HA13703A IPIC™ High Side Inductive Load Driver

Preliminary

OHITACHI

Description

(IPIC: Intelligent Power IC)

HA13703A is high side power driver IC with protectors and diagnostic function. The device is especially designed to switch inductive loads.

Functions

- Power MOS source follower output (4 A)
- With over voltage shut down circuit (OVSD)
- With over current protector circuit (OCSD)
- With over temperature shut down circuit (OTSD)
- · With diagnostic circuit and status output
- With fail safe function under input open circuit condition
- With low voltage inhibit circuit (LVI)
- With output negative voltage clamp circuit

Features

- Protected against 60 V load dump condition
- Low R_{ON} $(0.1 \Omega \text{ typ})$
- Wide operating supply voltage range ($V_{DD} = 7 \text{ V}$ to 25 V)
- High sustaining voltage (-15 V)
- Protected against reverse supply voltage (-13 V)
- · Protected against short circuit condition
- Suitable switching speed to have high speed operation and low EMI
- Input compatible with TTL, LS-TTL, or 5 V CMOS
- Protected against electrostatic discharge (2 kV min at 100 pF/1.5 k Ω)

Pin Arrangement

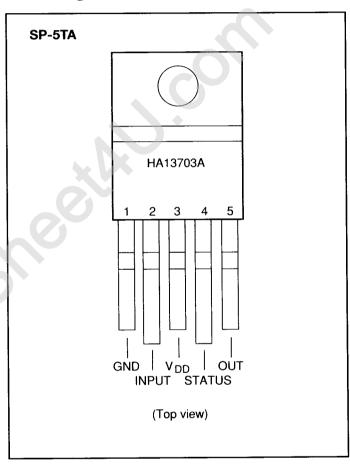


Figure 1 Pin Arrangement

Ordering Information

Type No.	Package	
HA13703A	SP-5TA	
	che	
	*0	
an.V		
MANN.		
11-		١

Block Diagram

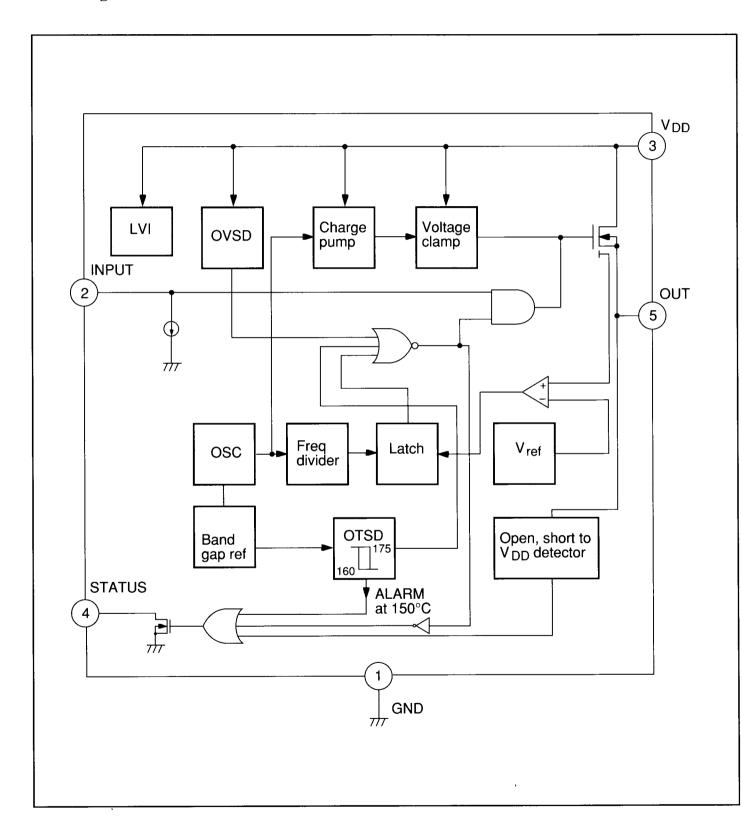


Figure 2 Block Diagram

Function Description

Peak Current and Turn-off Time

Figure 3 shows waveforms of load current (Iout) and output voltage (Vout) at driving inductive load.

