

#### GV7601 Aviia™ Receiver Data Sheet

#### **Key Features**

- Serial digital video receiver for standard and high definition component video:
  - SD 525i and 625i
  - HD 720p 24, 25, 30, 50 and 60
  - HD 1080i 50, 60
  - HD 1080p 24, 25, 30, 50 and 60
- Supports 8-bit, 10-bit or 12-bit component digital video:
  - RGB or YCbCr 4:4:4 sampled
  - YCbCr 4:2:2 or 4:2:0 sampled
- Integrated cable equalizer for long reach cable performance
  - 230m typical HD performance over high-quality 75Ω coaxial cable (Belden 1694A or equivalent)
  - 160m typical HD performance over RG59 or equivalent 75 $\Omega$  coaxial cable
- Serial digital loop-though output
- Integrated audio de-embedder for the extraction of up to 8 channels of 48kHz digital audio
- Supports IEC 13818-1 compliant transport streams over the Asynchronous Serial Interface (ASI)
- Automatic selection between SD/HD component video and ASI input data
- Ancillary (ANC) data detection and extraction
- User selectable processing features, including:
  - Timing Reference Signal (TRS) error detection and correction
  - ANC data checksum error detection and correction
  - Programmable ANC data detection
  - Line number and CRC error detection and correction
  - Illegal video code word re-mapping
- 4-wire Gennum Serial Peripheral Interface (GSPI) for external host command and control
- JTAG test interface
- 1.2V core and 3.3V analog voltage power supplies
- 1.8V or 3.3V selectable digital I/O power supply
- Small footprint 100-BGA (11mm x 11mm)
- Low power operation, typically 570mW at HD
- Pb-free and RoHS compliant

#### **Applications**

- Digital video recorders (DVR)
- Video servers
- Video mixers and switchers
- Image capture devices
- Video framegrabbers
- Camcorders
- Video monitors & displays

#### **Description**

The GV7601 is a serial digital video receiver for standard and high definition component video, operating at 270Mb/s, 1.485Gb/s and 2.97Gb/s data rates. With integrated cable equalizer technology, the GV7601 is capable of receiving digital video over  $75\Omega$  coaxial cable at lengths up to 460m for standard definition video, and up to 230m for high definition. This provides a complete receive solution for the transmission of both interlaced and progressive component digital video, up to 1920 x 1080, in coaxial cable-based video systems.

Using the GV7601 with the complete Aviia<sup>™</sup> receiver reference design, it is possible to implement an all-digital, bi-directional multimedia interface over coax. This interface allows both DC power and a bi-directional, half-duplex, auxiliary data interface to be carried over the same single, robust and cost effective coaxial cable as the high-speed serial digital video. The GV7601 also provides a re-timed serial digital output for video loop-through applications.

The GV7601 includes a broad range of user-selectable processing features, such as Timing Reference Signal (TRS) error detection and extraction, illegal code word re-mapping, and ancillary data packet extraction. The content of ancillary data packets, embedded by an Aviia transmitter, can be extracted and retrieved via the host interface. Device configuration and status reporting is accomplished via the Gennum Serial Peripheral Interface (GSPI). Alternatively, many processing features and

operational modes can be configured directly through external pin settings.

The device can output both 8-bit, 10-bit and 12-bit video data, for RGB or YCbCr 4:4:4, and YCbCr 4:2:2 or 4:2:0. A configurable 20-bit wide parallel digital video output bus is provided, with associated pixel clock and timing signal outputs. The GV7601 supports ITU-R BT.656 SD formats, and HD formats conforming to ITU-R BT.709 and BT.1120-6 for 1125-line formats, and SMPTE 296M for 750-line formats. The device may also be configured to output CEA-861 timing.

The GV7601 audio de-embedding function allows the up to 8 channels of serial digital audio within the ancillary data space of the video data stream to be extracted. The audio output signal formats supported by the device include AES/EBU for professional applications, S/PDIF, and I<sup>2</sup>S. 16-bit, 20-bit and 24-bit audio formats are supported at 48kHz synchronous-to-video for SD video formats and

48kHz synchronous or asynchronous for HD formats. Additional audio processing features include: individual channel extraction, audio group selection, group replacement, channel swapping and audio channel status extraction.

The GV7601 also supports an Asynchronous Serial Interface (ASI) 270Mb/s input, carrying compressed audio and video transport streams, conforming to IEC 13818-1. Transport stream data is output from the device at a synchronous 27MHz clock rate. The device will automatically deserialize and 8b/10b decode the data.

Packaged in a space saving 100-BGA, the GV7601 is ideal for designs where high-density component placement is required. Typically requiring only 570mW power, the device can be used as a high bandwidth alternative to analog composite or component video interfaces, providing a high quality, all-digital, long reach video receive solution.

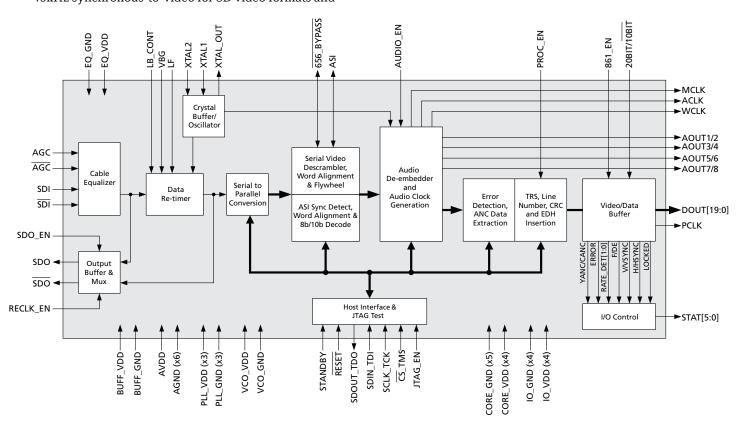



Figure A: GV7601 Block Diagram

# **Revision History**

| Version | ECR    | Date          | Changes and / or Modifications                                                                                                                                 |
|---------|--------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6       | 158071 | May 2012      | Changed VIL and VIH (Min and Max) in Table 2-3: DC Electrical Characteristics.                                                                                 |
| 5       | 153582 | February 2010 | Added analog input absolute maximum ratings to Table 2-1: Absolute Maximum Ratings. Updated device latency values in Table 2-4: AC Electrical Characteristics. |
| 4       | 152345 | August 2009   | Modified Key Features, Description, Table 2-3, Table 2-4 and Table 4-1.                                                                                        |
| 3       | 152159 | June 2009     | Modified Section 4.11.1.1, Section 4.12,<br>Section 4.17.4, Section 4.19, and Table 4-33.<br>Added Figure 4-64.<br>Changed 6.3 Marking Diagram.                |
| 2       | 151833 | May 2009      | Re-ordered the DOUT[19:10] & DOUT[9:0] in Table 1-1 to reflect the pin names. Changed Figure 4-41.                                                             |
| 1       | 151651 | April 2009    | Changed DOUT[18_10] and DOUT[9:0] pin descriptions. Changed 4.16.8 Ancillary Data Extraction and its registers.                                                |
| 0       | 151484 | February 2009 | New document.                                                                                                                                                  |

## **Contents**

| Key Features                         | L |
|--------------------------------------|---|
| Applications1                        | L |
| Description1                         | L |
| 1. Pin Out                           | ) |
| 1.1 Pin Assignment                   | ) |
| 1.2 Pin Descriptions                 | ) |
| 2. Electrical Characteristics        | ŝ |
| 2.1 Absolute Maximum Ratings         | ŝ |
| 2.2 Recommended Operating Conditions | ŝ |
| 2.3 DC Electrical Characteristics    | 7 |
| 2.4 AC Electrical Characteristics    | ) |
| 3. Input/Output Circuits             | 3 |
| 4. Detailed Description              | 2 |
| 4.1 Functional Overview              | 2 |
| 4.2 Serial Digital Input             | 2 |
| 4.3 Serial Digital Output            | 3 |



| 4.4 Serial Digital Reclocker                                | 33 |
|-------------------------------------------------------------|----|
| 4.4.1 Reclocker PLL Loop Bandwidth                          | 34 |
| 4.5 External Crystal/Reference Clock                        | 34 |
| 4.6 Lock Detect                                             | 35 |
| 4.6.1 Asynchronous Lock                                     | 36 |
| 4.6.2 Signal Interruption                                   | 36 |
| 4.7 Video Functionality                                     | 37 |
| 4.7.1 Standard Definition Video Output Formats              | 37 |
| 4.7.2 High Definition Video Output Formats                  | 40 |
| 4.7.3 Descrambling and Word Alignment                       | 51 |
| 4.8 Parallel Video Data Outputs DOUT[19:0] and DOUT[9:0]    | 51 |
| 4.8.1 Parallel Data Bus Buffers                             | 51 |
| 4.8.2 Parallel Output in Video Mode                         | 55 |
| 4.8.3 Parallel Output in ASI Mode                           | 55 |
| 4.8.4 Parallel Output In Data-Through Mode                  | 56 |
| 4.8.5 Parallel Output Clock (PCLK)                          | 56 |
| 4.8.6 DDR Parallel Clock Timing                             | 57 |
| 4.9 Timing Signal Generator                                 | 58 |
| 4.10 Programmable Multi-function Outputs                    | 59 |
| 4.11 H:V:F Timing Signal Generation                         | 60 |
| 4.11.1 CEA-861 Timing Generation                            | 62 |
| 4.12 Automatic Video Standards Detection                    | 73 |
| 4.13 EDH Detection                                          | 75 |
| 4.13.1 EDH Packet Detection                                 | 76 |
| 4.13.2 EDH Flag Detection                                   | 76 |
| 4.14 Video Signal Error Detection δ Indication              |    |
| 4.14.1 TRS Error Detection                                  | 78 |
| 4.14.2 Line Based CRC Error Detection                       | 78 |
| 4.14.3 EDH CRC Error Detection                              | 79 |
| 4.14.4 HD Line Number Error Detection                       | 79 |
| 4.15 Ancillary Data Detection & Indication                  | 79 |
| 4.15.1 Programmable Ancillary Data Detection                | 82 |
| 4.15.2 Ancillary Data Checksum Error                        | 82 |
| 4.16 Video Error Correction                                 | 83 |
| 4.16.1 TRS Correction & Insertion                           | 84 |
| 4.16.2 Line Based CRC Correction & Insertion                | 84 |
| 4.16.3 Line Number Error Correction & Insertion             | 85 |
| 4.16.4 Ancillary Data Checksum Error Correction & Insertion | 85 |
| 4.16.5 EDH CRC Correction & Insertion                       | 85 |
| 4.16.6 Illegal Word Remapping                               | 85 |
| 4.16.7 TRS and Ancillary Data Preamble Remapping            | 86 |
| 4.16.8 Ancillary Data Extraction                            |    |
| 4.17 Audio De-embedder                                      | 91 |
| 4.17.1 Serial Audio Data I/O Signals                        | 91 |
| 4.17.2 Serial Audio Data Format Support                     | 93 |



| 4.17.3 Audio Proces           | sing             | 97  |
|-------------------------------|------------------|-----|
| 4.17.4 Error Reporti          | ng               | 101 |
| 4.18 Gennum Serial Peri       | pheral Interface | 102 |
| 4.18.1 Command W              | ord Description  | 102 |
| 4.18.2 Data Read or           | Write Access     | 103 |
| 4.18.3 GSPI Timing.           |                  | 104 |
| 4.19 Host Interface Regis     | ster Maps        | 106 |
| 4.19.1 Video Core R           | egisters         | 106 |
| 4.19.2 SD Audio Co            | re               | 113 |
| 4.19.3 HD Audio Co            | re Registers     | 125 |
| 4.20 JTAG Test Operation      | n                | 137 |
| 4.21 Device Power-up          |                  | 139 |
| 4.22 Device Reset             |                  | 139 |
| 4.23 Standby Mode             |                  | 139 |
| 5. References & Relevant Star | ndards           | 140 |
| 6. Package & Ordering Inform  | nation           | 141 |
| 6.1 Package Dimensions        |                  | 141 |
| 6.2 Packaging Data            |                  | 142 |
| 6.3 Marking Diagram           |                  | 142 |
| 6.4 Solder Reflow Profile     | es               | 143 |
| 6.5 Ordering Information      | ı                | 143 |
|                               |                  |     |



# **List of Tables**

| Table 1-1: Pin Descriptions                                                                  | 9   |
|----------------------------------------------------------------------------------------------|-----|
| Table 2-1: Absolute Maximum Ratings                                                          | 16  |
| Table 2-2: Recommended Operating Conditions                                                  | 16  |
| Table 2-3: DC Electrical Characteristics                                                     | 17  |
| Table 2-4: AC Electrical Characteristics                                                     | 19  |
| Table 4-1: Typical Cable Length Performance                                                  | 32  |
| Table 4-2: Serial Digital Output                                                             | 33  |
| Table 4-3: PLL Loop Bandwidth                                                                | 34  |
| Table 4-4: Input Clock Requirements                                                          | 35  |
| Table 4-5: Lock Detect Conditions                                                            | 36  |
| Table 4-6: 525/60Hz Format                                                                   | 37  |
| Table 4-7: 625/50Hz Format                                                                   | 39  |
| Table 4-8: 1080-line Interlaced Horizontal Timing                                            | 41  |
| Table 4-9: 1080-line Progressive Horizontal Timing                                           | 43  |
| Table 4-10: 720p Horizontal Timing                                                           | 43  |
| Table 4-11: Full HD 1080-line and 720-line Progressive Image Formats                         | 44  |
| Table 4-12: 1080p Y'C' $_{ m B}$ C' $_{ m R}$ 4:2:0 & 4:2:2 10-bit Bit Structure Mapping     | 45  |
| Table 4-13: 1080p R'G'B' or Y'C' $_{\rm B}$ C' $_{\rm R}$ 4:4:4 10-bit Bit Structure Mapping | 46  |
| Table 4-14: 1080p R'G'B' or Y'C' $_{ m B}$ C' $_{ m R}$ 4:4:4 12-bit Bit Structure Mapping   | 48  |
| Table 4-15: 1080p Y'C' $_{ m B}$ C' $_{ m R}$ 4:2:2 12-bit Bit Structure Mapping             | 49  |
| Table 4-16: 720p R'G'B' or Y'C $_{ m B}$ C $_{ m R}$ 4:4:4 10-bit Bit Structure Mapping      | 51  |
| Table 4-17: GV7601 Output Video Data Format Selections                                       | 54  |
| Table 4-18: GV7601 PCLK Output Rates                                                         | 56  |
| Table 4-19: Output Signals Available on Programmable Multi-Function Pins                     | 59  |
| Table 4-20: Supported CEA-861 Formats                                                        | 62  |
| Table 4-21: Supported Video Standard Codes                                                   | 74  |
| Table 4-22: Video Error Status Register and Error Disable Mask Bits                          |     |
| Table 4-23: PROC_DISABLE Register Bits                                                       | 84  |
| Table 4-24: Serial Audio Pin Descriptions                                                    | 91  |
| Table 4-25: Audio Output Formats                                                             | 93  |
| Table 4-26: Audio Data Packet Detect Register                                                | 95  |
| Table 4-27: Audio Group DID Host Interface Settings                                          | 96  |
| Гable 4-28: Audio Data and Control Packet DID Setting Register                               | 96  |
| Table 4-29: Audio Channel Mapping Codes                                                      | 98  |
| Table 4-30: Audio Sample Word Lengths                                                        | 98  |
| Table 4-31: Audio Channel Status Information Registers                                       | 100 |
| Гable 4-31: Audio Channel Status Block for Regenerate Mode Default Settings                  | 100 |
| Table 4-32: Audio Mute Control Bits                                                          | 101 |
| Table 4-34: GV7601 GSPI Electrical Characteristics                                           | 105 |
| Table 4-33: Video Core Configuration and Status Registers                                    | 106 |
| Table 4-34: SD Audio Core Configuration and Status Registers                                 | 113 |
| Table 4-35: HD Audio Core Configuration and Status Registers                                 | 125 |
| Table 4-36: Ancillary Data Extraction Memory Access Registers                                | 137 |
| Table 6-1: Packaging Data                                                                    | 142 |



# **List of Figures**

| Figure A: GV7601 Block Diagram                                                                                                                                                            |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Figure 3-1: Digital Inp <u>ut Pin w</u> ith Schmitt Trigger (20BIT/ <u>10BIT</u> , AUDIO_EN, <u>CS</u> _TMS, PR<br>ITAG_EN, RECLK_EN, RESET, SCLK_TCK, SDIN_TDI, SDO_EN, STANDBY, 861_EN) | 28               |
| Figure 3-2: Bidirectional Digital Input/Output Pin - Configure <u>d to Output u</u> nless in Reset<br>(ACLK, MCLK, AOUT1/2, AOUT3/4, AOUT5/6, AOUT7/8, ASI, 656_BYPASS, WCLK)             | 28               |
| Figure 3-3: Bidirectional Digital Input/Output Pin with programmable drive strength                                                                                                       |                  |
| Figure 3-4: XTAL1/XTAL2/XTAL_OUT                                                                                                                                                          |                  |
| Figure 3-5: VBG                                                                                                                                                                           |                  |
| Figure 3-6: LB_CONT                                                                                                                                                                       |                  |
| Figure 3-7: Loop Filter (LF)                                                                                                                                                              |                  |
| Figure 3-8: Serial Input Equivalent Circuit                                                                                                                                               |                  |
| Figure 3-9: SDO/SDO                                                                                                                                                                       |                  |
| Figure 4-1: 27MHz Clock Sources                                                                                                                                                           |                  |
| Figure 4-2: Data transmitting with blanking, 525/60Hz                                                                                                                                     |                  |
| Figure 4-3: Multiplexing 10-bit 4:2:2 YCbCr data for 525 lines at 60Hz                                                                                                                    | 38               |
| Figure 4-4: Data transmitting with blanking, 625/50Hz                                                                                                                                     | 39               |
| Figure 4-5: Multiplexing 10-bit 4:2:2 YCbCr data for 625 lines at 50Hz                                                                                                                    | 39               |
| Figure 4-6: Field Timing Relationship for 1080-line Interlaced Systems                                                                                                                    | 40               |
| Figure 4-7: Multiplexed Luma and Chroma Over One Video Line - 1080i                                                                                                                       | 40               |
| Figure 4-8: Luma Stream Over One Video Line - 1080i                                                                                                                                       | 41               |
| Figure 4-9: Chroma Stream Over One Video Line - 1080i                                                                                                                                     | 41               |
| Figure 4-10: Frame Timing Relationship For 1080-line Progressive Systems                                                                                                                  | 42               |
| Figure 4-11: Multiplexed Luma and Chroma Over One Video Line - 1080p                                                                                                                      | 42               |
| Figure 4-12: Luma Stream Over One Video Line - 1080p                                                                                                                                      | 42               |
| Figure 4-13: Chroma Stream Over One Video Line - 1080p                                                                                                                                    | 42               |
| Figure 4-14: 720p Digital Vertical Timing                                                                                                                                                 | 43               |
| Figure 4-15: Aviia 20-bit Mapping Structure for 1920 x 1080 50/60Hz Progressive 4:2:0 & (Y'C' <sub>B</sub> C' <sub>R</sub> ) 8/10-bit Signals                                             | 45               |
| Figure 4-16: Aviia 20-bit Mapping Structure for 1920 $f x$ 1080 24/25/30Hz Progressive 4:4:48/10-bit Signals                                                                              | 4 (R'G'B')<br>46 |
| Figure 4-17: Aviia 20-bit Mapping Structure for 1920 x 1080 24/25/30Hz Progressive 4:4: or Y'C' $_{ m B}$ C' $_{ m B}$ ) 12-bit Signals                                                   | 4 (R'G'B<br>47   |
| Figure 4-18: Aviia 20-bit Mapping Structure for 1920 x 1080 24/25/30Hz Progressive 4:2<br>(Y'C' <sub>B</sub> C' <sub>R</sub> ) 12-bit Signals                                             | 48               |
| Figure 4-19: Aviia 20-bit Mapping Structure for 1280 x 720 24/25/30/25/60Hz Progressi <sup>,</sup><br>(R'G'B' or Y'C' <sub>B</sub> C' <sub>R</sub> ) 8/10-bit Signals                     | ve 4:4:4<br>50   |
| Figure 4-20: PCLK to Data and Control Signal Output Timing - SDR Mode 1                                                                                                                   | 52               |
| Figure 4-21: PCLK to Data and Control Signal Output Timing - SDR Mode 2                                                                                                                   |                  |
| Figure 4-22: PCLK to Data and Control Signal Output Timing - DDR Mode                                                                                                                     | 54               |
| Figure 4-23: DDR Video Interface                                                                                                                                                          | 57               |
| Figure 4-24: Delay Adjustment Ranges                                                                                                                                                      | 58               |
| Figure 4-25: H:V:F Output Timing - Full HD 20-bit Output ModeMode                                                                                                                         | 60               |
| Figure 4-26: H:V:F Output Timing - HD 20-bit Output Mode                                                                                                                                  | 60               |
| Figure 4-27: H:V:F Output Timing - HD & Full HD 10-bit Output ModeMode                                                                                                                    | 61               |
| Figure 4-28: H:V:F Output Timing - SD 20-bit Output Mode                                                                                                                                  |                  |
| Figure 4-29: H:V:F Output Timing - SD 10-bit Output Mode                                                                                                                                  |                  |
| Figure 4-30: H:V:DE Output Timing 1280 x 720p @ 59.94/60 (Format 4)                                                                                                                       |                  |
| Figure 4-31: H:V:DE Output Timing 1920 x 1080i @ 59.94/60 (Format 5)                                                                                                                      |                  |
| Figure 4-32: H:V:DE Output Timing 720 (1440) x 480i @ 59.94/60 (Format 6 & 7)                                                                                                             |                  |
| Figure 4-33: H:V:DE Output Timing 1280 x 720p @ 50 (Format 19)                                                                                                                            |                  |
|                                                                                                                                                                                           |                  |



| Figure 4-34: H:V:DE Output Timing 1920 x 1080i @ 50 (Format 20)          | 67  |
|--------------------------------------------------------------------------|-----|
| Figure 4-35: H:V:DE Output Timing 720 (1440) x 576 @ 50 (Format 21 & 22) | 68  |
| Figure 4-36: H:V:DE Output Timing 1920 x 1080p @ 59.94/60 (Format 16)    | 69  |
| Figure 4-37: H:V:DE Output Timing 1920 x 1080p @ 50 (Format 31)          | 70  |
| Figure 4-38: H:V:DE Output Timing 1920 x 1080p @ 23.94/24 (Format 32)    | 71  |
| Figure 4-39: H:V:DE Output Timing 1920 x 1080p @ 25 (Format 33)          | 72  |
| Figure 4-40: H:V:DE Output Timing 1920 x 1080p @ 29.97/30 (Format 34)    | 73  |
| Figure 4-41: Ancillary Data Packets                                      | 80  |
| Figure 4-42: Y/1ANC and C/2ANC Signal Timing - HD 20-bit                 | 81  |
| Figure 4-43: Y/1ANC and C/2ANC Signal Timing - HD 10-bit                 | 81  |
| Figure 4-44: Y/1ANC and C/2ANC Signal Timing - SD 20-bit                 | 82  |
| Figure 4-45: Y/1ANC and C/2ANC Signal Timing - SD 10-bit                 | 82  |
| Figure 4-46: Ancillary Data Extraction - Step A                          | 87  |
| Figure 4-47: Ancillary Data Extraction - Step B                          |     |
| Figure 4-48: Ancillary Data Extraction - Step C                          | 89  |
| Figure 4-49: Ancillary Data Extraction - Step D                          | 90  |
| Figure 4-50: ACLK to Data and WCLK Signal Output Timing                  | 92  |
| Figure 4-51: I <sup>2</sup> S Audio Output Format                        | 93  |
| Figure 4-52: AES/EBU or S/PDIF Audio Output Format                       | 93  |
| Figure 4-53: Serial Audio, Left Justified, MSB First                     | 94  |
| Figure 4-54: Serial Audio, Left Justified, LSB First                     | 94  |
| Figure 4-55: Serial Audio, Right Justified, MSB First                    | 94  |
| Figure 4-56: Serial Audio, Right Justified, LSB First                    |     |
| Figure 4-57: AES/EBU or S/PDIF Audio Output to Bit Clock Timing          | 94  |
| Figure 4-58: ECC 24-bit Array and Examples                               | 97  |
| Figure 4-59: GSPI Application Interface Connection                       |     |
| Figure 4-60: Command Word Format                                         |     |
| Figure 4-61: Data Word Format                                            |     |
| Figure 4-62: Write Mode                                                  | 104 |
| Figure 4-63: Read Mode                                                   |     |
| Figure 4-64: GV7601 GSPI Timing Delays                                   | 105 |
| Figure 4-65: In-Circuit JTAG                                             | 138 |
| Figure 4-66: System JTAG                                                 | 138 |
| Figure 4-67: Reset Pulse                                                 | 139 |
| Figure 6-1: GV7601 Package Dimensions                                    | 141 |
| Figure 6-2: GV7601 Marking Diagram                                       |     |
| Figure 6-3: Pb-free Solder reflow Profile                                | 143 |



