C	-	750	μA
Output Current (Sink)	IOL	VCC = 4.5V, VIH = 4.5V, VOUT = 0.4V, VIL = 0V,	1	+25°C	4.8	-	mA
(SIIK)		(Note 2)	2, 3	+125°C, -55°C	4.0	-	mA
Output Current (Source)	IOH	VCC = 4.5V, VIH = 4.5V, VOUT = VCC -0.4V.	1	+25°C	-4.8	-	mA
(Source)		VIL = 0V, (Note 2)	2, 3	+125°C, -55°C	-4.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V, VIH = 2.25V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
		VCC = 5.5V, VIH = 2.75V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V, VIH = 2.25V, IOH = -50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
		VCC = 5.5V, VIH = 2.75V, IOH = -50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	±0.5	μA
Current			2, 3	+125°C, -55°C	-	±5.0	μA
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V, (Note 3)	7, 8A, 8B	+25°C, +125°C, -55°C	-	-	V

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages reference to device GND.

2. Force/measure functions may be interchanged.

3. For functional tests VO \ge 4.0V is recognized as a logic "1", and VO \le 0.5V is recognized as a logic "0".

			GROUP		LIN	NITS	
PARAMETER	SYMBOL	(NOTES 1, 2) CONDITIONS	A SUB- GROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPLH1	VCC = 4.5V, VIH = 3.0V,	9	+25°C	2	27	ns
CP to Qn		VIL = 0V	10, 11	+125°C, -55°C	2	29	ns
	TPHL1	VCC = 4.5V, VIH = 3.0V,	9	+25°C	2	27	ns
		VIL = 0V	10, 11	+125°C, -55°C	2	29	ns
Propagation Delay	TPLH2	VCC = 4.5V, VIH = 3.0V,	9	+25°C	2	28	ns
CP to TC		VIL = 0V	10, 11	+125°C, -55°C	2	31	ns
	TPHL2	VCC = 4.5V, VIH = 3.0V,	9	+25°C	2	29	ns
		VIL = 0V	10, 11	+125°C, -55°C	2	33	ns
Propagation Delay	TPLH3	VCC = 4.5V, VIH = 3.0V,	9	+25°C	2	20	ns
TE to TC		VIL = 0V	10, 11	+125°C, -55°C	2	21	ns
	TPHL3	VCC = 4.5V, VIH = 3.0V,	9	+25°C	2	25	
		VIL = 0V	10, 11	+125°C, -55°C	2	29	
Propagation Delay	TPHL4	VCC = 4.5V, VIH = 3.0V,	9	+25°C	2	38	ns
MR to Q		VIL = 0V	10, 11	+125°C, -55°C	2	45	ns
Propagation Delay	TPHL5	VCC = 4.5V, VIH = 3.0V,	9	+25°C	2	44	ns
MR to TC		VIL = 0V	10, 11	+125°C, -55°C	2	51	ns

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = VCC.

		(NOTE 1) CONDITIONS		LIMITS		
PARAMETER	SYMBOL		TEMPERATURE	MIN	MAX	UNITS
Capacitance Power	CPD	VCC = 5.0V, VIH = 5.0,	+25°C	-	231	pF
Dissipation		VIL = 0.0V, f = 1MHz	+125°C, -55°C	-	285	pF
Input Capacitance	CIN	VCC = 5.0V, VIH = 5.0,	+25°C	-	10	pF
		VIL = 0.0V, f = 1MHz	+125°C, -55°C	-	10	pF
Pulse Width Time CP	TW	TW VCC = 4.5V, VIH = 4.5, VIL = 0.0V,	+25°C	16	-	ns
			+125°C, -55°C	24	-	ns
Pulse Width Time MR	TW	V VCC = 4.5V, VIH = 4.5, VIL = 0.0V,	+25°C	20	-	ns
			+125°C, -55°C	30	-	ns
Setup Time Pn to CP	TSU	VCC = 4.5V, VIH = 4.5, VIL = 0.0V,	+25°C	10	-	ns
			+125°C, -55°C	15	-	ns
Setup Time PE to CP or TE	TSU	VCC = 4.5V, VIH = 4.5,	+25°C	13	-	ns
		VIL = 0.0V,	+125°C, -55°C	20	-	ns
Setup Time SPE to CP	TSU	VCC = 4.5V, VIH = 4.5,	+25°C	12	-	ns
		VIL = 0.0V,	+125°C, -55°C	18	-	ns
Hold Time Pn to CP	TSU	VCC = 4.5V, VIH = 4.5,	+25°C	5	-	ns
		VIL = 0.0V,	+125°C, -55°C	5	-	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