The peak output current (Ip) and sustaining time (t_{sus}) can be described as

$$I_{p} = \frac{V_{DD}}{R} (1 - e^{-\frac{R}{L}t_{ON}})$$
 (1)

$$t_{sus} = \frac{L}{R} \ln \left(1 + \frac{Ip \cdot R}{V_B}\right)$$
 (2)

Where

R: Equivalent resistance of the load

L: Equivalent inductance of the load

HA13703A has the internal protector to prevent turn on during t_{sus} period.

Table 1 Truth Table

Mode		In	Out	Status
Normal		L	L	Н
		Н	Н	Н
Load sho	ort	L	Ļ	Н
		Н	L	L
Load ope	en	L	L	Н
		Н	Н	L
Short to V _{DD}		L	Н	L
		Н	Н	L
OTSD	*1	L	L	L
		Н	L	L
OVSD	*2	L	L	L
		Н	L	L
LVI	*3	L	L	Н
		Н	L	Н

Note: L: Low level (0.8 V)

H: High level (2.0 V)

*1) OTSD: Over temperature shut down

*2) OVSD: Over voltage shut down

*3) LVI: Low voltage inhibit

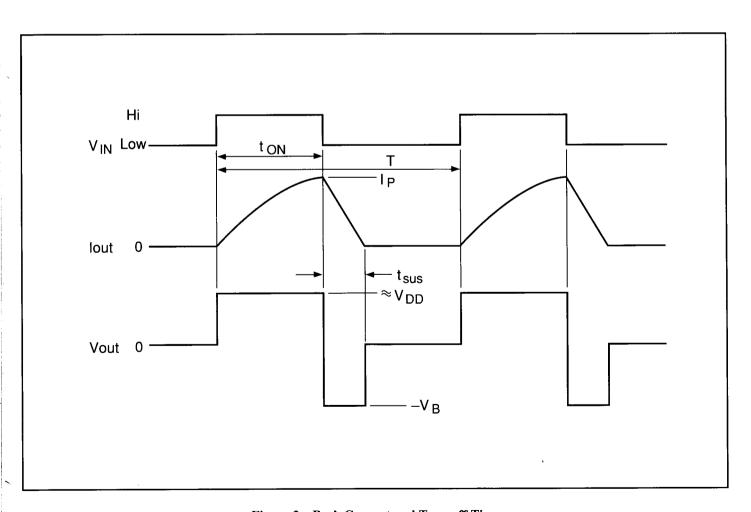


Figure 3 Peak Current and Turn-off Time

Application

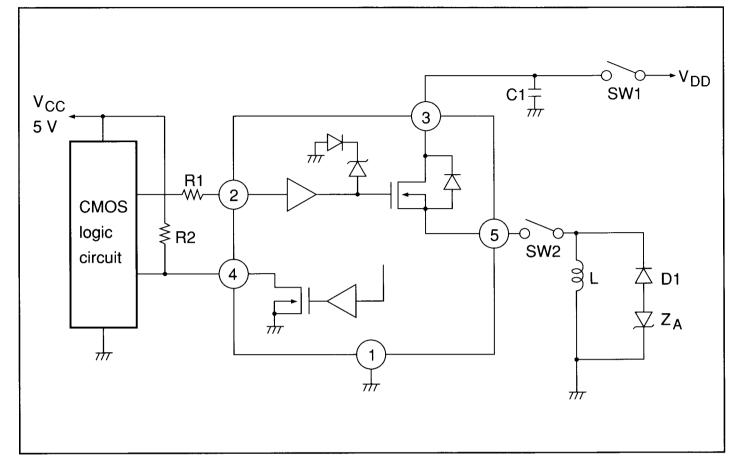


Figure 4 Solenoid Drive with Switched Power Supply

D1 & Z_A : The external voltage clamp circuit using D1 & Z_A are necessary to protect the HA13703A when SW2 switches under normal operating conditions. D1 & Z_A must be in parallel with the load.