# 1. Pin Out

# 1.1 Pin Assignment

|   | 1            | 2            | 3            | 4            | 5            | 6            | 7               | 8            | 9      | 10     |
|---|--------------|--------------|--------------|--------------|--------------|--------------|-----------------|--------------|--------|--------|
| Α | VBG          | LF           | LB_<br>CONT  | VCO_<br>VDD  | STAT0        | STAT1        | IO_VDD          | PCLK         | DOUT18 | DOUT17 |
| В | AVDD         | PLL_<br>VDD  | RSV          | VCO_<br>GND  | STAT2        | STAT3        | IO_GND          | DOUT19       | DOUT16 | DOUT15 |
| С | SDI          | AGND         | PLL_<br>VDD  | PLL_<br>VDD  | STAT4        | STAT5        | RESET           | DOUT12       | DOUT14 | DOUT13 |
| D | SDI          | AGND         | AGND         | PLL_<br>GND  | CORE_<br>GND | CORE_<br>VDD | RSV             | JTAG_<br>EN  | IO_GND | IO_VDD |
| Ε | EQ_<br>VDD   | EQ_<br>GND   | AGND         | PLL_<br>GND  | CORE_<br>GND | CORE_<br>VDD | SDOUT_<br>TDO   | SDIN_<br>TDI | DOUT10 | DOUT11 |
| F | AGC          | RSV          | AGND         | PLL_<br>GND  | CORE_<br>GND | CORE_<br>VDD | CS_<br>TMS      | SCLK_<br>TCK | DOUT8  | DOUT9  |
| G | AGC          | AGND         | RECLK_<br>EN | CORE_<br>GND | CORE_<br>GND | CORE_<br>VDD | 656_<br>BYPASS  | ASI          | IO_GND | IO_VDD |
| Н | BUFF_<br>VDD | BUFF_<br>GND | AUDIO_<br>EN | WCLK         | 861_EN       | XTAL_<br>OUT | 20BIT/<br>10BIT | PROC_<br>EN  | DOUT6  | DOUT7  |
| J | SDO          | SDO_EN       | AOUT1/2      | ACLK         | AOUT5/6      | XTAL2        | IO_GND          | DOUT1        | DOUT4  | DOUT5  |
| K | SDO          | STAND<br>BY  | AOUT3/4      | MCLK         | AOUT7/8      | XTAL1        | IO_VDD          | DOUT0        | DOUT2  | DOUT3  |

# **1.2 Pin Descriptions**

**Table 1-1: Pin Descriptions** 

| Pin<br>Number | Name    | Timing | Туре         | Description                                                                                                                                                                  |
|---------------|---------|--------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1            | VBG     |        | Analog Input | Band Gap voltage filter connection.                                                                                                                                          |
| A2            | LF      |        | Analog Input | Loop Filter component connection.                                                                                                                                            |
| A3            | LB_CONT |        | Analog Input | Connection for loop bandwidth control resistor.                                                                                                                              |
| A4            | VCO_VDD |        | Input Power  | POWER pin for the VCO. Connect to 1.2V DC analog through an RC filter (see 5. References & Relevant Standards). VCO_VDD is nominally 0.7V (Do not connect directly to 0.7V). |

Table 1-1: Pin Descriptions (Continued)

| Pin<br>Number             | Name      | Timing | Туре        | Description                                                                                                               |                                                              |
|---------------------------|-----------|--------|-------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| A5, A6, B5,<br>B6, C5, C6 | STAT[0:5] |        | Output      |                                                                                                                           | LVTTL compatible. s can be configured individually to output |
|                           |           |        |             | one of the following sign                                                                                                 |                                                              |
|                           |           |        |             | Signal H/HSYNC V/VSYNC F/DE LOCKED Y/1ANC C/2ANC DATA_ERROR VIDEO_ERROR AUDIO_ERROR EDH_DETECTED CARRIER_DETECT RATE_DET1 | Default  STAT0  STAT1  STAT2  STAT3  STAT4  -  STAT5         |
| A7, D10,<br>G10, K7       | IO_VDD    |        | Input Power | POWER connection for didigital.                                                                                           | gital I/O. Connect to 3.3V or 1.8V DC                        |
| A8                        | PCLK      |        | Output      | PARALLEL DATA BUS CLOS<br>Signal levels are LVCMOS/                                                                       |                                                              |
|                           |           |        |             | Full HD 10-bit or 20-bit<br>mode                                                                                          | PCLK @ 148.5 or 148.5/1.001MHz                               |
|                           |           |        |             | HD 10-bit mode                                                                                                            | PCLK @ 148.5 or 148.5/1.001MHz                               |
|                           |           |        |             | HD 20-bit mode                                                                                                            | PCLK @ 74.25 or 74.25/1.001MHz                               |
|                           |           |        |             | SD 10-bit mode                                                                                                            | PCLK @ 27MHz                                                 |
|                           |           |        |             | SD 20-bit mode                                                                                                            | PCLK @ 13.5MHz                                               |



**Table 1-1: Pin Descriptions (Continued)** 

| Pin<br>Number               | Name                | Timing | Туре         | Description                                                     |                                                                                                                                                                                                                              |  |
|-----------------------------|---------------------|--------|--------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| B8, A9, A10,<br>B9, B10,C9, | DOUT[19:10]         |        | Output       | PARALLEL DATA BUS<br>Signal levels are LVCMOS/LVTTL compatible. |                                                                                                                                                                                                                              |  |
| C10, C8, E10,<br>E9         |                     |        |              | 20-bit mode<br>20BIT/10BIT = HIGH                               | Video mode (656_BYPASS = HIGH and ASI = LOW): Luma data output for SD and HD data rates; Data Stream 1 for Full HD at 148.5MHz ASI mode (656_BYPASS = LOW and ASI = HIGH): Not defined Data-Through mode (656_BYPASS = LOW): |  |
|                             |                     |        |              | 10-bit mode<br>20BIT/10BIT = LOW                                | Data output  Video mode (656_BYPASS = HIGH and ASI = LOW): Multiplexed Luma/Chroma data output for SD and HD data rates; Multiplexed Data Stream 1/2 for Full HD at 148.5MHz                                                 |  |
|                             |                     |        |              |                                                                 | ASI mode (656_BYPASS = LOW and<br>ASI = HIGH):<br>8b/10b decoded transport stream data                                                                                                                                       |  |
|                             |                     |        |              |                                                                 | Data-Through mode<br>(656_BYPASS = LOW and ASI = LOW):<br>Data output                                                                                                                                                        |  |
|                             |                     |        |              | Video mode<br>(656_BYPASS = HIGH and<br>ASI = LOW)              | Luma data output for SD and HD data<br>rates; Data Stream 1 for Full HD at<br>148.5MHz (20-bit mode)                                                                                                                         |  |
|                             |                     |        |              | ASI mode<br>(656_BYPASS = LOW and<br>ASI = HIGH)                | Transport stream output                                                                                                                                                                                                      |  |
|                             |                     |        |              | Data-Through mode<br>(656_BYPASS = LOW and<br>ASI = LOW)        | Data output                                                                                                                                                                                                                  |  |
| B1                          | AVDD                |        | Input Power  | POWER pin for analog circ                                       | uitry. Connect to 3.3V DC analog.                                                                                                                                                                                            |  |
| B2, C3, C4                  | PLL_VDD             |        | Input Power  | POWER pins for the Recloc                                       | ker PLL. Connect to 1.2V DC analog.                                                                                                                                                                                          |  |
| B3, F2                      | RSV                 |        |              | These pins must be left un                                      | connected.                                                                                                                                                                                                                   |  |
| B4                          | VCO_GND             |        | Input Power  | GND pin for the VCO. Con                                        | nect to analog GND.                                                                                                                                                                                                          |  |
| B7, D9, G9,<br>J7           | IO_GND              |        | Input Power  | GND connection for digita                                       | l l/O. Connect to digital GND.                                                                                                                                                                                               |  |
| C1, D1                      | SDI, <del>SDI</del> |        | Analog Input | Serial Digital Differential I                                   | nput.                                                                                                                                                                                                                        |  |
| C2, D2, D3,<br>E3, F3, G2   | AGND                |        | Input Power  | GND pins for sensitive ana                                      | log circuitry. Connect to analog GND.                                                                                                                                                                                        |  |



Table 1-1: Pin Descriptions (Continued)

| Pin<br>Number         | Name      | Timing | Туре        | Description                                                                                                         |
|-----------------------|-----------|--------|-------------|---------------------------------------------------------------------------------------------------------------------|
| C7                    | RESET     |        | Input       | CONTROL SIGNAL INPUT                                                                                                |
|                       |           |        |             | Signal levels are LVCMOS/LVTTL compatible.                                                                          |
|                       |           |        |             | Used to reset the internal operating conditions to default settings and to reset the JTAG sequence.                 |
|                       |           |        |             | Normal mode (JTAG_EN = LOW):                                                                                        |
|                       |           |        |             | When LOW, all functional blocks are set to default conditions and all digital output signals become high impedance. |
|                       |           |        |             | When HIGH, normal operation of the device resumes.                                                                  |
|                       |           |        |             | JTAG test mode (JTAG_EN = HIGH):                                                                                    |
|                       |           |        |             | When LOW, all functional blocks are set to default and the JTAG test sequence is reset.                             |
|                       |           |        |             | When HIGH, normal operation of the JTAG test sequence resumes.                                                      |
| D4, E4, F4            | PLL_GND   |        | Input Power | GND pins for the Reclocker PLL. Connect to analog GND.                                                              |
| D5, E5, F5,<br>G4, G5 | CORE_GND  |        | Input Power | GND connection for device core. Connect to digital GND.                                                             |
| D6, E6, F6,<br>G6     | CORE_VDD  |        | Input Power | POWER connection for device core. Connect to 1.2V DC digital.                                                       |
| D7                    | RSV       |        | Input       | Connect to core ground.                                                                                             |
| D8                    | JTAG_EN   |        | Input       | CONTROL SIGNAL INPUT                                                                                                |
|                       |           |        |             | Signal levels are LVCMOS/LVTTL compatible.                                                                          |
|                       |           |        |             | Used to select JTAG test mode or host interface mode.                                                               |
|                       |           |        |             | When JTAG_EN is HIGH, the host interface port is configured for JTAG test.                                          |
|                       |           |        |             | When JTAG_EN is LOW, normal operation of the host interface port resumes.                                           |
| E1                    | EQ_VDD    |        | Input Power | POWER pin for SDI input. Connect to 3.3V DC analog.                                                                 |
| E2                    | EQ_GND    |        | Input Power | GND pin for SDI input. Connect to analog GND.                                                                       |
| E7                    | SDOUT_TDO |        | Output      | COMMUNICATION SIGNAL OUTPUT                                                                                         |
|                       |           |        |             | Signal levels are LVCMOS/LVTTL compatible.                                                                          |
|                       |           |        |             | GSPI serial data output/test data out.                                                                              |
|                       |           |        |             | In JTAG mode (JTAG_EN = HIGH), this pin is used to shift test results from the device.                              |
|                       |           |        |             | In host interface mode, this pin is used to read status and configuration data from the device.                     |
| E8                    | SDIN_TDI  |        | Input       | COMMUNICATION SIGNAL INPUT                                                                                          |
|                       |           |        |             | Signal levels are LVCMOS/LVTTL compatible.                                                                          |
|                       |           |        |             | GSPI serial data in/test data in.                                                                                   |
|                       |           |        |             | In JTAG mode (JTAG_EN = HIGH), this pin is used to shift test data into the device.                                 |
|                       |           |        |             | In host interface mode, this pin is used to write address and configuration data words into the device.             |
| F1, G1                | AGC, AGC  |        |             | Automatic Gain Control. Attach the AGC capacitor across these pine                                                  |



Table 1-1: Pin Descriptions (Continued)

| Pin<br>Number                 | Name      | Timing | Туре   | Description                                       |                                                                                                                                              |
|-------------------------------|-----------|--------|--------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| F7                            | CS_TMS    |        | Input  | COMMUNICATION SIGN                                |                                                                                                                                              |
|                               |           |        |        | Signal levels are LVCMC                           |                                                                                                                                              |
|                               |           |        |        | Chip select / test mode                           |                                                                                                                                              |
|                               |           |        |        | In JIAG mode (JIAG_EN control the operation o     | N = HIGH), this pin is Test Mode Start, used to of the JTAG test.                                                                            |
|                               |           |        |        | In host interface mode host interface chip selec  | (JTAG_EN = LOW), this pin operates as the ct and is active LOW.                                                                              |
| F8                            | SCLK_TCK  |        | Input  | <b>COMMUNICATION SIGN</b>                         | IAL INPUT                                                                                                                                    |
|                               |           |        |        | Signal levels are LVCMC                           | DS/LVTTL compatible.                                                                                                                         |
|                               |           |        |        | Serial data clock signal.                         |                                                                                                                                              |
|                               |           |        |        | In JTAG mode (JTAG_EN                             | N = HIGH), this pin is the JTAG clock.                                                                                                       |
|                               |           |        |        | In host interface mode interface serial bit clock | (JTAG_EN = LOW), this pin is the host c.                                                                                                     |
|                               |           |        |        | All JTAG/host interface the device synchronous    | addresses and data are shifted into/out of ly with this clock.                                                                               |
| F10, F9, H10,<br>H9, J10, J9, | DOUT[9:0] |        | Output | PARALLEL DATA BUS Signal levels are LVCMC         | OS/LVTTL compatible.                                                                                                                         |
| K10, K9, J8,<br>K8            |           |        |        | 20-bit mode<br>20BIT/10BIT = HIGH                 | Video mode (656_BYPASS = HIGH and<br>ASI = LOW):<br>Chroma data output for SD and HD<br>data rates; Data Stream 2 for Full HD at<br>148.5MHz |
|                               |           |        |        |                                                   | ASI mode (656_BYPASS = LOW and ASI = HIGH): Not defined                                                                                      |
|                               |           |        |        |                                                   | Data-Through mode<br>(656_BYPASS = LOW and ASI = LOW):<br>Data output                                                                        |
|                               |           |        |        | 10-bit mode<br>20BIT/10BIT = LOW                  | Forced LOW                                                                                                                                   |
| G3                            | RECLK_EN  |        | Input  | CONTROL SIGNAL INPU                               | Т                                                                                                                                            |
|                               |           |        | •      | Signal levels are LVCMC                           | DS/LVTTL compatible.                                                                                                                         |
|                               |           |        |        | version of the input ser                          | the serial digital output is the buffered<br>ial data. When this pin is HIGH, the serial<br>clocked version of the input serial data.        |



Table 1-1: Pin Descriptions (Continued)

| Pin<br>Number | Name                    | Timing | Туре              | Description                                                                                                                                                                                                                                                                                  |
|---------------|-------------------------|--------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>G</b> 7    | 656_BYPASS              |        | Input/Output      | CONTROL SIGNAL INPUT/OUTPUT                                                                                                                                                                                                                                                                  |
|               |                         |        |                   | Signal levels are LVCMOS/LVTTL compatible.                                                                                                                                                                                                                                                   |
|               |                         |        |                   | Indicates the presence or valid video data.                                                                                                                                                                                                                                                  |
|               |                         |        |                   | When the AUTO/MAN bit in the host interface register is HIGH (Default), this pin is an OUTPUT. 656_BYPASS is HIGH when the device locks to a ITU-R BT.656 or BT.1120 compliant input. 656_BYPASS is LOW under all other conditions.                                                          |
|               |                         |        |                   | When the AUTO/ $\overline{\text{MAN}}$ bit in the host interface register is LOW, this pin is an INPUT.                                                                                                                                                                                      |
|               |                         |        |                   | No video data descrambling takes place, and none of the video processing features of the device are available when 656_BYPASS set LOW.                                                                                                                                                       |
|               |                         |        |                   | When $\overline{656\_BYPASS}$ is set HIGH, the device carries out descrambling and video processing.                                                                                                                                                                                         |
|               |                         |        |                   | When $\overline{656\_BYPASS}$ and ASI are both set LOW, the device operates i Data-Through mode.                                                                                                                                                                                             |
| G8            | ASI                     |        | Input/Output      | CONTROL SIGNAL INPUT                                                                                                                                                                                                                                                                         |
|               |                         |        |                   | Signal Levels are LVCMOS/LVTTL compatible.                                                                                                                                                                                                                                                   |
|               |                         |        |                   | Used to enable/disable ASI data extraction in manual mode.                                                                                                                                                                                                                                   |
|               |                         |        |                   | When the AUTO/MAN bit in the host interface is LOW, this pin is a input, and when the ASI pin is set HIGH the device carries out ASI data extraction and processing. The 656_BYPASS pin must be set LOW. When 656_BYPASS and ASI are both set LOW, the device operates in Data-Through mode. |
|               |                         |        |                   | When the AUTO/MAN bit in the host interface is HIGH (Default), All input is not supported.                                                                                                                                                                                                   |
| H1            | BUFF_VDD                |        | Input Power       | POWER pin for the serial digital output $50\Omega$ buffer. Connect to 3.3 DC analog.                                                                                                                                                                                                         |
| H2            | BUFF_GND                |        | Input Power       | GND pin for the cable driver buffer. Connect to analog GND.                                                                                                                                                                                                                                  |
| H3            | AUDIO_EN                |        | Input             | CONTROL SIGNAL INPUT                                                                                                                                                                                                                                                                         |
|               |                         |        |                   | Signal levels are LVCMOS/LVTTL compatible.                                                                                                                                                                                                                                                   |
|               |                         |        |                   | Enables or disables audio extraction.                                                                                                                                                                                                                                                        |
| H4            | WCLK                    |        | Output            | 48kHz word clock for Audio.                                                                                                                                                                                                                                                                  |
| Н5            | 861_EN                  |        | Input             | CONTROL SIGNAL INPUT                                                                                                                                                                                                                                                                         |
|               |                         |        |                   | Signal levels are LVCMOS/LVTTL compatible.                                                                                                                                                                                                                                                   |
|               |                         |        |                   | Used to select CEA-861 timing mode.                                                                                                                                                                                                                                                          |
|               |                         |        |                   | When 861_EN is HIGH, the device outputs CEA-861 timing signals (HSYNC/VSYNC/DE) instead of H:V:F digital timing signals.                                                                                                                                                                     |
| Н6            | XTAL_OUT                |        | Digital<br>Output | Buffered 27MHz crystal output. Can be used to cascade the crystal signal.                                                                                                                                                                                                                    |
| H7            | 20BIT/ <del>10BIT</del> |        | Input             | CONTROL SIGNAL INPUT                                                                                                                                                                                                                                                                         |
|               |                         |        |                   | Levels are LVCMOS/LVTTL compatible.                                                                                                                                                                                                                                                          |
|               |                         |        |                   | Used to select the output bus width.  HIGH = 20-bit                                                                                                                                                                                                                                          |
|               |                         |        |                   | LOW = 10-bit                                                                                                                                                                                                                                                                                 |



Table 1-1: Pin Descriptions (Continued)

| Pin<br>Number | Name                | Timing | Туре         | Description                                                                                                                                                                                                                                                                         |
|---------------|---------------------|--------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H8            | PROC_EN             |        | Input        | CONTROL SIGNAL INPUT                                                                                                                                                                                                                                                                |
|               |                     |        |              | Levels are LVCMOS/LVTTL compatible.                                                                                                                                                                                                                                                 |
|               |                     |        |              | Used to enable or disable audio and video processing features. When PROC_EN is HIGH, the audio and video processing features of the device are enabled. When PROC_EN is LOW, the processing features of the device are disabled, and the device is in a low-latency operating mode. |
| J1, K1        | SDO, <del>SDO</del> |        | Output       | Serial Data Output Signal.                                                                                                                                                                                                                                                          |
|               |                     |        |              | $50\Omega$ CML buffer for interfacing to an external cable driver.                                                                                                                                                                                                                  |
|               |                     |        |              | Serial digital output signal operating at 2.97Gb/s, 2.97/1.001Gb/s, 1.485Gb/s, 1.485/1.001Gb/s and 270Mb/s.                                                                                                                                                                         |
| J2            | SDO_EN              |        | Input        | CONTROL SIGNAL INPUT                                                                                                                                                                                                                                                                |
|               |                     |        |              | Signal levels are LVCMOS/LVTTL compatible.                                                                                                                                                                                                                                          |
|               |                     |        |              | Used to enable/disable the serial digital output stage.                                                                                                                                                                                                                             |
|               |                     |        |              | When SDO_EN is LOW, the serial digital output signals, SDO and SDO, are both pulled HIGH.                                                                                                                                                                                           |
|               |                     |        |              | When SDO_EN is HIGH, the serial digital output signals, SDO and $\overline{\text{SDO}}$ , are enabled.                                                                                                                                                                              |
| J3            | AOUT1/2             |        | Output       | Serial Audio Output; Channels 1 and 2.                                                                                                                                                                                                                                              |
| J4            | ACLK                |        | Output       | 64fs sample clock for audio.                                                                                                                                                                                                                                                        |
| J5            | AOUT5/6             |        | Output       | Serial Audio Output; Channels 5 and 6.                                                                                                                                                                                                                                              |
| J6, K6        | XTAL2, XTAL1        |        | Analog Input | Input connection for 27MHz crystal.                                                                                                                                                                                                                                                 |
| K2            | STANDBY             |        | Input        | CONTROL SIGNAL INPUT                                                                                                                                                                                                                                                                |
|               |                     |        |              | Signal levels are LVCMOS/LVTTL compatible.                                                                                                                                                                                                                                          |
|               |                     |        |              | When this pin is set HIGH, the device is placed in a power-saving mode. No data processing occurs, and the digital I/Os are powered down.                                                                                                                                           |
|               |                     |        |              | In this mode, the serial digital output signals, SDO and SDO, are both pulled HIGH.                                                                                                                                                                                                 |
| K3            | AOUT3/4             |        | Output       | Serial Audio Output; Channels 3 and 4.                                                                                                                                                                                                                                              |
| K4            | MCLK                |        | Output       | Oversampled master clock for audio (128fs, 256fs, 512fs selectable).                                                                                                                                                                                                                |
| K5            | AOUT7/8             |        | Output       | Serial Audio Output; Channels 7 and 8.                                                                                                                                                                                                                                              |



# 2. Electrical Characteristics

## 2.1 Absolute Maximum Ratings

**Table 2-1: Absolute Maximum Ratings** 

| Parameter                                            | Value/Units                      |
|------------------------------------------------------|----------------------------------|
| Supply Voltage, Digital Core (CORE_VDD)              | -0.3V to +1.5V                   |
| Supply Voltage, Digital I/O (IO_VDD)                 | -0.3V to +4.0V                   |
| Supply Voltage, Analog 1.2V (PD_VDD, VCO_VDD)        | -0.3V to +1.5V                   |
| Supply Voltage, Analog 3.3V (EQ_VDD, BUFF_VDD, AVDD) | -0.3V to +4.0V                   |
| Input Voltage Range (SDI, SDI, LB_CONT)              | -0.3V to (EQ_VDD + 0.3)V         |
| Input Voltage Range (VBG)                            | -0.3V to (AVDD + 0.3)V           |
| Input Voltage Range (LF)                             | -0.3V to (PLL_VDD + 0.3)V        |
| Input Voltage Range (digital inputs)                 | -2.0V to +5.25V                  |
| Ambient Operating Temperature (T <sub>A</sub> )      | -40°C ≤ T <sub>A</sub> ≤ 95°C    |
| Storage Temperature (T <sub>STG</sub> )              | -40°C ≤ T <sub>STG</sub> ≤ 125°C |
| Peak Reflow Temperature (JEDEC J-STD-020C)           | 260° <b>⊄</b>                    |
| ESD Sensitivity, HBM (JESD22-A114)                   | 2kV                              |

#### Notes:

## 2.2 Recommended Operating Conditions

**Table 2-2: Recommended Operating Conditions** 

| Parameter                               | Symbol         | Conditions | Min  | Тур | Max  | Units | Notes |
|-----------------------------------------|----------------|------------|------|-----|------|-------|-------|
| Operating Temperature Range,<br>Ambient | T <sub>A</sub> | -          | -20  | _   | 85   | °C    | _     |
| Supply Voltage, Digital Core            | CORE_VDD       | _          | 1.14 | 1.2 | 1.26 | V     | _     |
| Supply Voltage Digital I/O              | IO VDD         | 1.8V mode  | 1.71 | 1.8 | 1.89 | V     | _     |
| Supply Voltage, Digital I/O             | IO_VDD         | 3.3V mode  | 3.13 | 3.3 | 3.47 | V     | _     |
| Supply Voltage, PLL                     | PLL_VDD        | _          | 1.14 | 1.2 | 1.26 | V     | -     |
| Supply Voltage, VCO                     | VCO_VDD        | _          | _    | 0.7 | _    | V     | 1     |



Absolute Maximum Ratings are those values beyond which damage may occur. Functional
operation under these conditions or at any other condition beyond those indicated in the AC/DC
Electrical Characteristics sections is not implied.

**Table 2-2: Recommended Operating Conditions (Continued)** 

| Parameter                            | Symbol   | Conditions | Min  | Тур | Max  | Units | Notes |
|--------------------------------------|----------|------------|------|-----|------|-------|-------|
| Supply Voltage, Analog               | AVDD     | -          | 3.13 | 3.3 | 3.47 | V     | 2     |
| Supply Voltage, Serial Digital Input | EQ_VDD   | -          | 3.13 | 3.3 | 3.47 | V     | _     |
| Supply Voltage, CD Buffer            | BUFF_VDD | -          | 3.13 | 3.3 | 3.47 | V     | 2     |

#### Notes:

- 1. This is 0.7V rather than 1.2V because there is a voltage drop across an external  $105\Omega$  resistor.
- 2. The 3.3V supplies must track the 3.3V supply of an external cable driver.