		(NOTE 1)		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	MAX	UNITS
Hold Time TE or PE to CP	TSU	VCC = 4.5V, VIH = 4.5,	+25°C	3	-	ns
		VIL = 0.0V,	+125°C, -55°C	3	-	ns
Hold Time SPE to CP	TSU	SU VCC = 4.5V, VIH = 4.5, VIL = 0.0V,	+25°C	3	-	ns
			+125°C, -55°C	3	-	ns
Recovery Time	TREC	VCC = 4.5V, VIH = 4.5,	+25°C	15	-	ns
		VIL = 0.0V,	+125°C, -55°C	22	-	ns
Maximum Frequency	FMAX	VCC = 4.5V, VIH = 4.5,	+25°C	0	30	MHz
		VIL = 0.0V,	+125°C, -55°C	0	20	MHz

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

NOTE:

1. The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics.

200K RAD LIMITS (NOTES 1, 2) PARAMETER SYMBOL CONDITIONS TEMPERATURE MIN MAX Supply Current ICC VCC = 5.5V, VIN = VCC or GND +25°C 0.75 +25°C Output Current (Sink) IOL VCC = 4.5V, VIH = 4.5, VIL = 0V, 4.0 VOUT = 0.4VVCC = 4.5V, VIH = 4.5, VIL = 0V, IOH +25°C Output Current (Source) -4.0 _ VOUT = VCC -0.4V VOL VCC = 4.5V, VIH = 2.25V, VIL = 0.8V , +25°C 0.1 **Output Voltage Low** -IOL = 50µA VCC = 5.5V, VIH = 2.75V, VIL = 0.8V, +25°C 0.1 IOL = 50µA VOH +25°C VCC = 4.5V, VIH = 2.25V, VCC **Output Voltage High** -0.1 $VIL = 0.8V, IOH = -50\mu A$ VCC = 5.5V, VIH = 2.75V, +25°C VCC -0.1 VIL = 0.8V, IOH = -50µA IIN VCC = 5.5V, VIN = VCC or GND +25°C Input Leakage Current - ± 5 FN VCC = 4.5V, VIH = 2.25V, VIL = 0.8V, +25°C Noise Immunity _ **Functional Test** (Note 2)

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages referenced to device GND.

TPHL1

TPLH1

TPHL2

TPLH2

TPHL3

TPLH3

TPHL4

TPHI 5

2. For functional tests VO \ge 4.0V is recognized as a logic "1", and VO \le 0.5V is recognized as a logic "0".

VCC = 4.5V, VIH = 3.0V, VIL = 0V

VCC = 4.5V, VIH = 3.0V, VIL = 0V

VCC = 4.5V, VIH = 3.0V, VIL = 0V

VCC = 4.5V, VIH = 3.0V, VIL = 0V

VCC = 4.5V, VIH = 3.0V, VIL = 0V

VCC = 4.5V, VIH = 3.0V, VIL = 0V

VCC = 4.5V, VIH = 3.0V, VIL = 0V

VCC = 4.5V, VIH = 3.0V, VIL = 0V

Propagation Delay

Propagation Delay

Propagation Delay

Propagation Delay

Propagation Delay

CP to Qn

CP to TC

TE to TC

MR to Q

MR to TC

UNITS

mΑ

mΑ

mΑ

V

V

V

V

μΑ

V

ns

ns

ns

ns

ns

ns

ns

ns

+25°C

+25°C

+25°C

+25°C

+25°C

+25°C

+25°C

+25°C

2

2

2

2

2

2

2

2

29

29

33

31

29

21

45

51

TABLE 5.	BURN-IN AND	OPERATING LIFE TEST.	DELTA PARAMETERS (+25°C)
TABLE V.			