The zener voltage (V_{ZB}) and forward diode voltage (V_{D1}) must satisfy the following:

$$V_{D1} + V_{ZB} < 15 \text{ V} (= V_{(sus) \text{ MIN}})$$
 (3)

R1: When SW1 opens with output ON, the Input (Pin 2) may be shorted to GND. In this case, R1 will limit the current from logic circuits at pin 2.

R2: Pull up resistor at Status output.

C1: When SW1 opens with Output ON, the energy stored in the load L can not be dissipated through V_{DD} . Therefore, C1 must be able to absorb this energy, and can be selected from

$$C1 > L \cdot \left(\frac{I_P}{V_{DD}}\right)^2 \tag{4}$$

Note that when using D1 & Z_A clamp, it may not be necessary to use as large a capacitor as described above. In this case, C1 must have the value to compensate the inductance at V_{DD} line (refer equation 4) and should be located near the device.

Reverse Battery

Under reverse battery condition, the HA13703A will dissipate power (P_D*) because of current through the intrinsic diode on power MOS. P_D* can be calculated as follows and must not exceed the absolute maximum rating on power dissipation.

$$P_{\rm D}^* = \frac{-V_{\rm DD}^* - V_{\rm F(B)}}{R} \cdot V_{\rm F(B)}$$
 (5)

Where

 V_{DD}^* = reverse battery voltage

 $V_{F(B)}$ = forward intrinsic diode voltage

R = equivalent resistance of the load

The input and status voltage must not exceed the absolute maximum rating (-0.3 V) in reverse battery condition.

Table 2 Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	HA13703A	Unit	Note
Continuous supply v	oltage	V_{DD}	-13 to 35	٧	1
Transient supply voltage		V_{DD}	60	V	2
Input voltage		VIN	–0.3 to 15	V	
Output voltage		Vout	−15 to V _{DD}	V	
Status voltage		Vs	–0.3 to 15	V	
Output current		lout	_	Α	3
Status current		Is	5	mA	
Power dissipation		P _T		W	4
Package thermal	Junction to case	θjc	5	°C/W	
resistance	Junction to air	θја	70	°C/W	
Junction temperature range		Tj	-40 to OTSD	°C	5
Storage temperature range		Tstg	-55 to 150	°C	

Notes: 1. Recommended operating voltage:

V_{DD} =7 to 16 V (Normal)

16 to 25 V (Jump start)

- 2. Load dump condition (Refer to figure 5)
- 3. Refer to ASO data (figure 6)

Internally limited at

Short circuit condition ; $I_D \ge 10A$

Over voltage condition ; $V_{DD} \ge 26V$

4. Maximum power dissipation (P_T(Max)) can be defined as:

 $P_T(MAX) = (T_{jopr}(MAX) - T_{ambient})/(\theta_{jc} + \theta_{ca})$

 $\theta_{\text{Ca}} :$ Thermal resistance between case and air (Depend on heat sink size)

5. Junction temperature operating range T_{jopr} = -40 to +125 °C

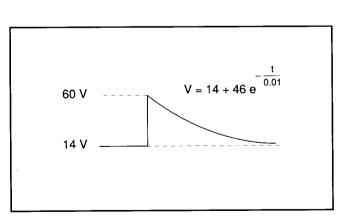


Figure 5 Load Dump Condition

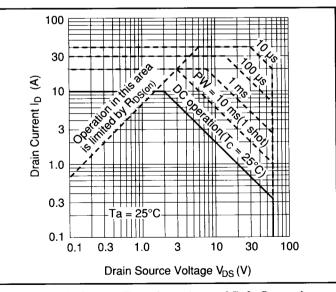


Figure 6 Output Transistor Area of Safe Operation (Reference Data)