#### 2.3 DC Electrical Characteristics

**Table 2-3: DC Electrical Characteristics** 

| Parameter            | Symbol           | Conditions     | Min | Тур | Max              | Units | Notes |
|----------------------|------------------|----------------|-----|-----|------------------|-------|-------|
| System               |                  |                |     |     |                  |       |       |
| +1.2V Supply Current | I <sub>1V2</sub> | 10-bit Full HD | -   | 220 | 265              | mA    | -     |
|                      |                  | 20-bit Full HD | _   | 210 | <mark>265</mark> | mA    | _     |
|                      |                  | 10/20-bit HD   | _   | 170 | 220              | mA    | _     |
|                      |                  | 10/20-bit SD   | -   | 140 | 185              | mA    | _     |
|                      |                  | ASI            | -   | 130 | 170              | mA    | _     |
| +1.8V Supply Current | I <sub>1V8</sub> | 10-bit Full HD | _   | 37  | 45               | mA    | _     |
|                      |                  | 20-bit Full HD | -   | 16  | 20               | mA    | _     |
|                      |                  | 10/20-bit HD   | -   | 15  | 21               | mA    | _     |
|                      |                  | 10/20-bit SD   | _   | 4   | 7                | mA    | _     |
|                      |                  | ASI            | _   | 4   | 6                | mA    | _     |
| +3.3V Supply Current | I <sub>3V3</sub> | 10-bit Full HD | _   | 150 | 180              | mA    | _     |
|                      |                  | 20-bit Full HD | _   | 115 | 130              | mA    | _     |
|                      |                  | 10/20-bit HD   | _   | 110 | 135              | mA    | -     |
|                      |                  | 10/20-bit SD   | _   | 90  | 100              | mA    | -     |
|                      |                  | ASI            | _   | 90  | 95               | mA    | _     |
| Total Device Power   | P <sub>1D8</sub> | 10-bit Full HD | _   | 560 | 680              | mW    | -     |
| $(IO_VDD = 1.8V)$    |                  | 20-bit Full HD | _   | 525 | 640              | mW    | _     |
|                      |                  | 10/20-bit HD   | _   | 480 | 590              | mW    | -     |
|                      |                  | 10/20-bit SD   | _   | 420 | 520              | mW    | _     |
|                      |                  | ASI            | _   | 410 | 500              | mW    | _     |
|                      |                  | Reset          | _   | 390 | _                | mW    | _     |
|                      |                  | Standby        | _   | 23  | 45               | mW    | _     |



Guaranteed over recommended operating conditions unless otherwise noted.

| Parameter                               | Symbol           | Conditions                            | Min                     | Тур                      | Max                      | Units | Notes |
|-----------------------------------------|------------------|---------------------------------------|-------------------------|--------------------------|--------------------------|-------|-------|
| Total Device Power                      | P <sub>3D3</sub> | 10-bit Full HD                        | _                       | 750                      | 930                      | mW    | _     |
| $(IO_VDD = 3.3V)$                       |                  | 20-bit Full HD                        | -                       | 620                      | 760                      | mW    | _     |
|                                         |                  | 10/20-bit HD                          | -                       | 570                      | 830                      | mW    | _     |
|                                         |                  | 10/20-bit SD                          | _                       | 460                      | 560                      | mW    | -     |
|                                         |                  | ASI                                   | _                       | 440                      | 540                      | mW    | -     |
|                                         |                  | Reset                                 | -                       | 410                      | -                        | mW    | _     |
|                                         |                  | Standby                               | _                       | 23                       | 45                       | mW    | -     |
| Digital I/O                             |                  |                                       |                         |                          |                          |       |       |
| Input Logic LOW                         | V <sub>IL</sub>  | 3.3V or 1.8V operation                | IO_GND<br>- 0.3         | _                        | 0.3 x<br>IO_VDD          | V     | -     |
| Input Logic HIGH                        | V <sub>IH</sub>  | 3.3V or 1.8V operation                | 0.7 x<br>IO_GND         | _                        | IO_VDD<br>+ 0.3          | V     | -     |
| 0                                       |                  | I <sub>OL</sub> = 5mA, 1.8V operation | =                       | _                        | 0.2                      | V     | -     |
| Output Logic LOW                        | V <sub>OL</sub>  | I <sub>OL</sub> = 8mA, 3.3V operation | _                       | -                        | 0.4                      | V     | -     |
| 0.1                                     | V                | I <sub>OH</sub> = 5mA, 1.8V operation | 1.4                     | -                        | -                        | V     | -     |
| Output Logic HIGH                       | V <sub>OH</sub>  | I <sub>OH</sub> = 8mA, 3.3V operation | 2.4                     | -                        | -                        | V     | -     |
| Output Drive Strength                   | -                | -                                     | _                       |                          | -                        | -     | 1     |
| Serial Input                            |                  |                                       |                         |                          |                          |       |       |
| Serial Input Common<br>Mode Voltage     | _                | 75 $\Omega$ load                      | -                       | 2.2                      | _                        | V     | -     |
| Serial Output                           |                  |                                       |                         |                          |                          |       |       |
| Serial Output<br>Common Mode<br>Voltage | _                | 50Ω load                              | BUFF_VDD<br>- (0.6 / 2) | BUFF_VDD<br>- (0.45 / 2) | BUFF_VDD<br>- (0.35 / 2) | V     | _     |

#### Notes



<sup>1.</sup> The output drive strength of the digital outputs can be programmed through the host interface. Please see Table 4-33: Video Core Configuration and Status Registers, register 06Dh for details.

## 2.4 AC Electrical Characteristics

**Table 2-4: AC Electrical Characteristics** 

 $\label{prop:conditions} \mbox{Guaranteed over recommended operating conditions unless otherwise noted.}$ 

| Parameter                 | Symbol             | Symbol Conditions |      | Тур | Max   | Units | Notes |
|---------------------------|--------------------|-------------------|------|-----|-------|-------|-------|
| System                    |                    |                   |      |     |       |       |       |
| Reset Pulse Width         | t <sub>reset</sub> | -                 | 1    | -   | -     | ms    | _     |
| Device Latency            |                    |                   |      |     |       |       |       |
| Full HD (Audio Enabled)   | -                  | PCLK = 148.5MHz   | 79   | -   | 83    | PCLK  | 1     |
| HD (Audio Enabled)        |                    | PCLK = 74.25MHz   | 79   | _   | 83    | PCLK  | 1     |
| SD (Audio Enabled)        | -                  | PCLK = 27MHz      | 50   | _   | 59    | PCLK  | 1     |
| Full HD (Audio Disabled)  | -                  | PCLK = 148.5MHz   | 44   | _   | 48    | PCLK  | 2     |
| HD (Audio Disabled)       | -                  | PCLK = 74.25MHz   | 44   | _   | 48    | PCLK  | 2     |
| SD (Audio Disabled)       | -                  | PCLK = 27MHz      | 44   | _   | 53    | PCLK  | 2     |
| ASI Mode                  | -                  | PCLK = 27MHz      | 12   | _   | 16    | PCLK  | 3     |
| Parallel Output           |                    |                   |      |     |       |       |       |
| Parallel Clock Frequency  | f <sub>PCLK</sub>  | -                 | 13.5 | _   | 148.5 | MHz   | -     |
| Parallel Clock Duty Cycle | DC <sub>PCLK</sub> | -                 | 40   | _   | 60    | %     | _     |



| Parameter                    | Symbol          | Cond              | itions            | Min  | Тур | Max | Units | Notes |
|------------------------------|-----------------|-------------------|-------------------|------|-----|-----|-------|-------|
| Output Data Hold Time (1.8V) | t <sub>oh</sub> | Full HD           | SPI               | 1.5  | -   | -   | ns    | 4     |
|                              |                 | 10-bit            | Audio<br>Outputs  | 1.5  | -   | _   | ns    | 4     |
|                              |                 |                   | Video<br>Data Bus | 0.4  | _   | _   | ns    | 4     |
|                              |                 |                   | STAT<br>Pins      | 0.45 | -   | -   | ns    | 4     |
|                              |                 | Full HD<br>20-bit | Video<br>Data Bus | 1.0  | -   | -   | ns    | 4     |
|                              |                 |                   | STAT<br>Pins      | 1.0  | -   | -   | ns    | 4     |
|                              |                 | HD 10-bit         | Video<br>Data Bus | 1.0  | -   | -   | ns    | 4     |
|                              |                 |                   | STAT<br>Pins      | 1.0  | -   | -   | ns    | 4     |
|                              |                 | HD 20-bit         | Video<br>Data Bus | 1.0  | -   | -   | ns    | 4     |
|                              |                 |                   | STAT<br>Pins      | 1.0  | -   | -   | ns    | 4     |
|                              |                 | SD 10-bit         | Video<br>Data Bus | 19.4 | -   | -   | ns    | 4     |
|                              |                 |                   | STAT<br>Pins      | 19.4 | -   | -   | ns    | 4     |
|                              |                 | SD 20-bit         | Video<br>Data Bus | 38.0 | -   | -   | ns    | 4     |
|                              |                 |                   | STAT<br>Pins      | 38.0 | _   | _   | ns    | 4     |



| Parameter                    | Symbol          | Cond              | itions            | Min  | Тур | Max | Units | Notes |
|------------------------------|-----------------|-------------------|-------------------|------|-----|-----|-------|-------|
| Output Data Hold Time (3.3V) | t <sub>oh</sub> | Full HD           | SPI               | 1.5  | _   | _   | ns    | 5     |
|                              |                 | 10-bit            | Audio<br>Outputs  | 1.5  | -   | _   | ns    | 5     |
|                              |                 |                   | Video<br>Data Bus | 0.45 | -   | -   | ns    | 5     |
|                              |                 |                   | STAT<br>Pins      | 0.45 | -   | _   | ns    | 5     |
|                              |                 | Full HD<br>20-bit | Video<br>Data Bus | 1.0  | -   | _   | ns    | 5     |
|                              |                 |                   | STAT<br>Pins      | 1.0  | -   | _   | ns    | 5     |
|                              |                 | HD 10-bit         | Video<br>Data Bus | 1.0  | -   | _   | ns    | 5     |
|                              |                 |                   | STAT<br>Pins      | 1.0  | -   | -   | ns    | 5     |
|                              |                 | HD 20-bit         | Video<br>Data Bus | 1.0  | -   | -   | ns    | 5     |
|                              |                 |                   | STAT<br>Pins      | 1.0  | -   | -   | ns    | 5     |
|                              |                 | SD 10-bit         | Video<br>Data Bus | 19.4 | -   | -   | ns    | 5     |
|                              |                 |                   | STAT<br>Pins      | 19.4 | -   | -   | ns    | 5     |
|                              |                 | SD 20-bit         | Video<br>Data Bus | 38.0 | -   | -   | ns    | 5     |
|                              |                 |                   | STAT<br>Pins      | 38.0 | -   | -   | ns    | 5     |



 $\label{prop:conditions} \mbox{Guaranteed over recommended operating conditions unless otherwise noted.}$ 

| Parameter                     | Symbol          | Cond              | itions            | Min | Тур | Max  | Units | Notes |
|-------------------------------|-----------------|-------------------|-------------------|-----|-----|------|-------|-------|
| Output Data Delay Time (1.8V) | t <sub>od</sub> | Full HD           | SPI               | _   | -   | 14.0 | ns    | 6     |
|                               |                 | 10-bit            | Audio<br>Outputs  | -   | -   | 7.0  | ns    | 6     |
|                               |                 |                   | Video<br>Data Bus | -   | -   | 1.8  | ns    | 6     |
|                               |                 |                   | STAT<br>Pins      | -   | -   | 2.5  | ns    | 6     |
|                               |                 | Full HD<br>20-bit | Video<br>Data Bus | -   | -   | 3.7  | ns    | 6     |
|                               |                 |                   | STAT<br>Pins      | -   | -   | 4.4  | ns    | 6     |
|                               |                 | HD 10-bit         | Video<br>Data Bus | -   | -   | 3.7  | ns    | 6     |
|                               |                 |                   | STAT<br>Pins      | -   | -   | 4.4  | ns    | 6     |
|                               |                 | HD 20-bit         | Video<br>Data Bus | -   | -   | 3.7  | ns    | 6     |
|                               |                 |                   | STAT<br>Pins      | -   | -   | 4.4  | ns    | 6     |
|                               |                 | SD 10-bit         | Video<br>Data Bus | -   | -   | 22.2 | ns    | 6     |
|                               |                 |                   | STAT<br>Pins      | -   | _   | 22.2 | ns    | 6     |
|                               |                 | SD 20-bit         | Video<br>Data Bus | -   | -   | 41.0 | ns    | 6     |
|                               |                 |                   | STAT<br>Pins      | -   | -   | 41.0 | ns    | 6     |



| Parameter                     | Symbol          | Cond              | itions            | Min | Тур | Max  | Units | Notes |
|-------------------------------|-----------------|-------------------|-------------------|-----|-----|------|-------|-------|
| Output Data Delay Time (3.3V) | t <sub>od</sub> | Full HD           | SPI               | -   | -   | 14.0 | ns    | 7     |
|                               |                 | 10-bit            | Audio<br>Outputs  | =   | _   | 7.0  | ns    | 7     |
|                               |                 |                   | Video<br>Data Bus | -   | -   | 1.9  | ns    | 7     |
|                               |                 |                   | STAT<br>Pins      | -   | -   | 2.2  | ns    | 7     |
|                               |                 | Full HD<br>20-bit | Video<br>Data Bus | -   | -   | 3.7  | ns    | 7     |
|                               |                 |                   | STAT<br>Pins      | -   | -   | 4.1  | ns    | 7     |
|                               |                 | HD 10-bit         | Video<br>Data Bus | -   | -   | 3.7  | ns    | 7     |
|                               |                 |                   | STAT<br>Pins      | -   | -   | 4.1  | ns    | 7     |
|                               |                 | HD 20-bit         | Video<br>Data Bus | -   | -   | 3.7  | ns    | 7     |
|                               |                 |                   | STAT<br>Pins      | -   | -   | 4.1  | ns    | 7     |
|                               |                 | SD 10-bit         | Video<br>Data Bus | -   | -   | 22.2 | ns    | 7     |
|                               |                 |                   | STAT<br>Pins      | -   | -   | 22.2 | ns    | 7     |
|                               |                 | SD 20-bit         | Video<br>Data Bus | -   | -   | 41.0 | ns    | 7     |
|                               |                 |                   | STAT<br>Pins      | -   | _   | 41.0 | ns    | 7     |



| Parameter                         | Symbol                         | Condi                           | itions            | Min | Тур | Max | Units | Notes |
|-----------------------------------|--------------------------------|---------------------------------|-------------------|-----|-----|-----|-------|-------|
| Output Data Rise/Fall Time (1.8V) | t <sub>r</sub> /t <sub>f</sub> | Full HD<br>10-bit               | Video<br>Data Bus | 0.4 | -   | -   | ns    | 4     |
|                                   |                                | 6pF load                        | STAT<br>Pins      | 0.3 | -   | -   | ns    | 4     |
|                                   |                                |                                 | Audio<br>Outputs  | 0.6 | -   | -   | ns    | 4     |
|                                   |                                | All other modes                 | Video<br>Data Bus | 0.4 | -   | -   | ns    | 4     |
|                                   |                                | 6pF load                        | STAT<br>Pins      | 0.4 | -   | -   | ns    | 4     |
|                                   |                                |                                 | Audio<br>Outputs  | 0.6 | -   | -   | ns    | 4     |
|                                   |                                | Full HD<br>10-bit<br>15pF load  | Video<br>Data Bus | -   | -   | 1.5 | ns    | 6     |
|                                   |                                |                                 | STAT<br>Pins      | -   | -   | 1.1 | ns    | 6     |
|                                   |                                |                                 | Audio<br>Outputs  | -   | -   | 2.3 | ns    | 6     |
|                                   |                                | All other<br>modes<br>15pF load | Video<br>Data Bus | -   | -   | 1.5 | ns    | 6     |
|                                   |                                |                                 | STAT<br>Pins      | _   | -   | 1.4 | ns    | 6     |
|                                   |                                |                                 | Audio<br>Outputs  | _   | -   | 2.3 | ns    | 6     |
| Output Data Rise/Fall Time (3.3V) | t <sub>r</sub> /t <sub>f</sub> | Full HD<br>10-bit               | Video<br>Data Bus | 0.5 | -   | _   | ns    | 5     |
|                                   |                                | 6pF load                        | STAT<br>Pins      | 0.4 | -   | -   | ns    | 5     |
|                                   |                                |                                 | Audio<br>Outputs  | 0.6 | -   | _   | ns    | 5     |
|                                   |                                | All other modes                 | Video<br>Data Bus | 0.5 | -   | _   | ns    | 5     |
|                                   |                                | 6pF load                        | STAT<br>Pins      | 0.4 | -   | -   | ns    | 5     |
|                                   |                                |                                 | Audio<br>Outputs  | 0.6 | _   | _   | ns    | 5     |



Table 2-4: AC Electrical Characteristics (Continued)

| Parameter                           | Symbol                         | Condit                          | ions                     | Min  | Тур  | Max  | Units             | Notes |
|-------------------------------------|--------------------------------|---------------------------------|--------------------------|------|------|------|-------------------|-------|
| Output Data Rise/Fall Time (3.3V) t | t <sub>r</sub> /t <sub>f</sub> | Full HD<br>10-bit               | Video<br>Data Bus        | -    | -    | 1.6  | ns                | 7     |
|                                     |                                | 15pF load                       | STAT<br>Pins             | -    | -    | 1.5  | ns                | 7     |
|                                     |                                |                                 | Audio<br>Outputs         | -    | -    | 2.2  | ns                | 7     |
|                                     |                                | All other modes                 | Video<br>Data Bus        | -    | -    | 1.6  | ns                | 7     |
|                                     |                                | 15pF load                       | STAT<br>Pins             | -    | -    | 1.4  | ns                | 7     |
|                                     |                                |                                 | Audio<br>Outputs         | -    | -    | 2.2  | ns                | 7     |
| Serial Digital Input                |                                |                                 |                          |      |      |      |                   |       |
| Serial Input Data Rate              | DR <sub>SDI</sub>              | _                               |                          | 0.27 | -    | 2.97 | Gb/s              | _     |
| Serial Input Swing                  | $\Delta V_{SDI}$               | TA=25°C, diffe<br>270Mb/s & 1.4 |                          | 720  | 800  | 950  | mV <sub>p-p</sub> | 9     |
|                                     |                                | TA=25°C, diffe<br>2.97Gb/s      | erential,                | 720  | 800  | 880  | mV <sub>p-p</sub> | 9     |
| Achievable Cable Length             | -                              |                                 | Belden<br>1694A<br>cable | -    | 150  | -    | m                 | -     |
|                                     |                                | Full HD                         | Belden<br>RG59<br>cable  |      | 100  | -,   | m                 | -     |
|                                     |                                |                                 | Belden<br>1694A<br>cable | -    | 230  | -    | m                 | -     |
|                                     |                                | HD                              | Belden<br>RG59<br>cable  | -    | 160  | -    | m                 | _     |
|                                     |                                |                                 | Belden<br>1694A<br>cable | -    | 460  | -    | m                 | -     |
|                                     |                                | SD Belo<br>RG5<br>cab           |                          | -    | 330  | -    | m                 | -     |
| Input Return Loss                   | _                              | single-ended                    |                          | 15   | 21   | -    | dB                | 10    |
| Input Resistance                    | -                              | single-ended                    |                          | -    | 1.52 | =    | kΩ                | =     |
| Input Capacitance                   | -                              | single-ended                    |                          | -    | 1    | -    | рF                | -     |



| Parameter                            | Symbol                    | Conditions                                            | Min  | Тур | Max  | Units | Notes |
|--------------------------------------|---------------------------|-------------------------------------------------------|------|-----|------|-------|-------|
| Serial Digital Output                |                           |                                                       |      |     |      |       |       |
| Serial Output Data Rate              | DR <sub>SDO</sub>         | -                                                     | 0.27 | _   | 2.97 | Gb/s  | -     |
| Serial Output Swing                  | $\Delta V_{\mathrm{SDO}}$ | Differential with $100\Omega$ load                    | 320  | -   | 600  | mVp-p | -     |
| Serial Output Rise Time<br>20% ~ 80% | tr <sub>SDO</sub>         | -                                                     | -    | -   | 180  | ps    | -     |
| Serial Output Fall Time<br>20% ~ 80% | tf <sub>SDO</sub>         | -                                                     | _    | -   | 180  | ps    | -     |
| Serial Output Intrinsic Jitter       | t <sub>OJ</sub>           | Full HD<br>colour bar<br>signal                       | -    | -   | 100  | ps    | -     |
|                                      |                           | HD colour<br>bar signal                               | -    | -   | 100  | ps    | -     |
|                                      |                           | SD colour<br>bar signal                               | -    | _   | 470  | ps    | -     |
| Serial Output Duty Cycle             | DCD <sub>SDD</sub>        | Full HD                                               | -    | 10  | _    | ps    | -     |
| Distortion                           |                           | HD                                                    | -    | 10  | _    | ps    | _     |
|                                      |                           | SD                                                    | _    | 20  | _    | ps    | -     |
| Synchronous lock time                | _                         | -                                                     | _    | _   | 25   | μs    | _     |
| Asynchronous lock time               | _                         | -                                                     | 100  | _   | 825  | μs    | -     |
| Lock time from standby de-asserted   | _                         | -                                                     | -    | -   | 10   | ms    | -     |
|                                      | _                         | -                                                     | _    | _   | 100  | ms    | -     |
| Lock time from power-up              | -                         | After 20<br>minutes at<br>-20°C                       | -    | 325 |      | ms    | -     |
| GSPI                                 |                           |                                                       |      |     |      |       |       |
| GSPI Input Clock Frequency           | f <sub>SCLK</sub>         |                                                       | -    | -   | 60   | MHz   | 8     |
| GSPI Input Clock Duty Cycle          | DC <sub>SCLK</sub>        | 50% levels                                            | 40   | 50  | 60   | %     | 8     |
| GSPI Input Data Setup Time           | _                         | <ul><li>3.3V or 1.8V ————</li><li>operation</li></ul> | 1.5  | _   | _    | ns    | 8     |
| GSPI Input Data Hold Time            | -                         |                                                       | 1.5  | _   | -    | ns    | 8     |
| GSPI Output Data Hold Time           | -                         | _                                                     | 1.5  | _   | _    | ns    | 8     |
| CS low before SCLK rising edge       | t <sub>0</sub>            | 50% levels<br>3.3V or 1.8V<br>operation               | 1.5  | -   | -    | ns    | 8     |



Guaranteed over recommended operating conditions unless otherwise noted.

| Parameter                                                                                                                     | Symbol         | Conditions                              | Min   | Тур | Max | Units | Notes |
|-------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|-------|-----|-----|-------|-------|
| Time between end of command word (or data in Auto-Increment mode) and the first SCLK of the following data word - write cycle | t <sub>4</sub> | 50% levels<br>3.3V or 1.8V<br>operation | 37.1  | -   | -   | ns    | 8     |
| Time between end of command word (or data in Auto-Increment mode) and the first SCLK of the following data word - read cycle  | t <sub>5</sub> | 50% levels<br>3.3V or 1.8V<br>operation | 148.4 | -   | -   | ns    | 8     |
| CS high after SCLK rising edge                                                                                                | t <sub>7</sub> | 50% levels<br>3.3V or 1.8V<br>operation | 37.1  | -   | -   | ns    | 8     |

#### Notes:

- 1.  $\overline{656}$ \_BYPASS = 1, PROC\_EN = 1, AUDIO\_EN = 1, ASI = 0
- 2. <del>656\_BYPASS</del> = 1, PROC\_EN = 1, AUDIO\_EN = 0, ASI = 0
- 3. ASI = 1
- 4. 1.89V and 0°C.
- 5. 3.47V and 0°C.
- 6. 1.71V and 125°C
- 7. 3.13V and 125°C
- 8. For GSPI timing parameters, refer to Figure 4-62 and Figure 4-63 in Section 4.18.3, as appropriate.
- 9. 0m cable length.

10.Tested on GV7601 board from 5MHz to 3GHz.



# 3. Input/Output Circuits

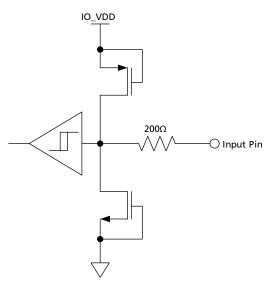



Figure 3-1: Digital Input Pin with Schmitt Trigger (20BIT/10BIT, AUDIO\_EN, CS\_TMS, PROC\_EN, JTAG\_EN, RECLK\_EN, RESET, SCLK\_TCK, SDIN\_TDI, SDO\_EN, STANDBY, 861\_EN)

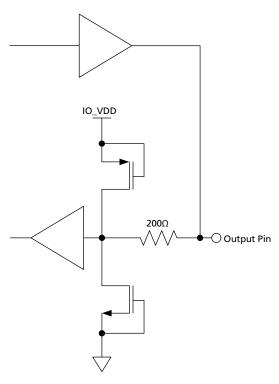



Figure 3-2: Bidirectional Digital Input/Output Pin - Configured to Output unless in Reset Mode. (ACLK, MCLK, AOUT1/2, AOUT3/4, AOUT5/6, AOUT7/8, ASI, 656\_BYPASS, WCLK)

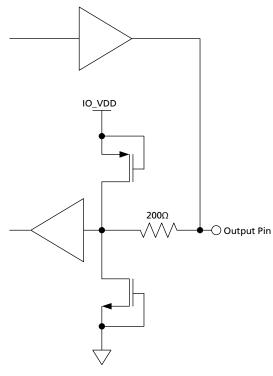



Figure 3-3: Bidirectional Digital Input/Output Pin with programmable drive strength.