PARAMETER	GROUP B SUBGROUP	DELTA LIMIT
ICC	5	12μΑ
IOL/IOH	5	-15% of 0 Hour

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS		METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Preburn-Ir	n)	100%/5004	1, 7, 9	ICC, IOL/H
Interim Test I (Postbu	rn-In)	100%/5004	1, 7, 9	ICC, IOL/H
Interim Test II (Postbu	ırn-ln)	100%/5004	1, 7, 9	ICC, IOL/H
PDA		100%/5004	1, 7, 9, Deltas	
Interim Test III (Postb	urn-In)	100%/5004	1, 7, 9	ICC, IOL/H
PDA		100%/5004	1, 7, 9, Deltas	
Final Test		100%/5004	2, 3, 8A, 8B, 10, 11	
Group A (Note 1)		Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B Subgroup B-5		Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample/5005	1, 7, 9	
Group D		Sample/5005	1, 7, 9	

NOTE:

1. Alternate group A testing in accordance with method 5005 of MIL-STD-883 may be exercised.

TABLE 7. TOTAL DOSE IRRADIATION

CONFORMANCE		TEST		READ AND RECORD	
GROUPS	METHOD	PRE RAD	POST RAD	PRE RAD	POST RAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4 (Note 1)

NOTE:

1. Except FN test which will be performed 100% Go/No-Go.

				OSCILLATOR	
OPEN	GROUND	1/2 VCC = 3V \pm 0.5V	VCC = 6V \pm 0.5V	50kHz	25kHz
STATIC BURN-IN I TEST CONNECTIONS (Note 1)					
11 - 15	1 - 10	-	16	-	-
STATIC BURN-IN II TEST CONNECTIONS (Note 1)					
11 - 15	8	-	1 - 7, 9, 10, 16	-	-
DYNAMIC BURN-IN TEST CONNECTIONS (Note 2)					
-	4, 6, 8	11 - 15	1, 3, 5, 7, 9, 10, 16	2	-

TABLE 8. STATIC AND DYNAMIC BURN-IN TEST CONNECTIONS

NOTES:

1. Each pin except VCC and GND will have a resistor of $10 k\Omega \pm 5\%$ for static burn-in

2. Each pin except VCC and GND will have a resistor of 1k $\Omega\pm5\%$ for dynamic burn-in

TABLE 9. IRRADIATION TEST CONNECTIONS

OPEN	GROUND	VCC = 5V \pm 0.5V
11 - 15	8	1 - 7, 9, 10, 16

NOTE: Each pin except VCC and GND will have a resistor of $47K\Omega \pm 5\%$ for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures.

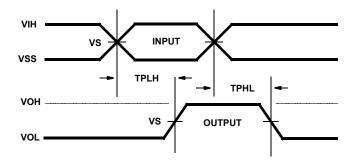
Intersil Space Level Product Flow - 'MS'	
 Intersil Space Level Product Flow - 'MS' Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM) GAMMA Radiation Verification (Each Wafer) Method 1019, 4 Samples/Wafer, 0 Rejects 100% Nondestructive Bond Pull, Method 2023 Sample - Wire Bond Pull Monitor, Method 2011 Sample - Die Shear Monitor, Method 2019 or 2027 100% Internal Visual Inspection, Method 2010, Condition A 100% Temperature Cycle, Method 1010, Condition C, 10 Cycles 100% Constant Acceleration, Method 2001, Condition per Method 5004 100% PIND, Method 2020, Condition A 100% External Visual 	 100% Interim Electrical Test 1 (T1) 100% Delta Calculation (T0-T1) 100% Static Burn-In 2, Condition A or B, 24 hrs. min., +125°C min., Method 1015 100% Interim Electrical Test 2 (T2) 100% Delta Calculation (T0-T2) 100% PDA 1, Method 5004 (Notes 1and 2) 100% Dynamic Burn-In, Condition D, 240 hrs., +125°C or Equivalent, Method 1015 100% Interim Electrical Test 3 (T3) 100% Delta Calculation (T0-T3) 100% PDA 2, Method 5004 (Note 2) 100% Final Electrical Test 400% Final Electrical Test
100% Serialization	100% Fine/Gross Leak, Method 1014 100% Radiographic, Method 2012 (Note 3)
100% Initial Electrical Test (T0) 100% Static Burn-In 1, Condition A or B, 24 hrs. min., +125 ^o C min., Method 1015	100% External Visual, Method 2009 Sample - Group A, Method 5005 (Note 4)
	100% Data Package Generation (Note 5)