HA13703A

Table 3 Electrical Characteristics (Ta = 25°C)

ltem		Symbol	Min	Тур	Max	Unit	Test condition	Pin	Note
Operating supp	ly voltage	V_{DD}	7		25	٧		3	
Quiescent current	I _{DD1}		3.0	8.0	mA	V _{IN} = 0 V, out = open	3		
		I _{DD2}	_	6.0	10.0	mA	V _{IN} = 5.5 V, out = open	3	
Output ON Resistance		R _{DS(ON)}		0.10	0.15	Ω	lo = 4 A (@Tj = -40 to 25°C)	5	
				0.15	0.22	Ω	Io = 4 A (@Tj = 125°C)	5	
Output leak cur	rent	ILEAK	_		5	mA	$V_{DD} = 35 \text{ V}, V_{IN} = 0 \text{ V}$ Tj = 125°C	5	
Input threshold	l voltage	VIL			8.0	V		2	
		V _{IH}	2.0	_	_	٧		2	
Input current		lıL	-10		60	μΑ	V _{IN} = 0 to 0.8 V	2	
		l _{IH}	5	35	60	μА	V _{IN} = 2.0 to 5.5 V	2	
Propagation de	elay time	T _{d(ON)}	_	5	_	μs	Io = 3 A	2, 5	
		Tr		20		μS		5	
		T _{d(OFF)}	_	10	_	μs		2, 5	•
		Tf	_	5	_	μs		5	
Open detect the	reshold current	lop	0.3	0.7	1.2	Α		4, 5	
Current limiter	operating level	lcs	10	20	30	Α	R _L = short	5	6
Low voltage in	hibit operating level	L.V.I		5	6	V			
Over voltage	Operating level	OVSD	26	30	33	V		3	
shut down	Hysteresis	V _{HYS}	0.25	0.5	1.0	V		3	
Output sustain	voltage	V _(sus)	-21	-18	-15	V	lo = 25 mA	5	
Over temperature shut down	Operating level	OTSD	_	175	_	°C		5	7
		OTSD (Alarm)		150				4	7
	Hysteresis	T _{HYS}	_	15	_	°C		5	7
Status on volta	nge	V _{SL}	_	0.1	0.4	V	I _S = 1 mA	4	
Status leak cur	rent	IS(Leak)	_		100	μA	V _S = 5.5 V	4	

Notes:

6. Output current will be constant pulse width controlled under current limit condition7. Design parameter only (not production tested)

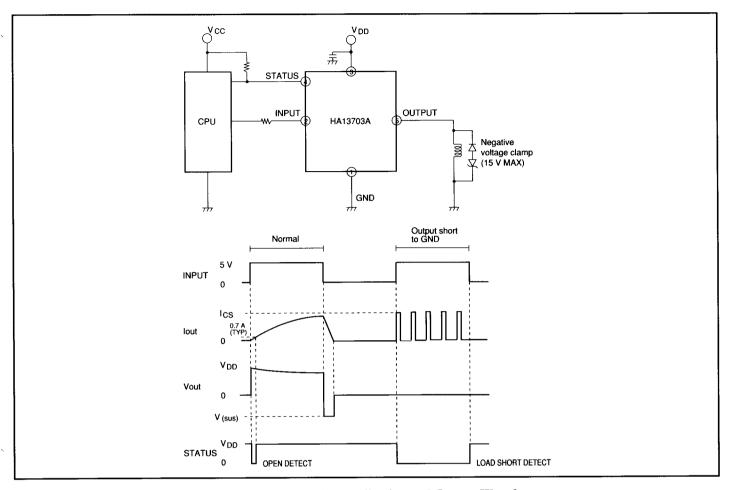


Figure 7 Solenoid Drive Application and Output Waveform

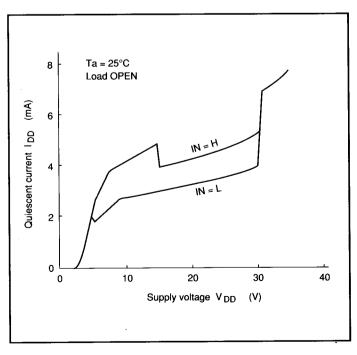
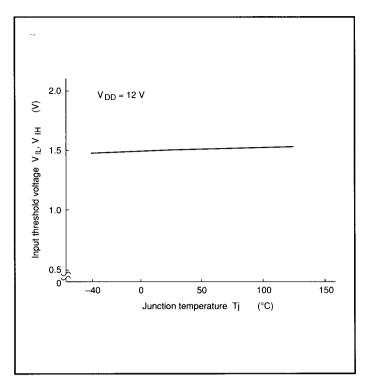