These pins in Figure 3-3 are configured to output unless in Reset Mode; in which case they are high-impedance. The drive strength can be set by writing to address 06Dh in the host interface register. (DOUT0, DOUT1, DOUT2, DOUT3, DOUT4, DOUT5, DOUT6, DOUT7, DOUT8, DOUT9, SDOUT\_TDO, STAT0, STAT1, STAT2, STAT3, STAT4, STAT5, XTAL\_OUT, DOUT10, DOUT11, DOUT12, DOUT13, DOUT14, DOUT15, DOUT16, DOUT17, DOUT18, DOUT19, PCLK)

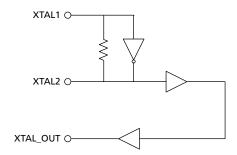



Figure 3-4: XTAL1/XTAL2/XTAL\_OUT

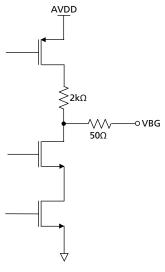



Figure 3-5: VBG

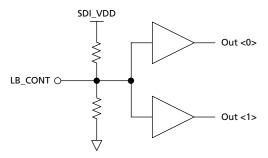



Figure 3-6: LB\_CONT

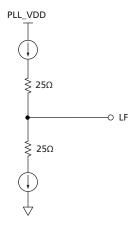



Figure 3-7: Loop Filter (LF)

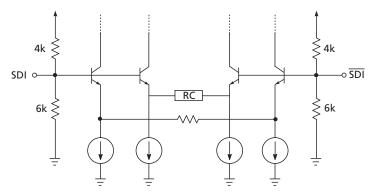



Figure 3-8: Serial Input Equivalent Circuit

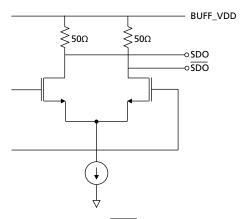



Figure 3-9: SDO/SDO



# 4. Detailed Description

#### 4.1 Functional Overview

The GV7601 is a multi-rate, multi-standard Aviia receiver with an integrated audio de-embedder, providing a complete Aviia receive solution that supports full bandwidth 1080p video at 50/60Hz can be realized.

The GV7601 includes an integrated cable equalizer, reclocker, serial data loop through output, robust serial-to-parallel conversion and additional processing functions such as audio extraction, ancillary data extraction, and ASI decoding.

The device supports four distinct modes of operation that can be set through external device pins or by programming internal registers through the host interface; Video mode, Data-Through mode, ASI mode and Standby mode.

In Video mode, all video processing features, ancillary data extraction, and audio de-embedding features are enabled by default.

In ASI mode, the GV7601 carries out 8b/10b decoding and outputs IEC 13818-1 compliant stream data.

In Data-Through mode, the device operates as a simple serial to parallel converter. No additional processing features are enabled.

Standby mode is the low power consumption mode of the device. In this mode, the internal reclocker unlocks, and the internal configuration registers are not accessible through the host interface.

The GV7601 includes a JTAG interface for boundary scan testing.

## 4.2 Serial Digital Input

The GV7601 can accept serial digital inputs compliant with ITU-R BT.656, and BT.1120.

The GV7601 integrates Gennum's next-generation state-of-the-art adaptive equalizer technology.

Table 4-1: Typical Cable Length Performance

| Data Rate          | RG6 (m) or equivalent | RG59 (m) or equivalent |
|--------------------|-----------------------|------------------------|
| Full HD @ 2.97Gb/s | 150                   | 100                    |
| HD @ 1.485Gb/s     | 230                   | 160                    |
| SD @ 270Mb/s       | 460                   | 330                    |

The cable equalizer can be bypassed by programming register 073h through the GSPI interface.



The Serial Data Signal may be connected to the input pins ( $SDI/\overline{SDI}$ ) in either a differential or single ended configuration. AC coupling of the inputs is recommended, as the SDI and  $\overline{SDI}$  inputs are internally biased at approximately 1.8V.

## 4.3 Serial Digital Output

The GV7601 contains a  $100\Omega$  differential serial output buffer which can be configured to output either a retimed or a buffered version of the serial digital input. The SDO and  $\overline{SDO}$  outputs of this buffer can interface directly to GV8500 cable driver.

When the RECLK\_EN pin is set HIGH, the serial digital output is the re-timed version of the serial input.

When the RECLK\_EN pin is set LOW, the serial digital output is simply the buffered version of the serial input, bypassing the internal reclocker.

The output may be disabled by setting the SDO\_EN pin LOW. The output is also disabled when STANDBY pin is asserted HIGH. When disabled, both SDO and  $\overline{\text{SDO}}$  pins go to VDD and remain static.

The SDO output is muted when RECLK\_EN pin is set HIGH and the PLL is unlocked (LOCKED pin is LOW). When muted, the output is held static in 0 or 1.

**Table 4-2: Serial Digital Output** 

| SDO_EN | RECLK_EN | SDO/ <del>SDO</del>     |
|--------|----------|-------------------------|
| 0      | Х        | Disabled                |
| 1      | 1        | Re-timed                |
| 1      | 0        | Buffered (not re-timed) |

**Note**: The serial digital output is muted when the GV7601 is unlocked.

## 4.4 Serial Digital Reclocker

The GV7601 includes both a PLL stage and a sampling stage.

The PLL is comprised of two distinct loops:

- A coarse frequency acquisition loop sets the centre frequency of the integrated Voltage Controlled Oscillator (VCO) using an external 27MHz reference clock
- A fine frequency and phase locked loop aligns the VCO's phase and frequency to the input serial digital stream

The frequency lock loop results in very fast lock time.

The sampling stage re-times the serial digital input with the locked VCO clock. This generates a clean serial digital stream, which may be output on the SDO/SDO output pins and converted to parallel data for further processing.



#### 4.4.1 Reclocker PLL Loop Bandwidth

The fine frequency and phase lock loop in the GV7601 reclocker is non-linear. The PLL loop bandwidth scales with the jitter amplitude of the input data stream; automatically reduces bandwidth in response to higher jitter. This allows the PLL to reject more of the jitter in the input data stream and produce a very clean reclocked output.

The loop bandwidth of the GV7601 PLL is defined with 0.2UI input jitter. The bandwidth is controlled through the LB\_CONT pin of the device. Under nominal conditions, with the LB\_CONT pin floating and 0.2UI input jitter applied, the loop bandwidth is set to 1/1000 of the frequency of the input data stream. Connecting the LB\_CONT pin to 3.3V reduces the bandwidth to half of the nominal setting. Connecting the LB\_CONT pin to GND increases the bandwidth to double the nominal setting. Table 4-3 below summarizes this information.

Table 4-3: PLL Loop Bandwidth

| Input Data Rate | LB_CONT Pin Connection | Loop Bandwidth (MHz) <sup>1</sup> |
|-----------------|------------------------|-----------------------------------|
| SD              | 3.3V                   | 0.135                             |
|                 | Floating               | 0.27                              |
|                 | 0V                     | 0.54                              |
| HD              | 3.3V                   | 0.75                              |
|                 | Floating               | 1.5                               |
|                 | 0V                     | 3.0                               |
| Full HD         | 3.3V                   | 1.5                               |
|                 | Floating               | 3.0                               |
|                 | 0V                     | 6.0                               |

<sup>&</sup>lt;sup>1</sup>Measured with 0.2UI input jitter applied

## 4.5 External Crystal/Reference Clock

The GV7601 requires an external 27MHz reference clock for correct operation. This reference clock is generated by connecting a crystal to the XTAL1 and XTAL2 pins of the device.

Alternately, a 27MHz external clock source can be connected to the XTAL1 pin of the device, as shown in Figure 4-1.

The frequency variation of the crystal including aging, supply and temperature variation, should be less than +/-100ppm.

The equivalent series resistance (or motional resistance) should be a maximum of  $50\Omega$ .

The external crystal is used in the frequency acquisition process. It has no impact on the output jitter performance of the part when the part is locked to incoming data. Because



of this, the only key parameter is the frequency variation of the crystal that is stated above.

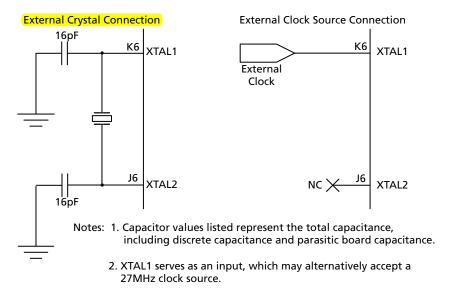



Figure 4-1: 27MHz Clock Sources

**Table 4-4: Input Clock Requirements** 

| Parameter                                            | Min          | Тур | Мах           | иом  | Notes |
|------------------------------------------------------|--------------|-----|---------------|------|-------|
| XTAL1 Low Level Input Voltage (V <sub>i</sub> )      | -            | -   | 20% of VDD_IO | V    | 1     |
| XTAL1 High Level Input<br>Voltage (V <sub>ih</sub> ) | 80% of VDDIO | -   | -             | V    | 1     |
| XTAL1 Input Slew Rate                                | 2            | _   | _             | V/ns | 1     |
| XTAL1 to XOUT Prop. Delay<br>(High to Low)           | 1.3          | 1.5 | 2.3           | ns   | 1     |
| XTAL1 to XOUT Prop. Delay<br>(Low to High)           | 1.3          | 1.6 | 2.3           | ns   | 1     |

<sup>1.</sup> Valid when the cell is used to buffer an external clock source which is connected to the XTAL1 pin, then nothing should be connected to the XTAL2 pin.

#### 4.6 Lock Detect

The LOCKED output signal is available by default on the STAT3 output pin, but may be programmed to be output through any one of the six programmable multi-functional pins of the device; STAT[5:0].

The LOCKED output signal sets HIGH by the Lock Detect block under the following conditions:



Table 4-5: Lock Detect Conditions

| Mode of Operation | Mode Setting                                                     | Condition for Locked                                                                                            |
|-------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Data-Through Mode | $\frac{\overline{656}\underline{BYPASS}}{ASI} = LOW$ $ASI = LOW$ | Reclocker PLL is locked.                                                                                        |
| Video Mode        | 656_BYPASS = HIGH<br>ASI = LOW                                   | Reclocker PLL is locked<br>2 consecutive TRS words in 2 lines are<br>detected.                                  |
| ASI Mode          | 656_BYPASS = LOW<br>ASI = HIGH<br>AUTO/MAN = LOW                 | Reclocker PLL is locked<br>32 consecutive ASI words with no<br>errors are detected within a 128-word<br>window. |

All other combinations result in the LOCKED signal being LOW.

**Note**: In Standby mode, the reclocker PLL unlocks. However, the LOCKED signal retains whatever status it previously held. So, if before Standby assertion, the LOCKED signal is HIGH, then during standby, it remains HIGH regardless of the status of the PLL.

#### 4.6.1 Asynchronous Lock

The lock detection algorithm is a continuous process, beginning at device power-up or after a system reset. It continues until the device is powered down or held in reset.

The device first determines if a valid serial digital input signal has been presented to the device. If no valid serial data stream has been detected, the serial data into the device is considered invalid, and the LOCKED signal is LOW.

Once a valid input signal has been detected, the asynchronous lock algorithm enters a "hunt" phase, in which the device attempts to detect the presence of either TRS words or ASI sync words.

By default, the device powers up in auto mode (the AUTO/MAN bit in the host interface is set HIGH). In this mode, the device operating frequency toggles between Full HD, HD and SD rates as it attempts to lock to the incoming data rate. The PCLK output continues to operate, and the frequency may switch between 148.5MHz, 74.25MHz, 27MHz and 13.5MHz.

When the device is operating in manual mode (AUTO/ $\overline{\text{MAN}}$ ) bit in the host interface is LOW), the operating frequency needs to be set through the host interface using the RATE\_DET[1:0] bits. In this mode, the asynchronous lock algorithm does not toggle the operating rate of the device and attempts to lock within a single standard. Lock is achieved within three lines of the selected standard.

#### 4.6.2 Signal Interruption

The device tolerates a signal interruption of up to  $10\mu s$  as long as no TRS words are deleted by this interruption.



# 4.7 Video Functionality

# **4.7.1 Standard Definition Video Output Formats**

ITU-R BT.656 (formally CCIR-656) defines an 8-bit or 10-bit parallel interface for transmitting 4:2:2 YCbCr digital video. To reduce the number of wires required for the interface, timing codes are embedded in the video stream to provide information traditionally transmitted by dedicated HSYNC, VSYNC, and BLANK signals. Ancillary digital data such as audio and closed captioning may be transmitted during blanking intervals (see Figure 4-2 and Figure 4-4). Figure 4-3 shows the multiplexed 10-bit 4:2:2 YCbCr data for 525 line video at 60Hz. Figure 4-5 shows the multiplexed 10-bit 4:2:2 YCbCr data for 625 line video at 50Hz. The start of active video and the end of active video are marked by the SAV and EAV codes, respectively. The values of these codes are reserved for this purpose and should not occur elsewhere in the video raster. F, V, H timing information is stored in the 10-bit XYZ word as follows:

- Bit 8 (F-bit) 0 for field one; and 1 for field two
- Bit 7 (V-bit) 1 in vertical blanking interval; and 0 during active video lines
- Bit 6 (H-bit) 1 indicates the EAV sequence; and 0 indicates the SAV sequence

The two LSB's of the XYZ word are set to zero for compatibility with 8-bit systems.

Table 4-6: 525/60Hz Format

| Line Number | F | V | H (EAV) | H (SAV) |
|-------------|---|---|---------|---------|
| 1-3         | 1 | 1 | 1       | 0       |
| 4-20        | 0 | 1 | 1       | 0       |
| 21-263      | 0 | 0 | 1       | 0       |
| 264-265     | 0 | 1 | 1       | 0       |
| 266-282     | 1 | 1 | 1       | 0       |
| 283-525     | 1 | 0 | 1       | 0       |



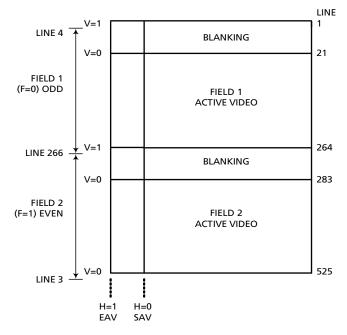



Figure 4-2: Data transmitting with blanking, 525/60Hz

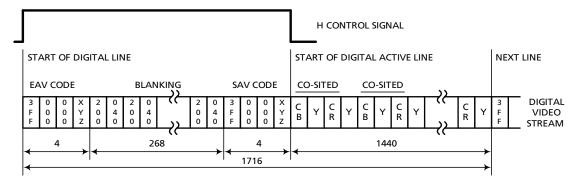



Figure 4-3: Multiplexing 10-bit 4:2:2 YCbCr data for 525 lines at 60Hz

Table 4-7: 625/50Hz Format

| Line Number | F | V | H (EAV) | H (SAV) |
|-------------|---|---|---------|---------|
| 1-22        | 0 | 1 | 1       | 0       |
| 23-310      | 0 | 0 | 1       | 0       |
| 311-312     | 0 | 1 | 1       | 0       |
| 313-335     | 1 | 1 | 1       | 0       |
| 336-623     | 1 | 0 | 1       | 0       |
| 624-625     | 1 | 1 | 1       | 0       |

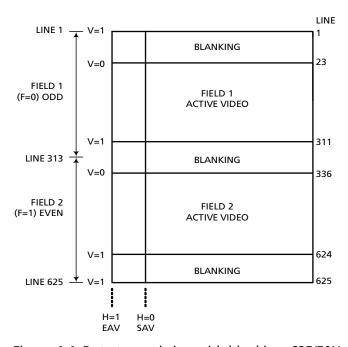



Figure 4-4: Data transmitting with blanking, 625/50Hz

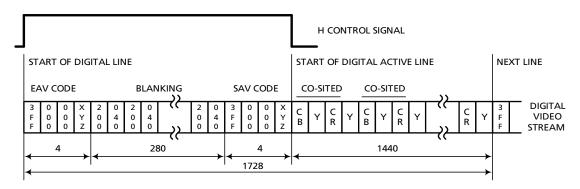



Figure 4-5: Multiplexing 10-bit 4:2:2 YCbCr data for 625 lines at 50Hz

## 4.7.2 High Definition Video Output Formats

ITU-R BT.1120 describes the serial and parallel format for 1080-line interlaced and progressive digital video. As with ITU-R BT.656, the field/frame blanking period (V), the line blanking period (H), and the field identification (F), are embedded as digital timing codes (TRS) within the video. After deserialization, a single 10-bit bus carrying the  $C_B^{\circ}$ ,  $Y^{\circ}$ ,  $C_R^{\circ}$ ,  $Y^{\circ}$ , etc. data pattern is demultiplexed into two 10-bit buses. This 20-bit parallel data interface carries 10 bits of luma data ( $Y^{\circ}$ ) and 10 bits of colour difference data ( $Y^{\circ}$ ), operating at a clock of 74.25MHz or 74.25/1.001 MHz.

The following figures show horizontal and vertical timing for 1080-line interlaced systems.

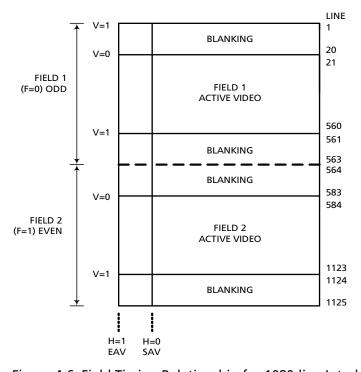



Figure 4-6: Field Timing Relationship for 1080-line Interlaced Systems

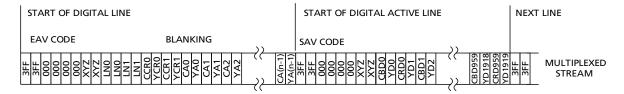



Figure 4-7: Multiplexed Luma and Chroma Over One Video Line - 1080i



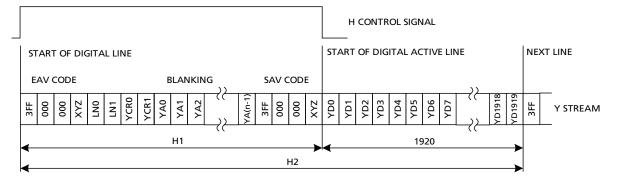



Figure 4-8: Luma Stream Over One Video Line - 1080i

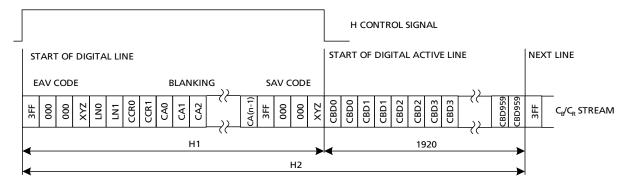



Figure 4-9: Chroma Stream Over One Video Line - 1080i

Table 4-8: 1080-line Interlaced Horizontal Timing

| Interlaced | 60 or 60/1.001 Hz | 50Hz |
|------------|-------------------|------|
| Н1         | 280               | 720  |
| H2         | 2200              | 2640 |

### 4.7.2.1 High Definition 1080p Output Formats

ITU-R BT.1120 also includes progressive scan formats with 1080 active lines, with Y'C' $_B$ C' $_R$  4:2:2 sampling at pixel rates of 74.25MHz or 74.25/1.001 MHz. The following diagrams show horizontal and vertical timing for 1080-line progressive systems.



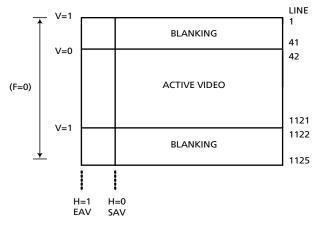



Figure 4-10: Frame Timing Relationship For 1080-line Progressive Systems

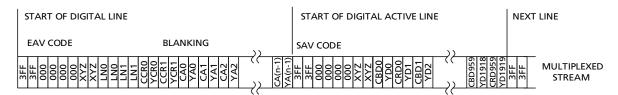



Figure 4-11: Multiplexed Luma and Chroma Over One Video Line - 1080p

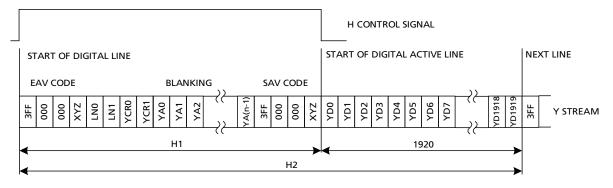



Figure 4-12: Luma Stream Over One Video Line - 1080p

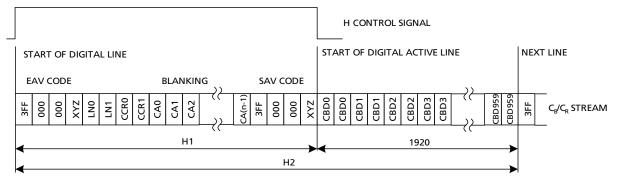



Figure 4-13: Chroma Stream Over One Video Line - 1080p

Table 4-9: 1080-line Progressive Horizontal Timing

| Progressive | 30 or 30/1.001 Hz | 25Hz | 24 or 24/1.001 Hz |  |  |  |
|-------------|-------------------|------|-------------------|--|--|--|
| H1          | 280               | 720  | 830               |  |  |  |
| H2          | 2200              | 2640 | 2750              |  |  |  |

### 4.7.2.2 High Definition 720p Output Formats

The Society of Motion Picture and Television Engineers (SMPTE) defines the standard for progressive scan 720-line HD image formats. SMPTE 296M-2001 specifies the representation for 720p digital Y'C' $_B$ C' $_R$  4:2:2 signals at pixel rates of 74.25MHz or 74.25/1.001 MHz.

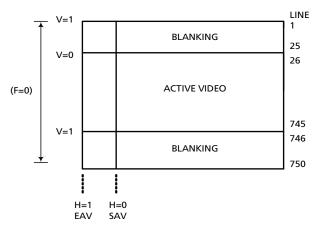



Figure 4-14: 720p Digital Vertical Timing

The frame rate determines the horizontal timing, which is shown in Table 4-10.

**Table 4-10: 720p Horizontal Timing** 

| Frame Rate     | H = 1 Sample Number | H = 0 Sample Number |
|----------------|---------------------|---------------------|
| 24 or 24/1.001 | 1283                | 4124                |
| 25             | 1283                | 3959                |
| 30 or 30/1.001 | 1283                | 3299                |
| 50             | 1283                | 1979                |
| 60 or 60/1.001 | 1283                | 1649                |

## 4.7.2.3 Full HD Output Formats

High definition formats that require the Aviia serial data rate to operate at 2.97Gb/s are defined as Full HD formats. These formats are generally 1080-line based, operating at 50 or 60Hz progressive frame rate. However, the sampling structure and bit-depth of HD formats may also increase the payload rate at the digital input of the GV7601. There are also 720-line Full HD formats with 4:4:4 sampling.



The GV7601 can support the progressive scan Full HD formats shown in Table 4-11.

Table 4-11: Full HD 1080-line and 720-line Progressive Image Formats

| Active Image Format | Total Pixels x Lines | Sampling Structure                                      | Pixel Depth | Frame Rate (Hz) |
|---------------------|----------------------|---------------------------------------------------------|-------------|-----------------|
|                     | 2640 x 1125          | 4.2.2 (VICIDCID)                                        | 8 or 10-bit | 50              |
|                     | 2200 x 1125          | - 4:2:2 (Y'C'BC'R)                                      | 8 or 10-bit | 60 or 60/1.001  |
|                     | 2750 x 1125          |                                                         |             | 24 or 24/1.001  |
|                     | 2640 x 1125          | 4:4:4 (R'G'B' or<br>Y'C' <sub>B</sub> C' <sub>R</sub> ) | 8 or 10-bit | 25              |
|                     | 2200 x 1125          |                                                         |             | 30 or 30/1.001  |
| 1920 x 1080         | 2750 x 1125          |                                                         |             | 24 or 24/1.001  |
| -<br>-              | 2640 x 1125          | 4:4:4 (R'G'B' or<br>Y'C' <sub>B</sub> C' <sub>R</sub> ) | 12-bit      | 25              |
|                     | 2200 x 1125          | _                                                       |             | 30 or 30/1.001  |
|                     | 2750 x 1125          |                                                         |             | 24 or 24/1.001  |
|                     | 2640 x 1125          | 4:2:2 (Y'C' <sub>B</sub> C' <sub>R</sub> )              | 12-bit      | 25              |
|                     | 2200 x 1125          | -                                                       |             | 30 or 30/1.001  |
|                     | 4125 x 750           |                                                         |             | 24 or 24/1.001  |
|                     | 3960 x 750           | -                                                       |             | 25              |
| 1280 x 720          | 3300 x 750           | 4:4:4 (R'G'B' or<br>Y'C' <sub>B</sub> C' <sub>R</sub> ) | 8 or 10-bit | 30 or 30/1.001  |
|                     | 1980 x 750           | - 5 11                                                  |             | 50              |
|                     | 1650 x 750           | -                                                       |             | 60 or 60/1.001  |

Full HD formats must be output to the GV7601 using a 20-bit input bus format at a clock rate of 148.5 MHz. The 20-bit output format consists of two 10-bit data streams, Data Stream 1 (DS1) and Data Stream 2 (DS2). The following diagrams show how the Full HD image formats should be multiplexed into DS1 and DS2, at the output of the GV7601.

The GV7601 also supports a 10-bit DDR output mode, where DS1 and DS2 are word multiplexed.



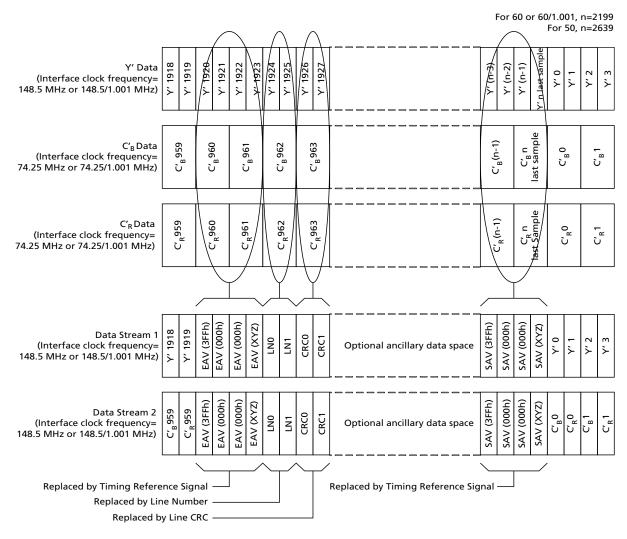



Figure 4-15: Aviia 20-bit Mapping Structure for 1920 x 1080 50/60Hz Progressive 4:2:0 & 4:2:2 (Y'C' $_B$ C' $_R$ ) 8/10-bit Signals

Table 4-12: 1080p Y'C'BC'R 4:2:0 & 4:2:2 10-bit Bit Structure Mapping

|             |                     | Bit Number                            |  |  |  |  |  |  |  |  |  |  |  |
|-------------|---------------------|---------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Data Stream | 9 8 7 6 5 4 3 2 1 0 |                                       |  |  |  |  |  |  |  |  |  |  |  |
| DS1         |                     | Y'[9:0]                               |  |  |  |  |  |  |  |  |  |  |  |
| DS2         |                     | C' <sub>B</sub> C' <sub>R</sub> [9:0] |  |  |  |  |  |  |  |  |  |  |  |

**Note**: For 8-bit systems, the data should be justified to the most significant bit (Y'9 and  $C'_BC'_R9$ ), with the two least significant bits (Y'[1:0] and  $C'_BC'_R[1:0]$ ) set to zero.