NOTES:

- 1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1.
- 2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7.
- 3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004.
- 4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005.
- 5. Data Package Contents:
 - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity).
 - Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage.
 - GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test equipment, etc. Radiation Read and Record data on file at Intersil.
 - X-Ray report and film. Includes penetrometer measurements.
 - Screening, Electrical, and Group A attributes (Screening attributes begin after package seal).
 - · Lot Serial Number Sheet (Good units serial number and lot number).
 - Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test.
 - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative.

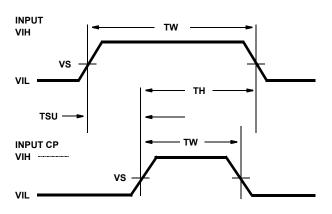
© Copyright Intersil Americas LLC 1999. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html


Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

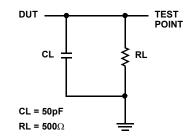
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

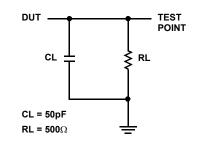
For information regarding Intersil Corporation and its products, see www.intersil.com


Propagation Delay Timing Diagram

AC VOLTAGE LEVELS

PARAMETER	HCTS	UNITS
VCC	4.50	V
VIH	3.00	V
VS	1.30	V
VIL	0	V
GND	0	V


Pulse Width, Setup, Hold Timing Diagram Positive Edge Trigger


TH = HOLD TIME TSU = SETUP TIME TW = PULSE WIDTH

PARAMETER	нстѕ	UNITS
VCC	4.50	V
VIH	3.00	V
VS	1.30	V
VIL	0	V
GND	0	V

Propagation Delay Load Circuit

AC Load Circuit

Die Characteristics

DIE DIMENSIONS:

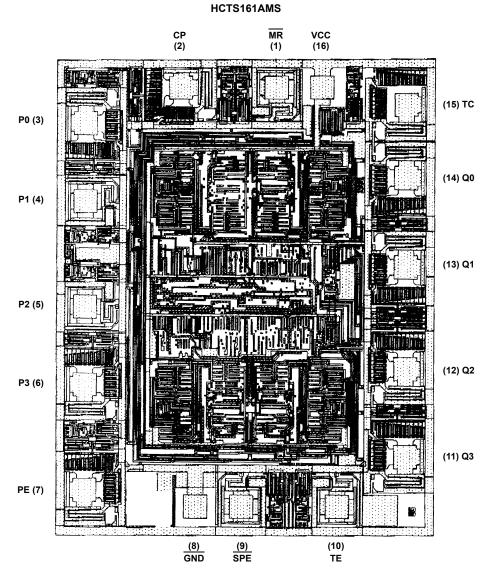
86 x 104mils 2.19 x 2.65mm

METALLIZATION:

Type: AlSi Metal Thickness: 11kÅ ± 1kÅ

Metallization Mask Layout

GLASSIVATION:


Type: SiO_2 Thickness: 13kÅ \pm 2.6kÅ

WORST CASE CURRENT DENSITY:

<2.0 x 10⁵A/cm²

BOND PAD SIZE:

 $100 \mu m \ x \ 100 \mu m$ 4 x 4 mils

NOTE: The die diagram is a generic plot form a similar HCS device. It is intended to indicate approximate die size and bond pad location. The mask series for the HCTS161A is TA14446A.

intersil