Figure 8 IDD vs. VDD

Figure 9 R_{DS(ON)} vs. V_{DD}

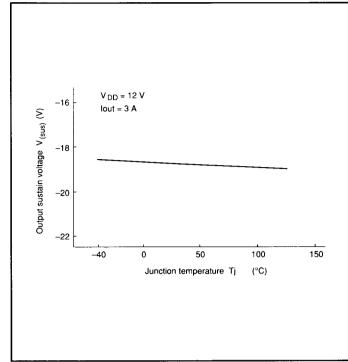


Figure 10 VIL, VIH vs. Tj

Figure 11 $V_{(sus)}$ vs. Tj

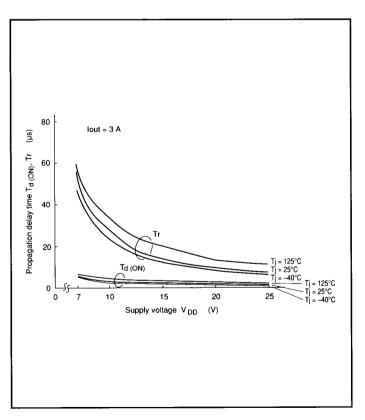


Figure 12 Td_(ON), Tr vs. V_{DD}

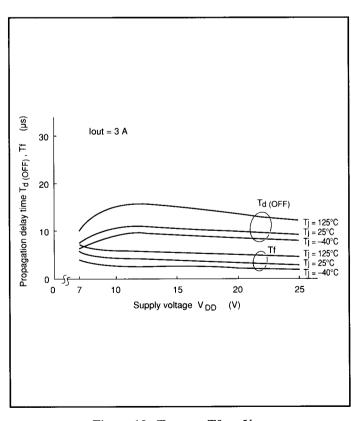
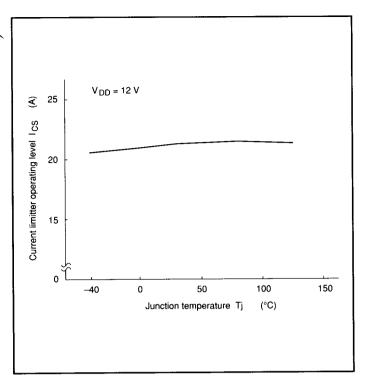



Figure 13 T_{d(OFF)}, Tf vs. V_{DD}

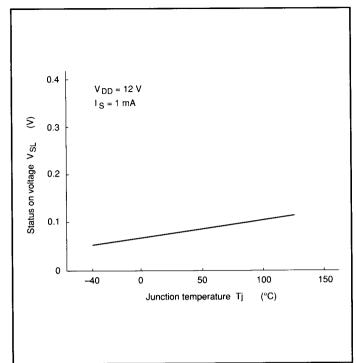
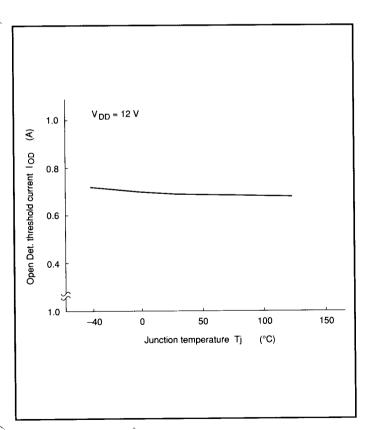