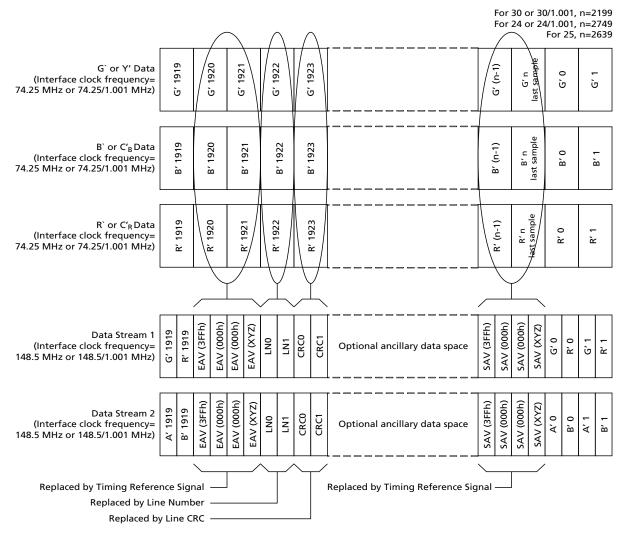



Figure 4-16: Aviia 20-bit Mapping Structure for 1920 x 1080 24/25/30Hz Progressive 4:4:4 (R'G'B') 8/10-bit Signals

Table 4-13: 1080p R'G'B' or Y'C'BC'R 4:4:4 10-bit Bit Structure Mapping

|                    | Bit Number |                                  |  |  |           |                         |  |  |  |  |  |  |  |
|--------------------|------------|----------------------------------|--|--|-----------|-------------------------|--|--|--|--|--|--|--|
| Data Stream        | 9          | 9 8 7 6 5 4 3 2 1 0              |  |  |           |                         |  |  |  |  |  |  |  |
| DS1 First Word     |            | G'[9:0] or Y'[9:0]               |  |  |           |                         |  |  |  |  |  |  |  |
| DS1 Second<br>Word |            | R'[9:0] or C' <sub>R</sub> [9:0] |  |  |           |                         |  |  |  |  |  |  |  |
| DS2 First Word     |            |                                  |  |  | A'[       | 9:0]                    |  |  |  |  |  |  |  |
| DS2 Second<br>Word |            |                                  |  |  | B'[9:0] o | r C' <sub>B</sub> [9:0] |  |  |  |  |  |  |  |

**Note 1**: The 10-bit 'A' data in Figure 4-16 is used to pad DS2 and should be set to the value 040h.

**Note** (2: For 8-bit systems, the data should be justified to the most significant bit ( $R'/C'_R9$ , G'/Y'9 and  $B'/C'_B9$ ), with the two least significant bits ( $R'/C'_R[1:0]$ , G'/Y'[1:0] and  $B'/C'_B[1:0]$ ) set to zero.

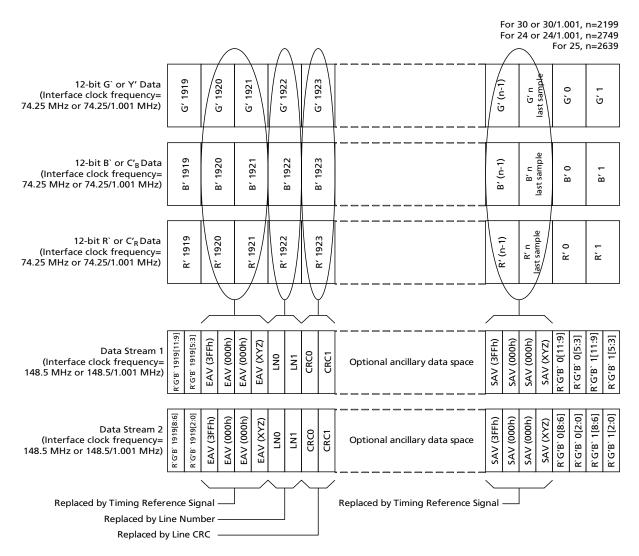



Figure 4-17: Aviia 20-bit Mapping Structure for 1920 x 1080 24/25/30Hz Progressive 4:4:4 (R'G'B' or Y'C'<sub>B</sub>C'<sub>R</sub>) 12-bit Signals



Table 4-14: 1080p R'G'B' or Y'C'BC'R 4:4:4 12-bit Bit Structure Mapping

|                    | Bit Number |                                  |                            |      |                    |                    |      |                                    |                                  |   |  |  |  |  |
|--------------------|------------|----------------------------------|----------------------------|------|--------------------|--------------------|------|------------------------------------|----------------------------------|---|--|--|--|--|
| Data Stream        | 9          | 8                                | 7                          | 6    | 5                  | 4                  | 3    | 2                                  | 1                                | 0 |  |  |  |  |
| DS1 First Word     | B8         | R'[1                             | 1:9] or C' <sub>R</sub> [1 | 1:9] | G'[1               | 11:9] or Y'[1      | 1:9] | B'[11:9] or C' <sub>B</sub> [11:9] |                                  |   |  |  |  |  |
| DS1 Second<br>Word | B8         | R'[5:3] or C' <sub>R</sub> [5:3] |                            |      | G'                 | G'[5:3] or Y'[5:3] |      |                                    | B'[5:3] or C' <sub>B</sub> [5:3] |   |  |  |  |  |
| DS2 First Word     | B8         | R'[                              | 8:6] or C' <sub>R</sub> [8 | 3:6] | G'[8:6] or Y'[8:6] |                    |      | B'[                                | B'[8:6] or C' <sub>B</sub> [8:6] |   |  |  |  |  |
| DS2 Second<br>Word | B8         | R'[2:0] or C' <sub>R</sub> [2:0] |                            |      | G'                 | [2:0] or Y'[2      | :0]  | B'[2:0] or C' <sub>B</sub> [2:0]   |                                  |   |  |  |  |  |

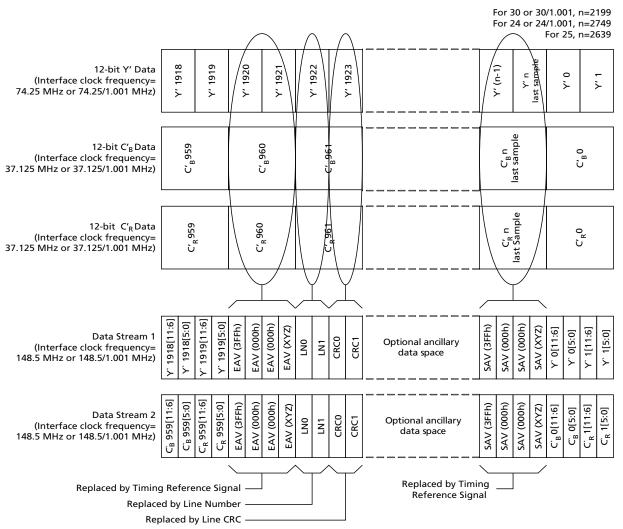



Figure 4-18: Aviia 20-bit Mapping Structure for 1920 x 1080 24/25/30Hz Progressive 4:2:2 (Y'C' $_B$ C' $_R$ ) 12-bit Signals



Table 4-15: 1080p  $Y'C'_BC'_R$  4:2:2 12-bit Bit Structure Mapping

| Bit Number         |   |   |   |   |                        |   |                   |       |   |   |  |  |
|--------------------|---|---|---|---|------------------------|---|-------------------|-------|---|---|--|--|
| Data Stream        | 9 | 8 | 7 | 6 | 5                      | 4 | 3                 | 2     | 1 | 0 |  |  |
| DS1 First Word     | 1 | 0 | 0 | 0 |                        |   | Y'[1              | 1:6]  |   |   |  |  |
| DS1 Second<br>Word | 1 | 0 | 0 | 0 | Y'[5:0]                |   |                   |       |   |   |  |  |
| DS2 First Word     | 1 | 0 | 0 | 0 |                        |   | C' <sub>B</sub> [ | 11:6] |   |   |  |  |
| DS2 Second<br>Word | 1 | 0 | 0 | 0 |                        |   | C' <sub>B</sub> [ | 5:0]  |   |   |  |  |
| DS2 Third Word     | 1 | 0 | 0 | 0 | C' <sub>R</sub> [11:6] |   |                   |       |   |   |  |  |
| DS2 Fourth<br>Word | 1 | 0 | 0 | 0 |                        |   | C' <sub>R</sub> [ | 5:0]  |   |   |  |  |



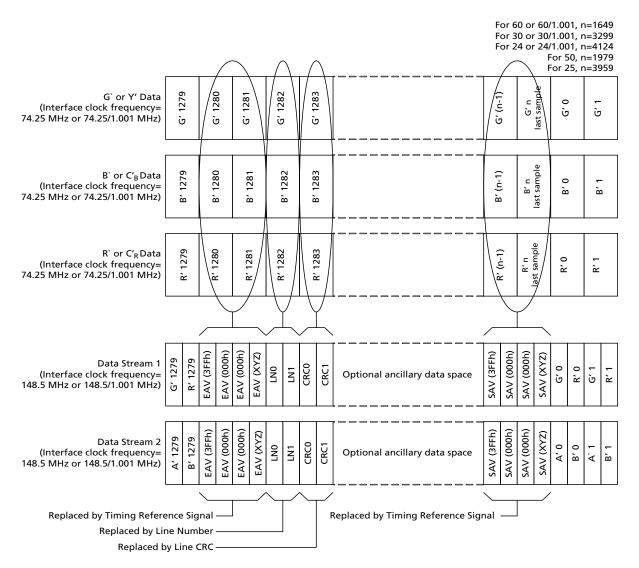



Figure 4-19: Aviia 20-bit Mapping Structure for 1280 x 720 24/25/30/25/60Hz Progressive 4:4:4 (R'G'B' or Y'C' $_{\rm B}$ C' $_{\rm B}$ ) 8/10-bit Signals

Table 4-16: 720p R'G'B' or Y'C'BC'R 4:4:4 10-bit Bit Structure Mapping

|                    | Bit Number                       |                    |   |   |           |                         |   |   |   |   |  |  |
|--------------------|----------------------------------|--------------------|---|---|-----------|-------------------------|---|---|---|---|--|--|
| Data Stream        | 9                                | 8                  | 7 | 6 | 5         | 4                       | 3 | 2 | 1 | 0 |  |  |
| DS1 First Word     |                                  | G'[9:0] or Y'[9:0] |   |   |           |                         |   |   |   |   |  |  |
| DS1 Second<br>Word | R'[9:0] or C' <sub>R</sub> [9:0] |                    |   |   |           |                         |   |   |   |   |  |  |
| DS2 First Word     |                                  |                    |   |   | A'[       | 9:0]                    |   |   |   |   |  |  |
| DS2 Second<br>Word |                                  |                    |   |   | B'[9:0] o | r C' <sub>B</sub> [9:0] |   |   |   |   |  |  |

**Note 1**: The 10-bit 'A' data in Figure 4-19 is used to pad DS2 and should be set to the value 040h.

**Note** 2: For 8-bit systems, the data should be justified to the most significant bit ( $R'/C'_R9$ , G'/Y'9 and  $B'/C'_B9$ ), with the two least significant bits ( $R'/C'_R[1:0]$ , G'/Y'[1:0] and  $B'/C'_B[1:0]$ ) set to zero.

# 4.7.3 Descrambling and Word Alignment

The GV7601 performs NRZI to NRZ decoding and data descrambling according to ITU-R BT.656 and BT.1120, and word aligns the data to TRS sync words.

When operating in manual mode (AUTO/ $\overline{\text{MAN}}$  = LOW), the device only carries out video decoding, descrambling and word alignment when the  $\overline{656}$ \_BYPASS pin is set HIGH and the ASI pin is set LOW.

When operating in Auto mode (AUTO/ $\overline{\text{MAN}}$  = HIGH), the GV7601 carries out descrambling and word alignment to enable the detection of TRS sync words. When two consecutive valid TRS words (SAV and EAV), with the same bit alignment have been detected, the device word-aligns the data to the TRS ID words.

TRS ID word detection is a continuous process. The device remains in video mode until TRS ID words fail to be detected.

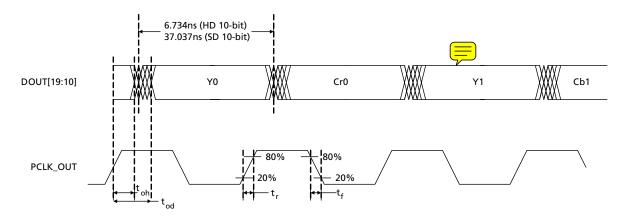
**Note**: Both 8-bit and 10-bit TRS headers are identified by the device.

# 4.8 Parallel Video Data Outputs DOUT[19:0] and DOUT[9:0]

The parallel data outputs are aligned to the rising edge of the PCLK.

#### 4.8.1 Parallel Data Bus Buffers

The parallel data bus, status signal outputs and control signal input pins are all connected to high-impedance buffers.


The device supports 1.8 or 3.3V (LVTTL and LVCMOS levels) supplied at the IO\_VDD and IO\_GND pins.



All output buffers (including the PCLK output) are set to high-impedance in Reset mode (RESET = LOW).

### **I/O Timing Specs:**

## 10-bit SDR Mode:



#### 10-bit HD Mode

|      | 3.3V            |                         |       |                 |                         |       | 1.8V            |                      |       |                 |                         |       |
|------|-----------------|-------------------------|-------|-----------------|-------------------------|-------|-----------------|----------------------|-------|-----------------|-------------------------|-------|
|      | t <sub>oh</sub> | $\frac{t_r}{t_f}$ (min) | Cload | t <sub>od</sub> | $\frac{t_r}{t_f}$ (max) | Cload | t <sub>oh</sub> | t <sub>r</sub> (min) | Cload | t <sub>od</sub> | $\frac{t_r}{t_f}$ (max) | Cload |
| dbus | 1.000ns         | 0.400ns                 | 6pF   | 3.700ns         | 1.400ns                 | 455   | 1.000ns         | 0.400ns              | 6pF   | 3.700ns         | 1.400ns                 | 15pF  |
| stat | 1.000ns         | 0.500ns                 | ОРІ   | 4.100ns         | 1.600ns                 | 15pF  | 1.000ns         | 0.400ns              | σρι   | 4.400ns         | 1.500ns                 | ТЭРІ  |

#### 10-bit SD Mode

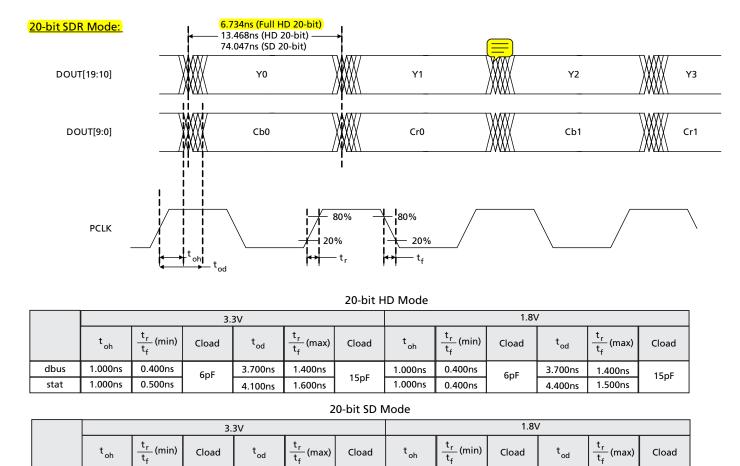
|      | 3.3V            |                         |       |                 |                         | 1.8V  |                 |                         |       |                 |                         |       |
|------|-----------------|-------------------------|-------|-----------------|-------------------------|-------|-----------------|-------------------------|-------|-----------------|-------------------------|-------|
|      | t <sub>oh</sub> | $\frac{t_r}{t_f}$ (min) | Cload | t <sub>od</sub> | $\frac{t_r}{t_f}$ (max) | Cload | t <sub>oh</sub> | $\frac{t_r}{t_f}$ (min) | Cload | t <sub>od</sub> | $\frac{t_r}{t_f}$ (max) | Cload |
| dbus | 19.400ns        | 0.400ns                 | 6pF   | 22.200ns        | 1.400ns                 | 45.5  | 19.400ns        | 0.400ns                 | 6pF   | 22.200ns        | 1.400ns                 | 15pF  |
| stat | 19.400ns        | 0.500ns                 | Opi   | 22.200ns        | 1.600ns                 | 15pF  | 19.400ns        | 0.400ns                 | opi   | 22.200ns        | 1.500ns                 | тэрг  |

Figure 4-20: PCLK to Data and Control Signal Output Timing - SDR Mode 1

#### **I/O Timing Specs:**

dbus

stat


38.000ns

38.000ns

0.400ns

0.500ns

6pF



38.000ns

38.000ns

0.400ns

0.400ns

41.000ns

41.000ns

6pF

1.400ns

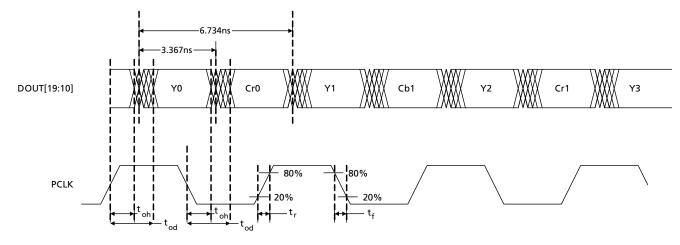
1.500ns

15pF

41.000ns Figure 4-21: PCLK to Data and Control Signal Output Timing - SDR Mode 2

41.000ns

1.400ns


1.600ns

15pF



## I/O Timing Specs:

### **DDR Mode**:



10-bit Full HD Mode

|      | 3.3V            |                         |       |                 |                         | 1.8V  |                 |                         |       |                 |                         |       |
|------|-----------------|-------------------------|-------|-----------------|-------------------------|-------|-----------------|-------------------------|-------|-----------------|-------------------------|-------|
|      | t <sub>oh</sub> | $\frac{t_r}{t_f}$ (min) | Cload | t <sub>od</sub> | $\frac{t_r}{t_f}$ (max) | Cload | t <sub>oh</sub> | $\frac{t_r}{t_f}$ (min) | Cload | t <sub>od</sub> | $\frac{t_r}{t_f}$ (max) | Cload |
| dbus | 0.450ns         | 0.400ns                 | 6pF   | 1.900ns         | 1.500ns                 | 455   | 0.400ns         | 0.300ns                 | 6pF   | 1.800ns         | 1.100ns                 | 15pF  |
| stat | 0.450ns         | 0.500ns                 | op.   | 2.200ns         | 1.600ns                 | 15pF  | 0.450ns         | 0.400ns                 | Орі   | 2.500ns         | 1.500ns                 | ТЭРГ  |

Figure 4-22: PCLK to Data and Control Signal Output Timing - DDR Mode

**Table 4-17: GV7601 Output Video Data Format Selections** 

| Output Data<br>Format                    |                 | Pin/F         | Register Bit  | DOUT[9:0]      | DOUT[19:10] |            |               |
|------------------------------------------|-----------------|---------------|---------------|----------------|-------------|------------|---------------|
| Tomat                                    | 20BIT<br>/10BIT | RATE_<br>SEL0 | RATE_<br>SEL1 | 656_<br>BYPASS | ASI         |            |               |
| (20-bit) demultiplexed HD format         | HIGH            | LOW           | LOW           | (HIGH)         | LOW         | Chroma     | (Luma)        |
| 20-bit data output<br>HD format          | HIGH            | LOW           | LOW           | LOW            | LOW         | DATA       | DATA          |
| (20-bit) demultiplexed SD format         | HIGH            | HIGH          | Х             | HIGH           | LOW         | Chroma     | Luma          |
| 20-bit data output<br>SD format          | HIGH            | HIGH          | Х             | LOW            | LOW         | DATA       | DATA          |
| 10-bit multiplexed<br>Full HD DDR format | LOW             | LOW           | HIGH          | HIGH           | LOW         | Driven LOW | DS1 / DS2     |
| 10-bit multiplexed<br>HD format          | LOW             | LOW           | LOW           | HIGH           | LOW         | Driven LOW | Luma / Chroma |

Table 4-17: GV7601 Output Video Data Format Selections (Continued)

| Output Data<br>Format                     |                 | Pin/I         | Register Bit  | DOUT[9:0]      | DOUT[19:10] |                                                                                                                                                             |               |  |
|-------------------------------------------|-----------------|---------------|---------------|----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| Tormat                                    | 20BIT<br>/10BIT | RATE_<br>SEL0 | RATE_<br>SEL1 | 656_<br>BYPASS | ASI         |                                                                                                                                                             |               |  |
| 10-bit data output<br>HD format           | LOW             | LOW           | LOW           | LOW            | LOW         | Driven LOW                                                                                                                                                  | DATA          |  |
| 10-bit multiplexed<br>SD format           | LOW             | HIGH          | Х             | HIGH           | LOW         | Driven LOW                                                                                                                                                  | Luma / Chroma |  |
| 10-bit data output<br>SD format           | LOW             | HIGH          | Х             | LOW            | LOW         | Driven LOW                                                                                                                                                  | DATA          |  |
| 20-bit<br>demultiplexed Full<br>HD format | HIGH            | LOW           | HIGH          | HIGH           | LOW         | DS2                                                                                                                                                         | DS1           |  |
| Transport stream                          | LOW             | HIGH          | Х             | -              | HIGH        | DOUT19 = WORD_ERR DOUT18 = SYNC_OUT DOUT17 = H_OUT DOUT16 = G_OUT DOUT15 = F_OUT DOUT14 = E_OUT DOUT13 = D_OUT DOUT12 = C_OUT DOUT11 = B_OUT DOUT10 = A_OUT |               |  |

## 4.8.2 Parallel Output in Video Mode

When the device is operating in video mode ( $656\_BYPASS = HIGH$  and ASI = LOW), data is output in either Multiplexed or Demultiplexed form depending on the setting of the  $20BIT/\overline{10BIT}$  pin.

When operating in 20-bit mode (20BIT/10BIT = HIGH), the output data is demultiplexed Luma and Chroma data for SD and HD data rates, and DS1 and DS2 for the Full HD data.

When operating in 10-bit mode (20BIT/10BIT = LOW), the output data is multiplexed Luma and Chroma data for SD and HD data rates, and multiplexed DS1 and DS2 for the Full HD data. In this mode, the data is presented on the DOUT[19:10] pins, with DOUT[9:0] being forced LOW.

# 4.8.3 Parallel Output in ASI Mode

In ASI mode, the  $20BIT/\overline{10BIT}$  pin must be set LOW to configure the output parallel bus for 10-bit operation.

ASI mode is enabled when the AUTO/ $\overline{MAN}$  bit is LOW,  $\overline{656}$ \_BYPASS pin is LOW and the ASI pin is HIGH.

The extracted 8-bit transport stream data is presented on DOUT[17:10] such that DOUT[17:10] = HOUT ~ AOUT, where AOUT is the least significant bit of the decoded transport stream data.



In addition, the DOUT19 and DOUT18 pins are configured as ASI status signals WORDERR and SYNCOUT respectively.

SYNCOUT is HIGH whenever a K28.5 sync character is output from the device.

WORDERR is HIGH whenever the device has detected a running disparity error or illegal code word.

## 4.8.4 Parallel Output In Data-Through Mode

This mode is enabled when the  $\overline{656\_BYPASS}$  and ASI pins are LOW.

In this mode, data is passed to the output bus without any decoding, descrambling or word-alignment.

The output data width (10-bit or 20-bit) is controlled by the setting of the  $20BIT/\overline{10BIT}$  pin.

## 4.8.5 Parallel Output Clock (PCLK)

The frequency of the PCLK output signal of the GV7601 is determined by the output data format. Table 4-18 lists the output signal formats according to the data format selected in Manual mode (AUTO/ $\overline{\text{MAN}}$ ) bit in the host interface is set LOW), or detected in Auto mode (AUTO/ $\overline{\text{MAN}}$ ) bit in the host interface is set HIGH).

Table 4-18: GV7601 PCLK Output Rates

| Output Data Format                       |                 | PCLK Rate |           |                |     |                            |
|------------------------------------------|-----------------|-----------|-----------|----------------|-----|----------------------------|
| rormat –                                 | 20BIT/<br>10BIT | RATE_DET0 | RATE_DET1 | 656_<br>BYPASS | ASI | _                          |
| 20-bit demultiplexed<br>HD format        | HIGH            | LOW       | LOW       | HIGH           | LOW | 74.25 or<br>74.25/1.001MHz |
| 20-bit data output<br>HD format          | HIGH            | LOW       | LOW       | LOW            | LOW | 74.25 or<br>74.25/1.001MHz |
| 20-bit demultiplexed<br>SD format        | HIGH            | HIGH      | Х         | HIGH           | LOW | 13.5MHz                    |
| 20-bit data output<br>SD format          | HIGH            | HIGH      | Х         | LOW            | LOW | 13.5MHz                    |
| 20-bit demultiplexed<br>Full HD format   | HIGH            | LOW       | HIGH      | HIGH           | LOW | 148.5 or<br>148.5/1.001MHz |
| 10-bit multiplexed<br>Full HD DDR format | LOW             | LOW       | HIGH      | HIGH           | LOW | 148.5 or<br>148.5/1.001MHz |
| 10-bit multiplexed<br>HD format          | LOW             | LOW       | LOW       | HIGH           | LOW | 148.5 or<br>148.5/1.001MHz |
| 10-bit data output<br>HD format          | LOW             | LOW       | LOW       | LOW            | LOW | 148.5 or<br>148.5/1.001MHz |



Table 4-18: GV7601 PCLK Output Rates (Continued)

| Output Data<br>Format             |                 | PCLK Rate |           |                |      |       |
|-----------------------------------|-----------------|-----------|-----------|----------------|------|-------|
| Tomac                             | 20BIT/<br>10BIT | RATE_DET0 | RATE_DET1 | 656_<br>BYPASS | ASI  |       |
| 10-bit multiplexed<br>SD format   | LOW             | HIGH      | Х         | HIGH           | LOW  | 27MHz |
| 10-bit data output<br>SD format   | LOW             | HIGH      | Х         | LOW            | LOW  | 27MHz |
| 10-bit transport<br>stream output | LOW             | HIGH      | х         | LOW            | HIGH | 27MHz |

## 4.8.6 DDR Parallel Clock Timing

The GV7601 has the ability to transmit 10-bit parallel video data with a DDR (Dual Data Rate) pixel clock over a single-ended interface. DDR Mode can be enabled when the input data rate is 2.97Gb/s. In this case, the 10-bit parallel data rate is 2.97Mb/s, and the frequency of the DDR clock is 148.5MHz (10-bit output in Full HD mode).

The DDR pixel clock avoids the need to operate a high-drive pixel clock at 297MHz. This reduces power consumption, clock drive strength, and noise generation, and precludes from generating excessive EMI had PCLK on the board have to run at 297MHz. It also enables easier board routing and avoids the need to use the higher-speed I/Os on FPGAs, which may require more expensive speed grades.

Figure 4-23 shows how the DDR interface operates. The pixel clock is transmitted at half the data rate, and the interleaved data is sampled at the receiver on both clock edges.

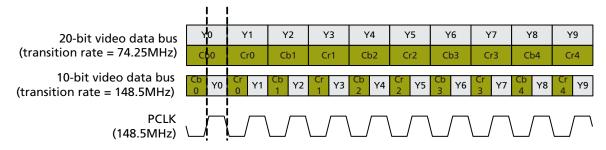
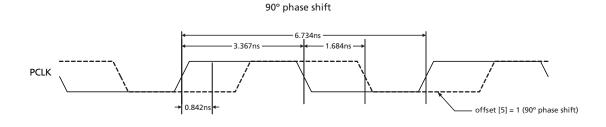
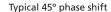



Figure 4-23: DDR Video Interface

The GV7601 has the ability to shift the Setup/Hold window on the receive interface, by using an on-chip delay line to shift the phase of PCLK with respect to the data bus.


The timing of the PCLK output, relative to the data, can be adjusted through the host interface registers. Address 06Ch contains the delay line controls:


Bit[5] (DEL\_LINE\_CLK\_SEL) is a coarse delay adjustment that selects between the default (nominal) PCLK phase and a quadrature phase, for a 90° phase shift.



Bits[4:0] (DEL\_LINE\_OFFSET) comprise a fine delay adjustment to shift the PCLK in 40ps increments (typical conditions). The maximum fine delay adjustment is approximately 1.2ns under nominal conditions.

An example delay adjustment over min/typ/max conditions is illustrated in Figure 4-24. The target delay is 0.84 ns under typical conditions (approximately 45° PCLK phase shift), and requires a control word setting of 0x0014 for address 0x006C.





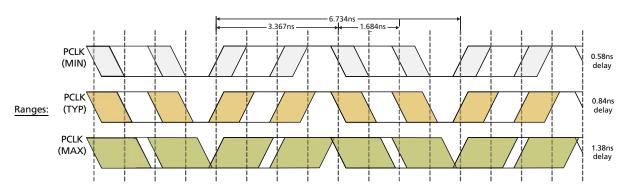



Figure 4-24: Delay Adjustment Ranges

# 4.9 Timing Signal Generator

The GV7601 has an internal timing signal generator which is used to generate digital FVH timing reference signals, to detect and correct certain error conditions and automatic video standard detection.

The timing signal generator is only operational in video mode ( $\overline{656}$ \_BYPASS = HIGH).

The timing signal generator consists of a number of counters and comparators operating at video pixel and video line rates. These counters maintain information about the total line length, active line length, total number of lines per field/frame and total active lines per field/frame for the received video standard.

The timing signal generator 'learns' the video standard by timing the horizontal and vertical reference information contained in the TRS IDs of the received video data (specifically, the XYZ word). It therefore takes one video frame to obtain full synchronization to the received video standard.



**Note**: Both 8-bit and 10-bit TRS words are identified by the device. Once synchronization has been achieved, the timing signal generator continues to monitor the received TRS timing information to maintain synchronization.

The timing signal generator re-synchronizes all pixel and line based counters on every received TRS ID.

# 4.10 Programmable Multi-function Outputs

The GV7601 has 6 multi-function output pins, STAT [5:0], which are programmable via the host interface to output one of the following signals:

Table 4-19: Output Signals Available on Programmable Multi-Function Pins

| Status Signal                                  | Selection Code | Default Output Pin |
|------------------------------------------------|----------------|--------------------|
| H/HSYNC (according to 861_EN Pin) Section 4.11 | 0000           | STAT 0             |
| V/VSYNC (according to 861_EN Pin) Section 4.11 | 0001           | STAT 1             |
| F/DE (according to 861_EN Pin) Section 4.11    | 0010           | STAT 2             |
| LOCKED Section 4.6                             | 0011           | STAT 3             |
| Y/1ANC Section 4.15                            | 0100           | STAT 4             |
| C/2ANC Section 4.15                            | 0101           | -                  |
| DATA_ERROR Section 4.14                        | 0110           | STAT 5             |
| VIDEO_ERROR                                    | 0111           | -                  |
| AUDIO_ERROR                                    | 1000           | -                  |
| EDH_DETECTED                                   | 1001           | -                  |
| CARRIER_DETECT                                 | 1010           | -                  |
| RATE_DET0                                      | 1011           | _                  |
| RATE_DET1                                      | 1100           | _                  |

Each of the STAT[5:0] pins are configurable individually using the register bits in the host interface; STAT[5:0]\_CONFIG (008h/009h).



# 4.11 H:V:F Timing Signal Generation

The GV7601 extracts critical timing parameters from the received TRS words.

Horizontal blanking (H), Vertical blanking (V), and Field odd/even (F) timing are output on the STAT[2:0] pins by default.

Using the H\_CONFIG bit in the host interface, the H signal timing can be selected as one of the following:

- 1. Active line blanking (H\_CONFIG = LOW) the H output is HIGH for the horizontal blanking period, including the EAV TRS words.
- 2. TRS based blanking (H\_CONFIG = HIGH) the H output is set HIGH for the entire horizontal blanking period as indicated by the H bit in the received TRS signals.

The timing of these signals is shown in Figure 4-25, Figure 4-26, Figure 4-27, Figure 4-28 and Figure 4-29.

**Note**: Both 8-bit and 10-bit TRS words are identified by the device.

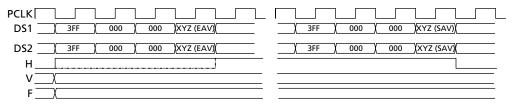



Figure 4-25: H:V:F Output Timing - Full HD 20-bit Output Mode

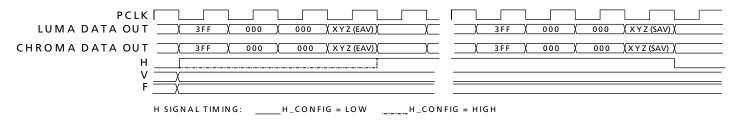



Figure 4-26: H:V:F Output Timing - HD 20-bit Output Mode



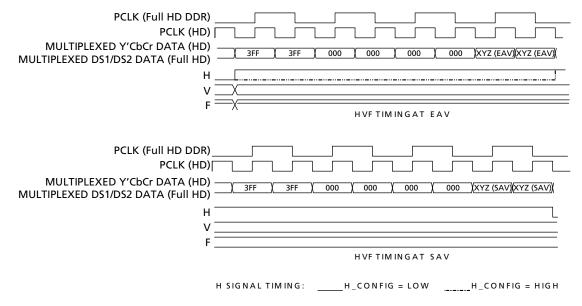



Figure 4-27: H:V:F Output Timing - HD & Full HD 10-bit Output Mode

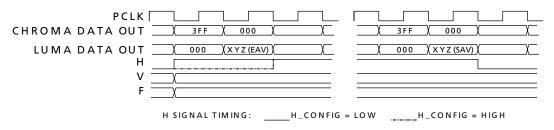



Figure 4-28: H:V:F Output Timing - SD 20-bit Output Mode

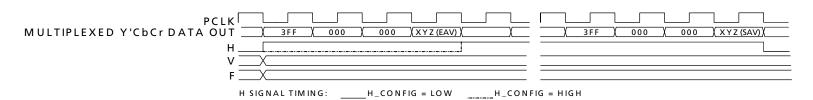



Figure 4-29: H:V:F Output Timing - SD 10-bit Output Mode

## 4.11.1 CEA-861 Timing Generation

The GV7601 is capable of generating CEA 861 timing instead of HVF timing for all of the supported video formats.

This mode is selected when the 861\_EN pin is HIGH.

Horizontal sync (HSYNC), Vertical sync (VSYNC), and Data Enable (DE) timing are output on the STAT[2:0] pins by default.

Table 4-20 shows the CEA-861 formats supported by the GV7601:

**Table 4-20: Supported CEA-861 Formats** 

| Format                        | CEA-861 Format  | VD_STD[5:0]        |
|-------------------------------|-----------------|--------------------|
| 720(1440) x 480i @ 59.94/60Hz | 6 & 7           | 16h, 17h, 19h, 1Bh |
| 720(1440) x 576i @ 50Hz       | 21 & 22         | 18h, 1Ah           |
| 1280 x 720p @ 59.94/60Hz      | 4               | 20h, 00h           |
| 1280 x 720p @ 50Hz            | 19              | 24h, 04h           |
| 1920 x 1080i @ 59.94/60Hz     | 5               | 2Ah, 0Ah           |
| 1920 x 1080i @ 50Hz           | 20              | 2Ch, 0Ch           |
| 1920 x 1080p @ 29.97/30Hz     | 34 <sup>1</sup> | 2Bh, 0Bh           |
| 1920 x 1080p @ 25Hz           | 33 <sup>2</sup> | 2Dh, 0Dh           |
| 1920 x 1080p @ 23.98/24Hz     | 32              | 30h, 10h           |
| 1920 x 1080p @ 59.94/60Hz     | 16 <sup>1</sup> | 2Bh                |
| 1920 x 1080p @ 50Hz           | 31 <sup>2</sup> | 2Dh                |

## Notes:

### 4.11.1.1 Vertical Timing

When CEA-861 timing is selected, the device outputs standards compliant CEA-861 timing signals as shown in the figures below.

The digital representation of 525 video, commonly referred to as D1, contains 487 lines of active video. However, the CEA-861 standard is defined as 525 video having 480 active lines. When the TRS\_861 host interface bit is set LOW, the DE output signal will be set HIGH for 480 lines. When the TRS\_861 bit is set HIGH, the DE signal will be set HIGH for 487 lines.

The timing of these signals is shown in the CEA-861 specifications. For information, they are included in the following diagrams. These diagrams may not be comprehensive.



<sup>1,2:</sup> Timing is identical for the corresponding formats.

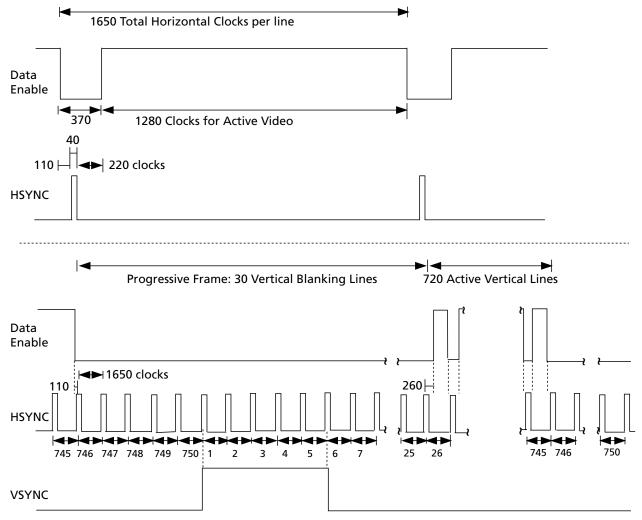



Figure 4-30: H:V:DE Output Timing 1280 x 720p @ 59.94/60 (Format 4)

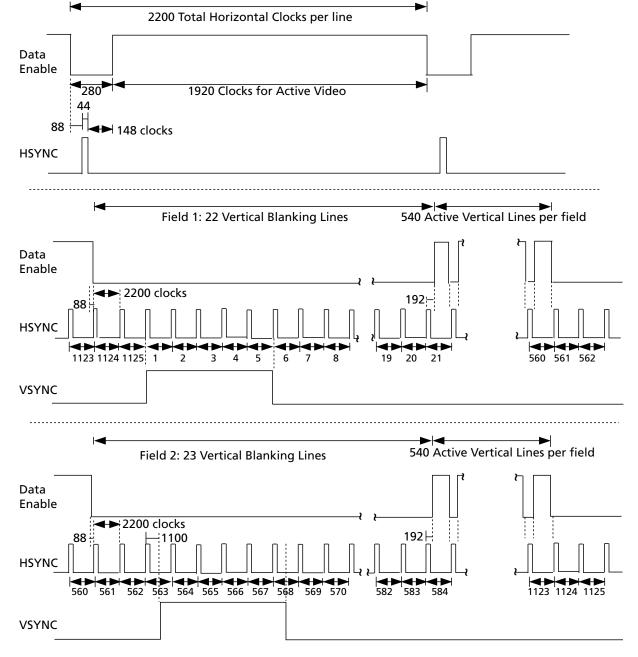



Figure 4-31: H:V:DE Output Timing 1920 x 1080i @ 59.94/60 (Format 5)

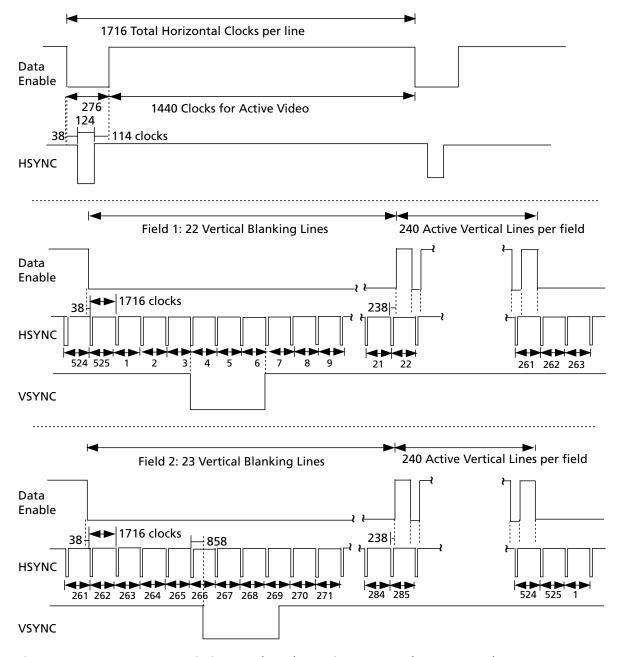



Figure 4-32: H:V:DE Output Timing 720 (1440) x 480i @ 59.94/60 (Format 6 & 7)

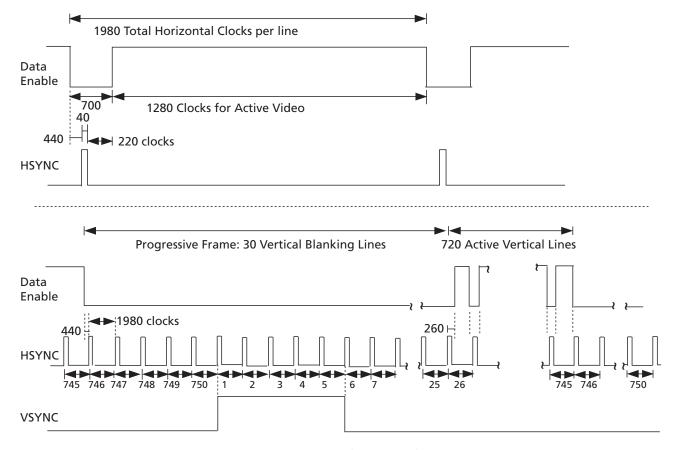



Figure 4-33: H:V:DE Output Timing 1280 x 720p @ 50 (Format 19)

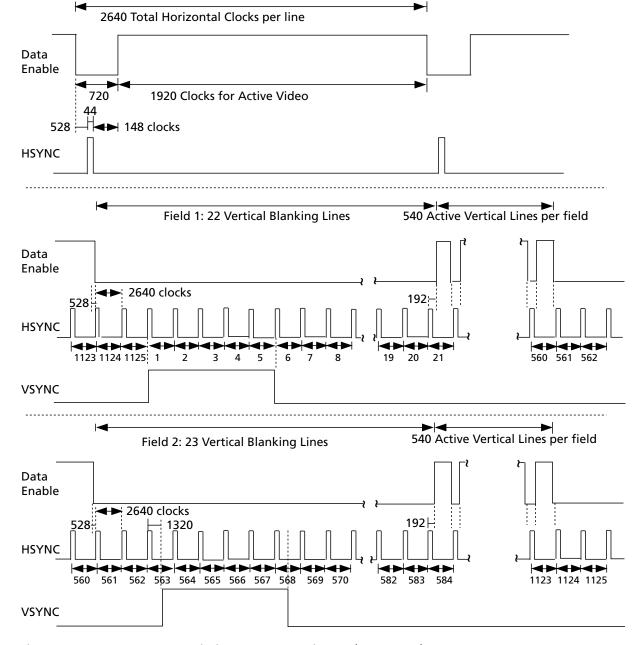



Figure 4-34: H:V:DE Output Timing 1920 x 1080i @ 50 (Format 20)

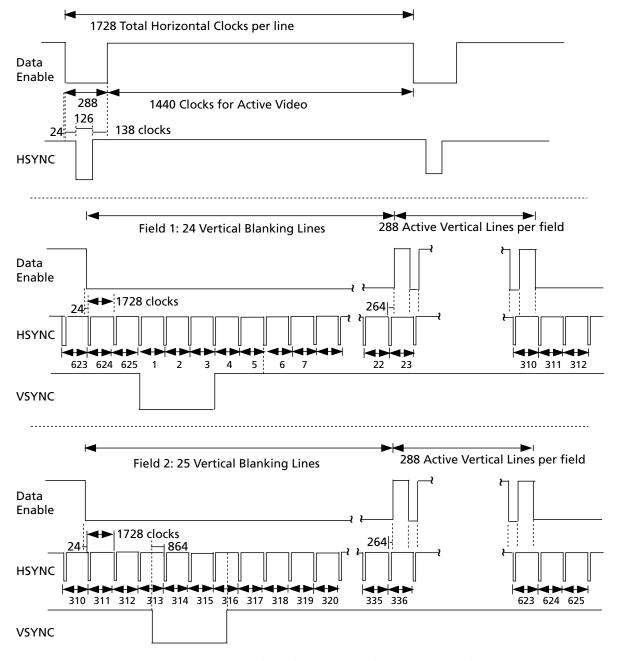



Figure 4-35: H:V:DE Output Timing 720 (1440) x 576 @ 50 (Format 21 & 22)



Figure 4-36: H:V:DE Output Timing 1920 x 1080p @ 59.94/60 (Format 16)

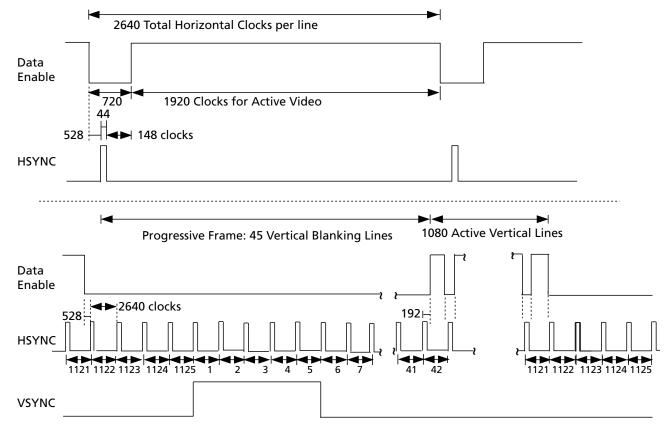



Figure 4-37: H:V:DE Output Timing 1920 x 1080p @ 50 (Format 31)

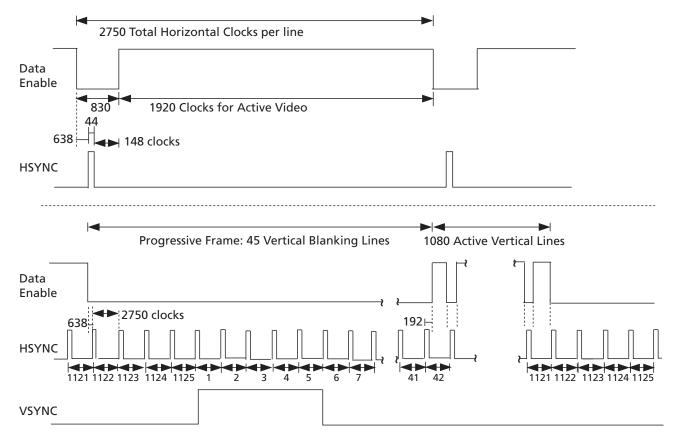



Figure 4-38: H:V:DE Output Timing 1920 x 1080p @ 23.94/24 (Format 32)

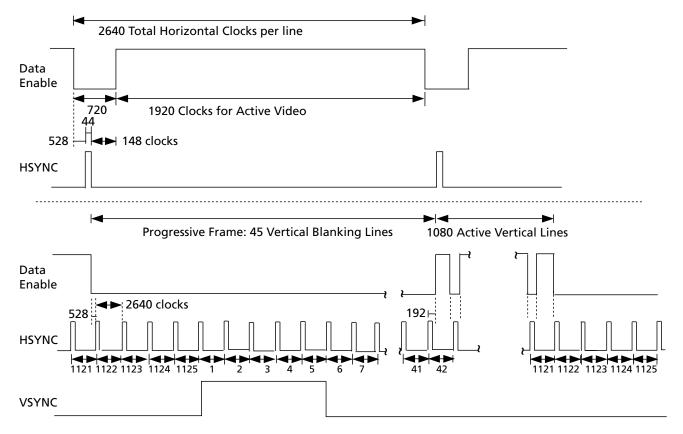



Figure 4-39: H:V:DE Output Timing 1920 x 1080p @ 25 (Format 33)

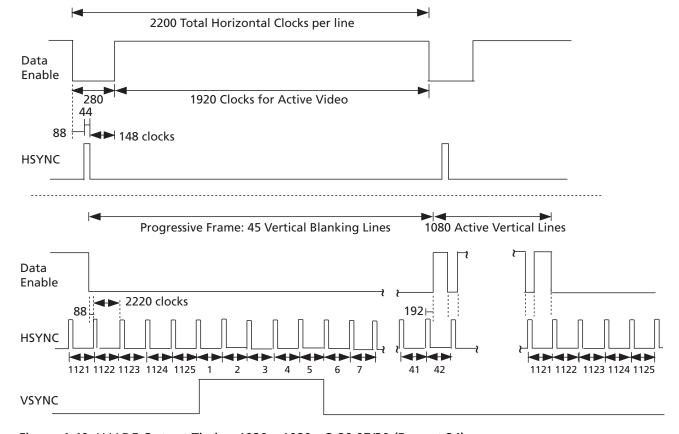



Figure 4-40: H:V:DE Output Timing 1920 x 1080p @ 29.97/30 (Format 34)

## 4.12 Automatic Video Standards Detection

Using the timing extracted from the received TRS signals, the GV7601 is able to identify the received video standard.

For inputs operating at 2.97Gb/s, the GV7601 measures the timing parameters of one of the two identical data streams. The Rate Selection/Indication bits and the VD\_STD code may be used in combination to determine the video standard.

The total samples per line, active samples per line, total lines per field/frame and active lines per field/frame are all measured.

Four registers are provided to allow the system to read the video standard information from the device.

The raster structure registers also contain three status bits:  $STD\_LOCK$ ,  $INT/\overline{PROG}$  and M. The  $STD\_LOCK$  bit is set HIGH whenever the timing signal generator is fully synchronized to the incoming standard, and detects it as one of the supported formats. The  $INT/\overline{PROG}$  bit is set HIGH if the detected video standard is interlaced and LOW if the detected video standard is progressive. M is set HIGH if the clock frequency includes the "1000/1001" factor denoting a 23.98, 29.97 or 59.94Hz frame rate.



The video standard code is reported in the VD\_STD bits of the host interface register. Table 4-21 describes the 5-bit codes for the recognized video standards.