Figure 14 I_{CS} vs. Tj

Figure 15 V_{SL} vs. Tj

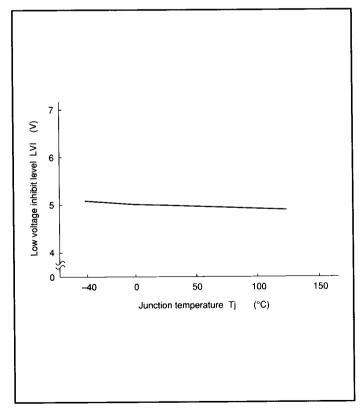


Figure 16 I_{OD} vs. Tj

Figure 17 LVI vs. Tj

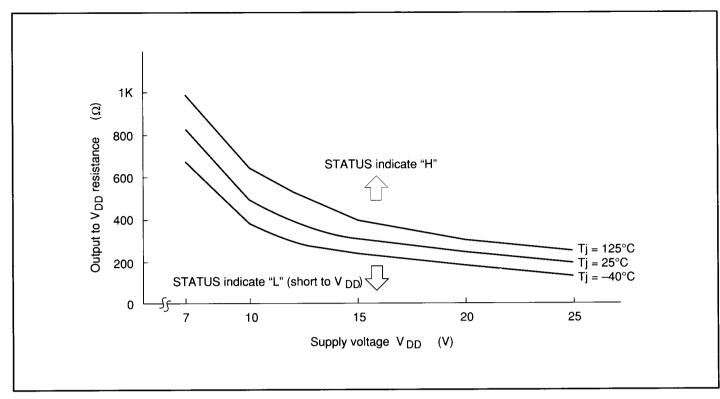


Figure 18 Output to VDD Resistance vs. Supply Voltage

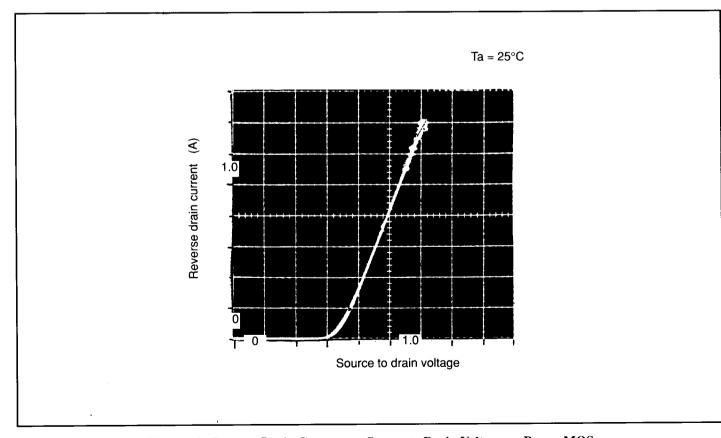
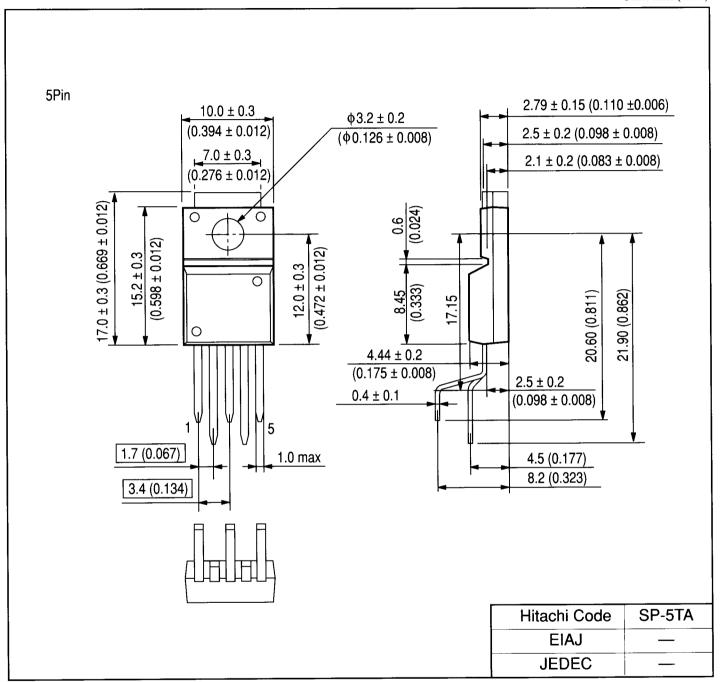



Figure 19 Reverse Drain Current vs. Source to Drain Voltage on Power MOS

Package Dimensions

Unit: mm (inch)

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

©Copyright 1990, Hitachi America, Ltd.

Hitachi America, Ltd.

Semiconductor & I.C. Division

Hitachi Plaza 2000 Sierra Point Parkway, Brisbane, CA 94005-1819 1-415-589-8300

> 1090/1M/GI/C/RB Order Number: M60T010