**Table 4-21: Supported Video Standard Codes** 

| Active Video Area      | RATE_<br>DET[1]<br>HD/Full HD | RATE_<br>DET[0]<br>SD/HD | Lines per<br>Field | Active Lines<br>per Field | Words<br>per Active<br>Line | Words per<br>Line | VD_STD<br>[5:0] |
|------------------------|-------------------------------|--------------------------|--------------------|---------------------------|-----------------------------|-------------------|-----------------|
| 1920x1080/60 (1:1)     | 1                             | 0                        | 1125               | 1080                      | 1920                        | 2200              | 2Bh             |
| 1920x1080/50 (1:1)     | 1                             | 0                        | 1125               | 1080                      | 1920                        | 2640              | 2Dh             |
| 1920x1080/60 (2:1)     | 1                             | 0                        | 1125               | 1080                      | 3840                        | 4400              | 2Ah             |
| 1920x1080/50 (2:1)     | 1                             | 0                        | 1250               | 1080                      | 3840                        | 5280              | 2Ch             |
| 1280x720/60 (1:1)      | 1                             | 0                        | 750                | 720                       | 2560                        | 3300              | 20h             |
| 1280x720/50 (1:1)      | 1                             | 0                        | 750                | 720                       | 2560                        | 3960              | 24h             |
| 1920x1080/30 (1:1)     | 1                             | 0                        | 1125               | 1080                      | 3840                        | 4400              | 2Bh             |
| 1920x1080/25 (1:1)     | 1                             | 0                        | 1125               | 1080                      | 3840                        | 5280              | 2Dh             |
| 1280x720/25 (1:1)      | 1                             | 0                        | 750                | 720                       | 2560                        | 7920              | 26h             |
| 1920x1080/24 (1:1)     | 1                             | 0                        | 1125               | 1080                      | 3840                        | 5500              | 30h             |
| 1280x720/24 (1:1)      | 1                             | 0                        | 750                | 720                       | 2560                        | 8250              | 28h             |
| 1920x1035/60 (2:1)     | 0                             | 0                        | 1125               | 1035                      | 1920                        | 2200              | 15h             |
| 1920x1080/50 (2:1)     | 0                             | 0                        | 1250               | 1080                      | 1920                        | 2376              | 14h             |
| 1920x1080/60 (2:1)     | 0                             | 0                        | 1125               | 1080                      | 1920                        | 2200              | 0Ah             |
| 1920x1080/50 (2:1)     | 0                             | 0                        | 1250               | 1080                      | 1920                        | 2640              | 0Ch             |
| 1920x1080/30 (1:1)     | 0                             | 0                        | 1125               | 1080                      | 1920                        | 2200              | 0Bh             |
| 1920x1080/25 (1:1)     | 0                             | 0                        | 1125               | 1080                      | 1920                        | 2640              | 0Dh             |
| 1920x1080/24 (1:1)     | 0                             | 0                        | 1125               | 1080                      | 1920                        | 2750              | 10h             |
| 1920x1080/25 (1:1) –   | 0                             | 0                        | 1125               | 1080                      | 2304                        | 2640              | 0Eh             |
| 1920x1080/24 (1:1) –   | 0                             | 0                        | 1125               | 1080                      | 2400                        | 2750              | 12h             |
| 1280x720/30 (1:1)      | 0                             | 0                        | 750                | 720                       | 1280                        | 3300              | 02h             |
| 1280x720/30 (1:1) – EM | 0                             | 0                        | 750                | 720                       | 2880                        | 3300              | 03h             |
| 1280x720/50 (1:1)      | 0                             | 0                        | 750                | 720                       | 1280                        | 1980              | 04h             |
| 1280x720/50 (1:1) – EM | 0                             | 0                        | 750                | 720                       | 1728                        | 1980              | 05h             |
| 1280x720/25 (1:1)      | 0                             | 0                        | 750                | 720                       | 1280                        | 3960              | 06h             |
| 1280x720/25 (1:1) – EM | 0                             | 0                        | 750                | 720                       | 3456                        | 3960              | 07h             |
| 1280x720/24 (1:1)      | 0                             | 0                        | 750                | 720                       | 1280                        | 4125              | 08h             |
| 1280x720/24 (1:1) – EM | 0                             | 0                        | 750                | 720                       | 3600                        | 4125              | 09h             |
| 1280x720/60 (1:1)      | 0                             | 0                        | 750                | 720                       | 1280                        | 1650              | 00h             |



**Table 4-21: Supported Video Standard Codes (Continued)** 

| Active Video Area                              | RATE_<br>DET[1]<br>HD/Full HD | RATE_<br>DET[0]<br>SD/HD | Lines per<br>Field | Active Lines<br>per Field | Words<br>per Active<br>Line | Words per<br>Line | VD_STD<br>[5:0] |
|------------------------------------------------|-------------------------------|--------------------------|--------------------|---------------------------|-----------------------------|-------------------|-----------------|
| 1280x720/60 (1:1) – EM                         | 0                             | 0                        | 750                | 720                       | 1440                        | 1650              | 01h             |
| 1440x487/60 (2:1)                              | Х                             | 1                        | 525                | 244 or 243                | 1440                        | 1716              | 16h             |
| 1440x507/60                                    | Х                             | 1                        | 525                | 254 or 253                | 1440                        | 1716              | 17h             |
| 525-line 487 generic                           | х                             | 1                        | 525                | _                         | _                           | 1716              | 19h             |
| 525-line 507 generic                           | х                             | 1                        | 525                | _                         | _                           | 1716              | 1Bh             |
| 1440x576/50 (2:1) Or<br>dual link progressive) | х                             | 1                        | 625                | _                         | 1440                        | 1728              | 18h             |
| 625-line generic                               | х                             | 1                        | 625                | _                         | _                           | 1728              | 1Ah             |
| $SD/\overline{HD} = 0$                         | 0                             | 0                        | -                  | _                         | _                           | -                 | 1Dh             |
| SD/HD = 1                                      | х                             | 1                        | -                  | _                         | _                           | -                 | 1Eh             |
| SD/HD = 0                                      | 1                             | 0                        | -                  | _                         | _                           | -                 | 3Ch             |

**Note**: Other values of VD\_STD[5:0] not listed in Table 4-21 may be reported in the host interface (0Fh, 11h, 13h, 1Dh, 1Eh, 3Ch). These values denote "unknown video format". The device will lock to the unknown format and output valid data. It is the responsibility of the user to determine any unknown video formats.

By default (after power up or after systems reset), the four RASTER\_STRUCTURE, VD\_STD, STD\_LOCK and INT/ $\overline{PROG}$  bits are set to zero. These registers are also cleared when the  $\overline{656}$ \_BYPASS pin is LOW.

### 4.13 EDH Detection

The Error Detection and Handling (EDH) concept is based on making Cyclic Redundancy Check (CRC) calculations for each field of component digital video prior to transmission over a serial digital interface, such as Aviia. Separate CRC values are calculated for the entire video field, including blanking, and the active picture region. The calculated CRC values, along with status flags, are sent with the video data over the Aviia link.

The Aviia receiver also performs the same CRC calculations and compares the values to those sent across the link. If the CRC values are not identical to the transmitted values, an error can be indicated by the receive equipment. This allows the onset of errors, systematic of faulty or poor cable and connectors, to be detected and flagged.

EDH is fully defined by a recommended practice, RP 165, from the Society of Motion Pictures and Television Engineers (SMPTE). RP 165 defines the CRC calculation ranges, error status flag handling, and format and position of the EDH packet to be embedded in the video.



The GV7601 can be configured to automatically detect EDH packets, re-calculate CRC values and compare them with the values in the received EDH packets. Status flags are also extracted and can be accessed via the host interface.

#### 4.13.1 EDH Packet Detection

The GV7601 determines if EDH packets are present in the incoming video data and asserts the EDH\_DETECT status flag.

EDH\_DETECT is set HIGH when EDH packets have been detected and remains HIGH until EDH packets are no longer present. It is set LOW at the end of the vertical blanking (falling edge of V) if an EDH packet has not been detected during vertical blanking.

EDH\_DETECT can be programmed to be output on the multi-function output port pins. The EDH\_DETECT bit is also available in the host interface.

### 4.13.2 EDH Flag Detection

The EDH flags for ancillary data, active picture, and full field areas are extracted from the detected EDH packets and placed in the EDH\_FLAG\_IN register.

When the EDH\_FLAG\_UPDATE\_MASK bit in the host interface is set HIGH, the GV7601 updates the Ancillary Data, Full Field, and Active Picture EDH flags according to SMPTE RP165. The updated EDH flags are available in the EDH\_FLAG\_OUT register. The EDH packet output from the device contains these updated flags.

One set of flags is provided for both fields 1 and 2. The field 1 flag data is overwritten by the field 2 flag data.

When EDH packets are not detected, the UES flags in the EDH\_FLAG\_OUT register are set HIGH to signify that the received signal does not support Error Detection and Handling. In addition, the EDH\_DETECT bit is set LOW. These flags are set regardless of the setting of the EDH\_FLAG\_UPDATE\_MASK bit.

EDH\_FLAG\_OUT and EDH\_FLAG\_IN may be read via the host interface at any time during the received frame except on the lines defined in SMPTE RP165, when these flags are updated.

The GV7601 indicates the CRC validity for both active picture and full field CRCs. The AP\_CRC\_V bit in the host interface indicates the active picture CRC validity, and the FF\_CRC\_V bit indicates the full field CRC validity. When EDH\_DETECT = LOW, these bits are cleared.

The EDH\_FLAG\_OUT and EDH\_FLAG\_IN register values remain set until overwritten by the decoded flags in the next received EDH packet. When an EDH packet is not detected during vertical blanking, the flag registers are cleared at the end of the vertical blanking period.



## 4.14 Video Signal Error Detection & Indication

The GV7601 includes a number of video signal error detection functions. These are provided to enhance operation of the device when operating in video mode  $(\overline{656\_BYPASS} = HIGH)$ . These features are not available in the other operating modes of the device (i.e. when  $\overline{656\_BYPASS} = LOW$ ).

Signal errors that can be detected include:

- 1. TRS errors.
- 2. HD line based CRC errors.
- 3. EDH errors.
- 4. HD line number errors.

The device maintains an ERROR\_STAT register. Each error condition has a specific flag in the ERROR\_STAT register, which is set HIGH whenever an error condition is detected.

An ERROR\_MASK register is also provided, allowing the user to select which error conditions to be reported. Each bit of the ERROR\_MASK register corresponds to a unique error type.

Separate SD\_AUDIO\_ERROR\_MASK and HD\_AUDIO\_ERROR\_MASK registers for SD and HD audio are also provided, allowing select error conditions to be reported. Each bit of each ERROR\_MASK register corresponds to a unique error type.

By default (at power up or after system reset), all bits of the ERROR\_MASK registers are zero, enabling all errors to be reported. Individual error detection may be disabled by setting the corresponding bit HIGH in the mask registers.

Error conditions are indicated by a  $\overline{\text{VIDEO}\_\text{ERROR}}$  signal and an  $\overline{\text{AUDIO}\_\text{ERROR}}$  signal, which are available for output on the multifunction I/O output pins. The two signals are also combined into a summary  $\overline{\text{DATA}\_\text{ERROR}}$  signal, which is also available on the multifunction I/O pins. These signals are normally HIGH, but are set LOW by the device when an error condition has been detected.

These signals are a logical 'NOR' of the appropriate error status flags stored in the ERROR\_STATUS register, which are gated by the bit settings in the ERROR\_MASK registers. When an error status bit is HIGH and the corresponding error mask bit is LOW, the corresponding  $\overline{DATA}$ \_ERROR signal is set LOW by the device.

The ERROR\_STATUS registers, and correspondingly the DATA\_ERROR, VIDEO\_ERROR, and AUDIO\_ERROR signals, are cleared at the start of the next video field or when read via the host interface, which ever condition occurs first.

All bits of the ERROR\_STATUS registers are also cleared under any of the following conditions:

- 1. LOCKED signal = LOW.
- 2.  $\overline{656}$  BYPASS = LOW.
- 3. When a change in video standard has been detected.
- 4.  $\overline{RESET} = LOW$

Table 4-22 shows the VIDEO\_ERROR\_STATUS register and VIDEO\_ERROR\_MASK bits.



**Note**: Since the error indication registers are cleared once per field, if an external host micro is polling the error registers periodically, an error flag may be missed if it is intermittent, and the polling frequency is less than the field rate.

Table 4-22: Video Error Status Register and Error Disable Mask Bits

| Video Error Stat Register | Video Error Mask Register  |
|---------------------------|----------------------------|
| SAV_ERR (02h, 03h)        | SAV_ERR_MASK (037h, 038h)  |
| EAV_ERR (02h, 03h)        | EAV_ERR_MASK (037h, 038h)  |
| YCRC_ERR (02h, 03h)       | YCRC_ERR_MASK (037h, 038h) |
| CCRC_ERR (02h, 03h)       | CCRC_ERR_MASK (037h, 038h) |
| LNUM_ERR (02h, 03h)       | LNUM_ERR_MASK (037h, 038h) |
| YCS_ERR (02h, 03h)        | YCS_ERR_MASK (037h, 038h)  |
| CCS_ERR (02h, 03h)        | CCS_ERR_MASK (037h, 038h)  |
| AP_CRC_ERR (02h)          | AP_CRC_ERR_MASK (037h)     |
| FF_CRC_ERR (02h)          | FF_CRC_ERR_MASK (037h)     |

Note: See Section 4.17 for Audio Error Status.

#### 4.14.1 TRS Error Detection

TRS error flags are generated by the GV7601 under the following two conditions:

- 1. A phase shift in received TRS timing is observed.
- 2. The received TRS Hamming codes are incorrect.

Both SAV and EAV TRS words are checked for timing and data integrity errors.

For HD mode, only the Y channel TRS codes are checked for errors.

For full HD signals, only DS1 TRS codes are checked for errors.

Both 8-bit and 10-bit TRS code words are checked for errors.

The SAV\_ERR bit of the ERROR\_STAT register is set HIGH when an SAV TRS error is detected.

The EAV\_ERR bit of the ERROR\_STAT register is set HIGH when an EAV TRS error is detected.

#### 4.14.2 Line Based CRC Error Detection

The GV7601 calculates line based CRCs for HD video signals. CRC calculations are done for each 10-bit channel (Y and C, DS1 and DS2).

These calculated CRC values are compared with the received CRC values.



If a mismatch in the calculated and received CRC values is detected for the Y channel data, the YCRC\_ERR bit in the ERROR\_STAT register is set HIGH.

If a mismatch in the calculated and received CRC values is detected for the C channel data, the CCRC\_ERR bit in the ERROR\_STAT register is set HIGH.

Y or C CRC errors are also generated if CRC values are not received.

Line based CRC errors are only generated when the device is operating in HD mode.

**Note**: By default, 8-bit to 10-bit TRS remapping is enabled. If an 8-bit input is used, the HD CRC check is based on the 10-bit remapped value, not the 8-bit value, so the CRC Error Flag is incorrectly asserted and should be ignored. If 8-bit to 10-bit remapping is enabled, then CRC correction and insertion should be enabled by setting the CRC\_INS\_MASK bit in the PROC\_DISABLE register LOW. This ensures that the CRC values are updated.

### 4.14.3 EDH CRC Error Detection

The GV7601 also calculates Full Field (FF) and Active Picture (AP) CRC's according to SMPTE RP165 in support of Error Detection and Handling packets in SD signals.

These calculated CRC values are compared with the received CRC values.

Error flags for AP and FF CRC errors are provided and are shared between the field 1 and field 2 error conditions.

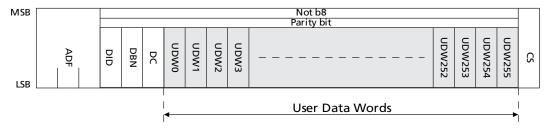
The AP\_CRC\_ERR bit in the VIDEO\_ERROR\_STATUS register is set HIGH when an Active Picture CRC mismatch has been detected in field 1 or 2.

The FF\_CRC\_ERR bit in the VIDEO\_ERROR\_STATUS register is set HIGH when a Full Field CRC mismatch has been detected in field 1 or 2.

EDH CRC errors are only indicated when the device is operating in SD mode and when the device has correctly received EDH packets.

#### 4.14.4 HD Line Number Error Detection

If a mismatch in the calculated and received line numbers is detected, the LNUM\_ERR bit in the VIDEO\_ERROR\_STATUS register is set HIGH.


## 4.15 Ancillary Data Detection & Indication

The horizontal and vertical blanking regions of a digital video signal may be used to carry ancillary data packets. The payload of the ancillary data packet can be used to carry user-defined or proprietary data, which can be sent between an Aviia transmitter and receiver.

The ancillary data packet must be formatted according to Figure 4-41. The packet must always begin with the Ancillary Data Flag (ADF), defined as the following 10-bit word sequence: 000h, 3FFh, 3FFh.



#### Type 1 Ancillary Data Packet



Type 2 Ancillary Data Packet

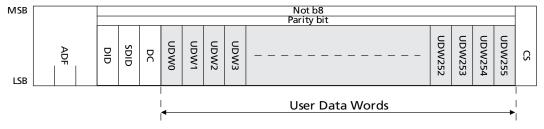



Figure 4-41: Ancillary Data Packets

The next data word is the 8-bit Data ID (DID), used to define the contents of the packet. For example, a unique DID can be used to denote alarm data, with another DID to denote status data. After the DID, there are two possible options, as shown in Figure 4-41.

A Type 1 packet defines an 8-bit Data Block Number (DBN) sequence, used to distinguish successive packets with the same DID. The DBN simply increments with each packet of the same DID, between 0 and 255.

For a Type 2 packet, an 8-bit Secondary Data ID (SDID) word is defined, which can be used to denote variants of payloads with the same DID. For example, packets with a DID to denote error data may distinguish different error types using unique SDID's.

After the DBN or SDID, the next data work is the 8-bit Data Count (DC). This word must be set to the number of user data words (UDW) that follow the DC, and must not exceed 255 (maximum payload size).

The final word of the ancillary data packet is the 9-bit Checksum (CS). The CS value must be equal to the nine least significant bits of the sum of the nine least significant bits of the DID, the DBN or the SDID, the DC and all user data words (UDW) in the packet.

The GV7601 detects ancillary data in both the vertical and horizontal ancillary data spaces. Status signal outputs Y/1ANC and C/2ANC are provided to indicate the position of ancillary data in the output data streams. These signals may be programmed for output on the multi-function I/O port pins (STAT[5:0]).

The GV7601 indicates the presence of all types of ancillary data by simply detecting the 000h, 3FFh, 3FFh (00h, FFh, FFh for 8-bit video) ancillary data preamble.

Note: Both 8 and 10-bit ancillary data preambles are detected by the device.

By default (at power up or after system reset) the GV7601 indicates all types of ancillary data. Up to 5 types of ancillary data can be specifically programmed for recognition.



For HD video signals, ancillary data may be placed in both the Y and Cb/Cr video data streams separately. For SD video signals, the ancillary data is multiplexed and combined into the YCbCr data space.

For Full HD signals, ancillary data may be placed in either or both of the data streams. Both data streams are examined for ancillary data.

When operating in HD mode, the Y/1ANC signal is HIGH whenever ancillary data is detected in the Luma data stream, and C/2ANC is HIGH whenever ancillary data is detected in the Chroma data stream. The signals are asserted HIGH at the start of the ancillary data preamble, and remain HIGH until after the ancillary data checksum.

When detecting ancillary data in Full HD data, the Y/1ANC status output is HIGH whenever DS1 ancillary data is detected and the C/2ANC status output is HIGH whenever DS2 ancillary data is detected.

When operating in SD mode, the Y/1ANC and C/2ANC signals depend on the output data format. For 20-bit demultiplexed data, the Y/1ANC and C/2ANC signals operate independently to indicate the first and last ancillary Data Word position in the Luma and/or Chroma data streams. For 10-bit multiplexed data, the Y/1ANC signal is HIGH whenever ancillary data is detected, and the C/2ANC signal is always LOW.

When operating in Full HD mode, the Y/1ANC and C/2ANC flags are both zero if 10-bit multiplexed output format is selected.

These status signal outputs are synchronous with PCLK and may be used as clock-enables for external logic, or as write-enables for an external FIFO or other memory devices.

The operation of the Y/1ANC and C/2ANC signals is shown in Figure 4-42, Figure 4-43, Figure 4-44 and Figure 4-45.

**Note**: When I/O processing is disabled, the Y/1ANC and C/2ANC flags may toggle, but they are invalid and should be ignored.

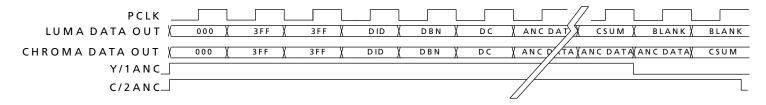



Figure 4-42: Y/1ANC and C/2ANC Signal Timing - HD 20-bit

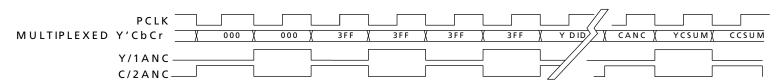



Figure 4-43: Y/1ANC and C/2ANC Signal Timing - HD 10-bit






Figure 4-44: Y/1ANC and C/2ANC Signal Timing - SD 20-bit

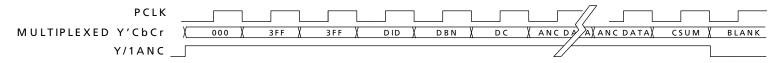



Figure 4-45: Y/1ANC and C/2ANC Signal Timing - SD 10-bit

## 4.15.1 Programmable Ancillary Data Detection

As described above in Section 4.15, the GV7601 detects and indicates all ancillary data types by default.

It is possible to program which ancillary data types are to be detected and indicated. Up to 5 different ancillary data types may be programmed for detection by the GV7601 in the ANC\_TYPE\_DS1 registers for SD and HD data.

When so programmed, the GV7601 only indicates the presence of the specified ancillary data types, ignoring all other ancillary data. For each data type to be detected, the user must program the DID and/or SDID of that ancillary data type. In the case where no DID or SDID values are programmed, the GV7601 indicates the presence of all ancillary data. In the case where one or more, DID and/or SDID values have been programmed, then only those matching data types are detected and indicated.

The timing of the Y/1ANC and C/2ANC signals in this case is as shown in Figure 4-42, Figure 4-43, Figure 4-44 and Figure 4-45.

The GV7601 compares the received DID and/or SDID with the programmed values. If a match is found, ancillary data is indicated.

For any DID or SDID value set to zero, no comparison or match is made. For example, if the DID is programmed and the SDID is not programmed, the GV7601 only detects a match to the DID value.

If both DID and SDID values are non-zero, then the received ancillary data type must match both the DID and SDID before Y/1ANC and/or C/2ANC is set HIGH.

## 4.15.2 Ancillary Data Checksum Error

The GV7601 calculates checksums for all received ancillary data.

These calculated checksums are compared with the received ancillary data checksum words.



If a mismatch in the calculated and received checksums is detected, then a checksum error is indicated.

When operating in HD mode, the device makes comparisons on both the Y and C channels separately. If an error condition in the Y channel is detected, the YCS\_ERR bit in the VIDEO\_ERROR\_STATUS register is set HIGH. If an error condition in the C channel is detected, the CCS\_ERR bit in the VIDEO\_ERROR\_STATUS register is set HIGH.

When operating in Full HD mode, the device makes comparisons on both the Y (DS1) and C (DS2) channels separately. If an error condition in the Y channel is detected, the YCS\_ERR bit in the VIDEO\_ERROR\_STATUS register is set HIGH. If an error condition in the C channel is detected, the CCS\_ERR bit in the VIDEO\_ERROR\_STATUS register is set HIGH.

When operating in SD mode, only the YCS\_ERR bit is set HIGH when checksum errors are detected.

#### 4.15.2.1 Programmable Ancillary Data Checksum Calculation

As described above, the GV7601 calculates and compares checksum values for all ancillary data types by default. It is possible to program which ancillary data types are checked as described in Section 4.15.1.

When so programmed, the GV7601 only checks ancillary data checksums for the specified data types, ignoring all other ancillary data.

The YCS\_ERR and/or CCS\_ERR bits in the VIDEO\_ERROR\_STATUS register are only set HIGH if an error condition is detected for the programmed ancillary data types.

### 4.16 Video Error Correction

In addition to error detection and indication, the GV7601 can also correct errors, inserting corrected code words, checksums and CRC values into the data stream.

The following processing can be performed by the GV7601:

- 1. TRS error correction and insertion.
- 2. HD line based CRC correction and insertion.
- 3. EDH CRC error correction and insertion.
- 4. HD line number error correction and insertion.
- 5. Illegal code re-mapping.
- 6. Ancillary data checksum error correction and insertion.

All of the above features are only available in video mode ( $\overline{656}$  BYPASS = HIGH).

To enable these features, the PROC\_EN pin must be set HIGH, and the individual feature must be enabled via bits in the PROC\_DISABLE register.

The PROC\_DISABLE register contains one bit for each processing feature allowing each one to be enabled/disabled individually.



By default (at power up or after system reset), all of the PROC\_DISABLE register bits are LOW, enabling all of the processing features.

To disable an individual processing feature, set the corresponding PROC\_DISABLE bit HIGH in the PROC\_DISABLE register.

Table 4-23: PROC\_DISABLE Register Bits

| Processing Feature                      | PROC_DISABLE Register Bit |
|-----------------------------------------|---------------------------|
| TRS error correction and insertion      | TRS_INS                   |
| Y and C line based CRC error correction | CRC_INS                   |
| Y and C line number error correction    | LNUM_INS                  |
| Ancillary data check sum correction     | ANC_CHECKSUM_INSERTION    |
| EDH CRC error correction                | EDH_CRC_INS               |
| Illegal code re-mapping                 | ILLEGAL_WORD_REMAP        |
| H timing signal configuration           | H_CONFIG                  |
| Update EDH Flags                        | EDH_FLAG_UPDATE           |
| Audio Data Extraction                   | AUDIO_SEL                 |
| Ancillary Data Extraction               | ANC_DATA_EXT              |
| Audio Extraction                        | AUD_EXT                   |

### 4.16.1 TRS Correction & Insertion

When TRS Error Correction and Insertion is enabled, the GV7601 generates and overwrites TRS code words as required.

TRS Word Generation and Insertion is performed using the timing generated by the Timing Signal Generator, providing an element of noise immunity over using just the received TRS information.

This feature is enabled when the PROC\_EN pin is HIGH and the TRS\_INS bit in the PROC\_DISABLE register is set LOW.

**Note**: Inserted TRS code words will always be 10-bit compliant, irrespective of the bit depth of the incoming video stream.

#### 4.16.2 Line Based CRC Correction & Insertion

When CRC Error Correction and Insertion is enabled, the GV7601 generates and inserts line based CRC words into both the Y and C channels of the data stream.

Line based CRC word generation and insertion only occur in HD mode, and is enabled in when the PROC\_EN pin is HIGH and the CRC\_INS bit in the PROC\_DISABLE register is set LOW.



#### 4.16.3 Line Number Error Correction & Insertion

When Line Number Error Correction and Insertion is enabled, the GV7601 calculates and inserts line numbers into the output data stream. Re-calculated line numbers are inserted into both the Y and C channels.

Line number generation is in accordance with the relevant HD or Full HD video standard as determined by the Automatic Standards Detection block.

This feature is enabled when the device is operating in HD mode, the PROC\_EN pin is HIGH and the LNUM\_INS bit in the PROC\_DISABLE register is set LOW.

## 4.16.4 Ancillary Data Checksum Error Correction & Insertion

When ancillary data Checksum Error Correction and Insertion is enabled, the GV7601 generates and inserts ancillary data checksums for all ancillary data words by default.

Where user specified ancillary data has been programmed (see Section 4.15.1), only the checksums for the programmed ancillary data are corrected.

This feature is enabled when the PROC\_EN pin is HIGH and the ANC\_CSUM\_INS bit in the PROC\_DISABLE register is set LOW.

### 4.16.5 EDH CRC Correction & Insertion

When EDH CRC Error Correction and Insertion is enabled, the GV7601 generates and overwrites full field and active picture CRC check-words.

Additionally, the device sets the active picture and full field CRC 'V' bits HIGH in the EDH packet. The AP\_CRC\_V and FF\_CRC\_V register bits only report the received EDH validity flags.

EDH FF and AP CRC's are only inserted when the device is operating in SD mode, and if the EDH data packet is detected in the received video data.

Although the GV7601 modifies and inserts EDH CRC's and EDH packet checksums, EDH error flags are only updated when the EDH\_FLAG\_UPDATE bit is LOW.

This feature is enabled in SD mode, when the PROC\_EN pin is HIGH and the EDH\_CRC\_INS bit in the PROC\_DISABLE register is set LOW.

## 4.16.6 Illegal Word Remapping

All words within the active picture (outside the horizontal and vertical blanking periods), between the values of 3FCh and 3FFh are re-mapped to 3FBh. All words within the active picture area between the values of 000h and 003h are remapped to 004h.

This feature is enabled when the PROC\_EN pin is HIGH and the ILLEGAL\_WORD\_REMAP bit in the PROC\_DISABLE register is set LOW.



## 4.16.7 TRS and Ancillary Data Preamble Remapping

8-bit TRS and ancillary data preambles are re-mapped to 10-bit values. 8-bit to 10-bit mapping of TRS headers is only supported if the TRS values are 3FC 000 000. Other values such as 3FD, 3FE, 001, and 003 are not supported. This feature is enabled by default, and cannot be disabled via the PROC\_DISABLE register.

## 4.16.8 Ancillary Data Extraction

Ancillary data may be extracted externally from the GV7601 output stream using the Y/1ANC and C/2ANC signals, and external logic.

As an alternative, the GV7601 includes a memory block, which extracts ancillary data using read access via the host interface to ease system implementation. The memory block stores up to 2048 x 16 bit words of ancillary data in two separate 1024 word memory banks. Data is accessed from both memory banks using the same host interface addresses, 800h to BFFh (see Table 4-36: Ancillary Data Extraction Memory Access Registers).

The device writes the contents of ANC packets into memory, starting with the first Ancillary Data Flag (ADF), followed by up to 1024 words.

All Data Identification (DID), Secondary Data Identification (SDID), Data Count (DC), user data, and checksum words are written into the device memory.

The device detects ancillary data packet DID's placed anywhere in the video data stream, including the active picture area.

In HD and full HD modes, ancillary data from the Y channel or DS1 is placed in the Least Significant Word (LSW) of the memory, allocated to the lower 8 bits of each memory address.

Ancillary data from the C channel or DS2 is placed in the Most Significant Word (MSW) (upper 8 bits) of each memory address.

In SD mode, ancillary data is placed in the LSW of the memory. The MSW is set to zero.

If the ANC\_TYPE registers are all set to zero, the device extracts all types of ancillary data. If programmable ancillary data extraction is required, then up to five types of ancillary data to be extracted can be programmed in the ANC\_TYPE registers (see Section 4.15.1).

Additionally, the lines from which the packets are to be extracted can be programmed into the ANC\_LINEA[10:0] and ANC\_LINEB[10:0] registers, allowing ancillary data from a maximum of two lines per frame to be extracted. If only one line number register is programmed (with the other set to zero), ancillary data packets are extracted from one line per frame only. When both registers are set to zero, the device extracts packets from all lines.

To start Ancillary Data Extraction, the ANC\_DATA\_EXT\_MASK bit of the host interface must be set LOW. Ancillary Data Packet Extraction begins in the following frame (see Figure 4-46: Ancillary Data Extraction - Step A).



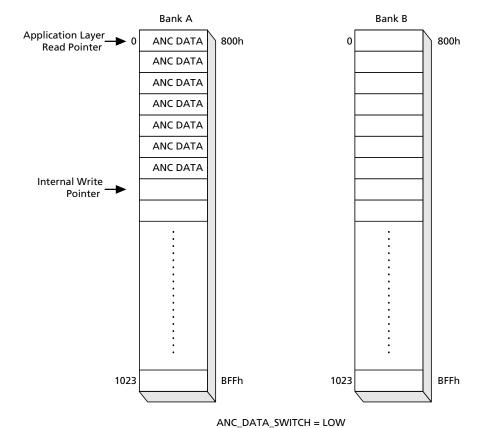
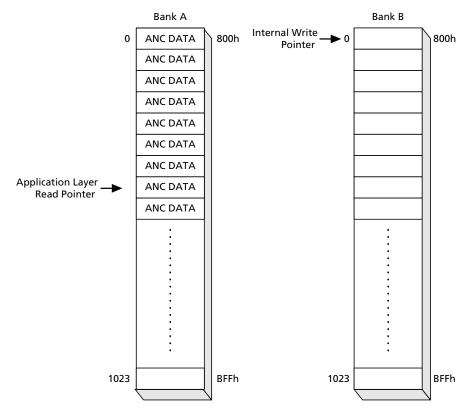
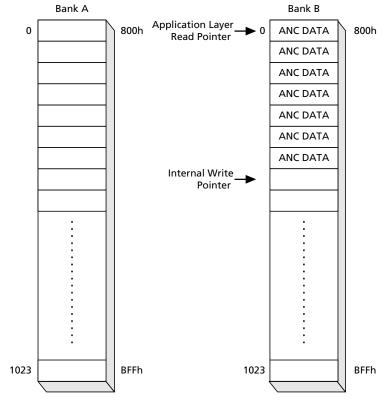




Figure 4-46: Ancillary Data Extraction - Step A

Ancillary data is written into Bank A until full. The Y/1ANC and C/2ANC output flags can be used to determine the length of the ancillary data extracted and when to begin reading the extracted data from memory.

While the ANC\_DATA\_EXT\_MASK bit is set LOW, the ANC\_DATA\_SWITCH bit can be set HIGH during or after reading the extracted data. New data is then written into Bank B (up to 1024 x 16-bit words), at the same host interface addresses (see Figure 4-47: Ancillary Data Extraction - Step B).

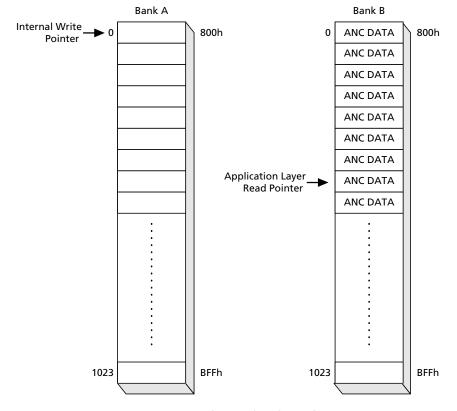





ANC\_DATA\_SWITCH = HIGH

Figure 4-47: Ancillary Data Extraction - Step B

To read the new data, toggle the ANC\_DATA\_SWITCH bit LOW. The old data in Bank A is cleared to zero and extraction continues in Bank B (see Figure 4-48: Ancillary Data Extraction - Step C).




 $ANC_DATA_SWITCH = LOW$ 

Figure 4-48: Ancillary Data Extraction - Step C

If the ANC\_DATA\_SWITCH bit is not toggled, extracted data is written into Bank B until full. To continue extraction in Bank A, the ANC\_DATA\_SWITCH bit must be toggled HIGH (see Figure 4-49: Ancillary Data Extraction - Step D).





ANC\_DATA\_SWITCH = HIGH

Figure 4-49: Ancillary Data Extraction - Step D

Toggling the ANC\_DATA\_SWITCH bit LOW returns the process to step A (Figure 4-46).

**Note**: Toggling the ANC\_DATA\_SWITCH must occur at a time when no extraction is taking place, i.e. when the both the Y/1ANC and C/2ANC signals are LOW.

To turn extraction off, the ANC\_DATA\_EXT\_MASK bit must be set HIGH.

In HD mode, the device can detect ancillary data packets in the Luma video data only, Chroma video data only, or both. By default (at power-up or after a system reset) the device extracts ancillary data packets from the luma channel only.

In Full HD mode, the device can detect ancillary data packets in Luma video (DS1) only, Chroma video (DS2) only, or both. By default (at power-up or after a system reset) the device extracts ancillary data packets from DS1 only.

To extract packets from the Chroma/DS2 channel only, the HD\_ANC\_C/2 bit of the host interface must be set HIGH. To extract packets from both Luma/DS1 and Chroma/DS2 video data, the HD\_ANC\_Y/1\_C/2 bit must be set HIGH (the setting of the HD\_ANC\_C/2 bit is ignored).

The default setting of both the HD\_ANC\_C/2 and HD\_ANC\_Y/1\_C/2 is LOW. The setting of these bits is ignored when the device is configured for SD video standards.

Ancillary data packet extraction and deletion is disabled when the PROC\_EN pin is set LOW.



After extraction, the ancillary data may be deleted from the video stream by setting the ANC\_DATA\_DELETE bit of the host interface HIGH. When set HIGH, all existing ancillary data is removed and replaced with blanking values. If any of the ANC\_TYPE registers are programmed with a DID and/or DID and SDID, only the ancillary data packets with the matching ID's are deleted from the video stream.

**Note1**: After the ancillary data determined by the ANC\_TYPE registers has been deleted, other existing ancillary data may not be contiguous. The device does not concatenate the remaining ancillary data.

**Note2**: Reading extracted ancillary data from the host interface must be performed while there is a valid video signal present at the serial input and the device is locked (LOCKED signal is HIGH).

## 4.17 Audio De-embedder

The GV7601 includes an integrated audio de-embedder which is enabled by default in video mode. It can be disabled by setting the AUDIO\_EN pin LOW, or by setting the host interface AUD\_EXT\_MASK bit to HIGH, or by keeping PROC\_EN pin LOW. In non-video modes, the audio de-embedder is not active.

Up to eight channels of audio may be extracted from the received serial digital video stream. The output signal formats supported by the device include AES/EBU or S/PDIF, I<sup>2</sup>S (default) and industry standard serial digital formats.

16, 20 and 24-bit audio bit depths are supported for 48kHz synchronous audio for SD. 16, 20 and 24-bit, 48kHz, synchronous or asynchronous audio bit depths are supported for HD mode.

Additional audio processing features include audio mute on loss of lock, de-embed and delete, group selection, audio output re-mapping, ECC error detection and correction (HD mode only), and audio channel status extraction.

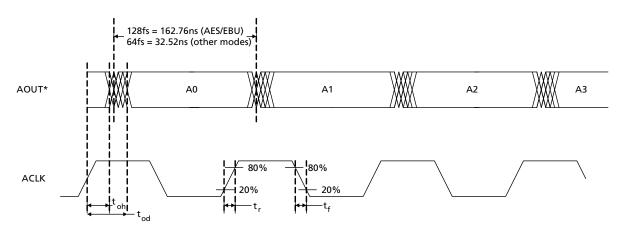
## 4.17.1 Serial Audio Data I/O Signals

The Serial Audio Data I/O pins are listed in Table 4-24: Serial Audio Pin Descriptions.

**Table 4-24: Serial Audio Pin Descriptions** 

|          | Audio                                 |  |  |  |  |
|----------|---------------------------------------|--|--|--|--|
| Pin Name | Description                           |  |  |  |  |
| AUDIO_EN | Enable Input for Audio Processing     |  |  |  |  |
| AOUT1/2  | Serial Audio Output; Channels 1 and 2 |  |  |  |  |
| AOUT3/4  | Serial Audio Output; Channels 3 and 4 |  |  |  |  |
| AOUT5/6  | Serial Audio Output; Channels 5 and 6 |  |  |  |  |
| AOUT7/8  | Serial Audio Output; Channels 7 and 8 |  |  |  |  |
| ACLK     | 64fs clock                            |  |  |  |  |




Table 4-24: Serial Audio Pin Descriptions (Continued)

|          | Audio                                                 |
|----------|-------------------------------------------------------|
| Pin Name | Description                                           |
| WCLK     | Word clock                                            |
| MCLK     | Audio Master Clock, selectable 128fs, 256fs, or 512fs |

The timing of the serial audio output signals, the WCLK output signal, and the ACLK output signal is as shown in Figure 4-50: ACLK to Data and WCLK Signal Output Timing.

#### Audio I/O Timing Specs:

#### **Audio Outputs:**



**Audio Outputs** 

|      |                 | 3.3V                    |       |                 |                         |       | 1.8V            |                      |       |                 |                         |       |
|------|-----------------|-------------------------|-------|-----------------|-------------------------|-------|-----------------|----------------------|-------|-----------------|-------------------------|-------|
|      | t <sub>oh</sub> | $\frac{t_r}{t_f}$ (min) | Cload | t <sub>od</sub> | $\frac{t_r}{t_f}$ (max) | Cload | t <sub>oh</sub> | t <sub>r</sub> (min) | Cload | t <sub>od</sub> | $\frac{t_r}{t_f}$ (max) | Cload |
| AOUT | 1.500ns         | 0.600ns                 | 6pF   | 7.000ns         | 2.200ns                 | 15pF  | 1.500ns         | 0.600ns              | 6pF   | 7.000ns         | 2.300ns                 | 15pF  |

Figure 4-50: ACLK to Data and WCLK Signal Output Timing

When AUDIO\_EN is set HIGH, audio extraction is enabled and the audio output signals are extracted from the video data stream. When set LOW, the serial audio outputs, ACLK and WCLK outputs are set LOW.

In addition, all functional logic associated with audio extraction is disabled to reduce power consumption.



## 4.17.2 Serial Audio Data Format Support

The GV7601 supports the following serial audio data formats:

- I<sup>2</sup>S (default)
- AES/EBU or S/PDIF
- Serial Audio Left Justified, MSB First
- Serial Audio Left Justified, LSB First
- Serial Audio Right Justified, MSB First
- Serial Audio Right Justified, LSB First (this mode is not supported in SD)

By default (at power up or after system reset) I<sup>2</sup>S is selected. The other data formats are selectable via the host interface using the AMA/AMB[1:0] bits.

**Table 4-25: Audio Output Formats** 

| AMA/AMB[1:0] | Audio Output Format                             |
|--------------|-------------------------------------------------|
| 00           | AES/EBU or S/PDIF audio output                  |
| 01           | Serial audio output: Left Justified; MSB first  |
| 10           | Serial audio output: Right Justified; MSB first |
| 11           | I <sup>2</sup> S (Default)                      |

The serial audio output formats may use LSB first according to the settings of the control bits LSB\_FIRSTA, LSB\_FIRSTB, LSB\_FIRSTC, and LSB\_FIRSTD. When in I<sup>2</sup>S mode, these control bits must all be set LOW (default).

When  $I^2S$  format is desired, both groups must be set to  $I^2S$  (i.e. AMA = AMB = 11). This is because they share the same WCLK.

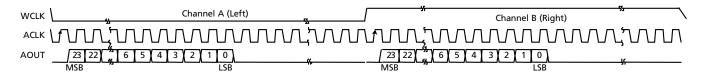



Figure 4-51: I<sup>2</sup>S Audio Output Format

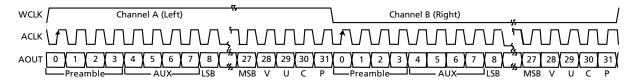



Figure 4-52: AES/EBU or S/PDIF Audio Output Format






Figure 4-53: Serial Audio, Left Justified, MSB First



Figure 4-54: Serial Audio, Left Justified, LSB First

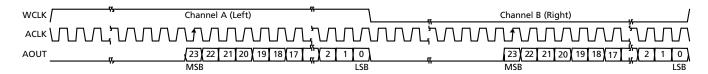



Figure 4-55: Serial Audio, Right Justified, MSB First

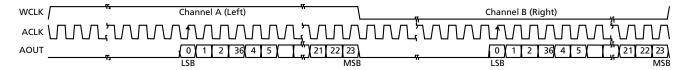



Figure 4-56: Serial Audio, Right Justified, LSB First

### 4.17.2.1 AES/EBU or S/PDIF Mode

In AES/EBU or S/PDIF output mode, the audio de-embedder uses a 128fs (6.144MHz audio bit clock) clock as shown in Figure 4-57.

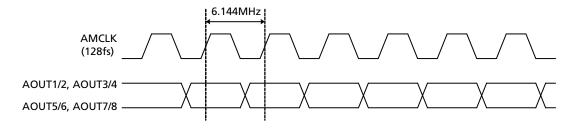



Figure 4-57: AES/EBU or S/PDIF Audio Output to Bit Clock Timing



#### 4.17.2.2 Audio Data Packet Extraction Block

The audio de-embedder looks for audio data packets on every line of the incoming video.

The audio data must be embedded by Aviia compliant transmitter, such as the GV7600.

For Full HD formats, the audio data words must be embedded only in DS2.

The Audio Group Detect registers are set HIGH when audio data packets with a corresponding group DID are detected in the input video stream. The host interface reports the individual audio groups detected.

Table 4-26: Audio Data Packet Detect Register

| Name      | Description                                           | Default |
|-----------|-------------------------------------------------------|---------|
| ADPG4_DET | Audio Group Four Data Packet Detection (1: Detected)  | 0       |
| ADPG3_DET | Audio Group Three Data Packet Detection (1: Detected) | 0       |
| ADPG2_DET | Audio Group Two Data Packet Detection (1: Detected)   | 0       |
| ADPG1_DET | Audio Group One Data Packet Detection (1: Detected)   | 0       |

When an audio data packet with a DID set in IDA[1:0] and IDB[1:0] is detected, the audio sample information is extracted and written into the audio FIFO.

The embedded audio group selected by IDA[1:0] is described henceforth in this document as Group A or Primary Group. The embedded audio group selected by IDB[1:0] is described henceforth in this document as Group B or Secondary Group.

Due to the large size of the horizontal ancillary data space in 720p/24, 720p/25 and 720p/30 video standards, the maximum number of ancillary data words the audio de-embedder can process is limited to 1024 when receiving these standards.

#### 4.17.2.3 Audio Control Packets

Audio control packers carry additional information about the embedded audio sample data, such as audio sample rate, audio validity, audio synchronization, and audio-to-video timing relationship (delay). For both SD and HD formats, an Aviia transmitter, such as the GV7600, embeds audio control packets, formatted according to the following Society of Motion Pictures and Television Engineers (SMPTE) standards: SMPTE 272M-2004 for SD video and SMPTE 299M-2004 for HD video formats.

The GV7601 automatically detects the presence of audio control packets in the video stream. When audio control packets for audio Group A are detected, the CTRA\_DET bit of the host interface is set HIGH. When audio control packets for audio Group B are detected, the CTRB\_DET bit of the host interface is set HIGH.

The audio control packet data is accessible via the host interface.

**Note**: In SD, the control packet host interface registers are updated with new control packet values, after the CTRA\_DET/CTRB\_DET flags are cleared. In HD, the update happens automatically.



#### 4.17.2.4 Setting Packet DID

Table 4-27 below, shows the 2-bit host interface setting for the audio group DID's.

For 24-bit audio support in SD mode, extended audio packets for Group A must have the same group DID set in IDA[1:0] of the host interface. Extended audio packets for Group B must have the same group DID set in IDB[1:0] of the host interface.

The audio de-embedder automatically detects the presence of extended audio packets. When detected, the audio output format is set to 24-bit audio sample word length.

The audio de-embedder defaults to audio Groups One and Two, where Group A is extracted from packets with audio Group One DID, and Group B from packets with audio Group Two DID.

**Table 4-27: Audio Group DID Host Interface Settings** 

| Audio<br>Group | SD Data<br>DID | SD Extended<br>DID | HD Data<br>DID | SD Control<br>DID | HD Control<br>DID | Host Interface Register Setting<br>(2-bit) |
|----------------|----------------|--------------------|----------------|-------------------|-------------------|--------------------------------------------|
| 1              | 2FFh           | 1FEh               | 2E7h           | 1EFh              | 1E3h              | 00b                                        |
| 2              | 1FDh           | 2FCh               | 1E6h           | 2EEh              | 2E2h              | 01b                                        |
| 3              | 1FBh           | 2FAh               | 1E5h           | 2EDh              | 2E1h              | 10b                                        |
| 4              | 2F9h           | 1F8h               | 2E4h           | 1ECh              | 1E0h              | 11b                                        |

Table 4-28: Audio Data and Control Packet DID Setting Register

| Name     | Description                                       | Default |
|----------|---------------------------------------------------|---------|
| IDA[1-0] | Group A Audio data and control packet DID setting | 00b     |
| IDB[1-0] | Group B Audio data and control packet DID setting | 01b     |

#### 4.17.2.5 Audio Packet Delete Block

To delete all ancillary data with a group DID shown in Table 4-27, the ALL\_DEL bit in the host interface must be set HIGH.

#### 4.17.2.6 ECC Error Detection & Correction Block (HD Mode Only)

For HD video formats, the embedded audio sample data is protected for bit errors using error correction codes (ECC). The error correction codes are carried in the same packet as the audio sample data, to allow error detection and correction at the Aviia receiver.

The GV7601 performs BCH(31,25) forward error detection and correction. The error correction for all embedded audio data packets is activated when the host interface ECC\_OFF bit is set LOW (default LOW). The audio de-embedder corrects any errors in both the audio output and the embedded packet.



When a one-bit error is detected in a bit array of the ECC protected region of the audio data packet with audio group DID set in IDA[1:0], the ECCA\_ERROR flag is set HIGH. When a one-bit error is detected in the ECC protected region of the audio data packet with audio group DID set in IDB[1:0], the ECCB\_ERROR flag is set HIGH.

Figure 4-58 shows examples of error correction and detection. Up to 8 bits in error can be corrected, providing each bit error is in a different bit array (shown below). When there are two or more bits in error in the same 24-bit array, the errors are detected, but not corrected.

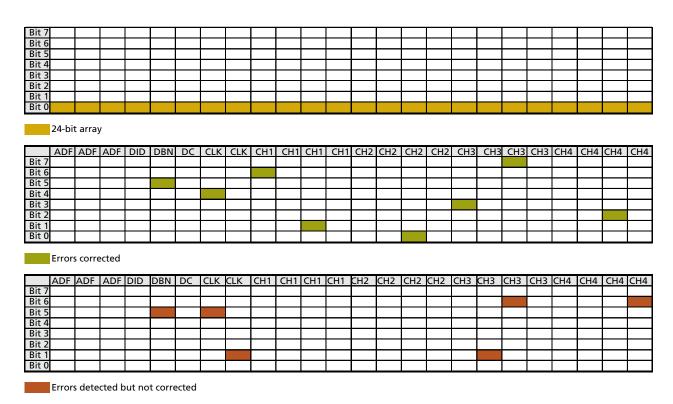



Figure 4-58: ECC 24-bit Array and Examples

## 4.17.3 Audio Processing

#### 4.17.3.1 Audio Clock Generation

For SD and HD audio, a single set of audio frequencies is generated for all audio channels, using a Direct Digital Period Synthesizer (DDPS) to minimize jitter.

In HD modes, the input control for the DDPS is derived from the two embedded audio clock phase words in the audio data packet corresponding to Group A. The audio clock phase information used is taken from the first embedded audio packet in the HANC space.

The audio de-embedder also includes a Flywheel block to overcome any inconsistencies in the embedded audio clock phase information.



#### 4.17.3.2 Audio Crosspoint Block

The Audio Crosspoint is used for audio output channel re-mapping. This feature allows any of the selected audio channels in Group A or Group B to be output on any of the eight output channels. The default setting is for one to one mapping, where AOUT1/2 is extracted from Group A CH1 and CH2, AOUT3/4 is extracted from Group A CH3 and CH4, and so on.

**Note**: If audio samples from embedded audio packets with the group set in IDA[1:0] are to be paired with samples from the group set in IDB[1:0], all of the channels must have been derived from the same Word Clock and must be synchronous.

The output channel is set in the OPn\_SRC[2:0] host interface registers. Table 4-29 lists the 3-bit address for audio channel mapping.

**Table 4-29: Audio Channel Mapping Codes** 

| Audio Output Channel | 3-bit Host Interface Source Address |
|----------------------|-------------------------------------|
| 1                    | 000                                 |
| 2                    | 001                                 |
| 3                    | 010                                 |
| 4                    | 011                                 |
| 5                    | 100                                 |
| 6                    | 101                                 |
| 7                    | 110                                 |
| 8                    | 111                                 |

#### 4.17.3.3 Serial Audio Output Word Length

The audio output, in serial modes, has a selectable 24, 20 or 16-bit sample word length. The ASWL[1:0] host interface register is used to configure the audio output sample word length. Figure 4-30 shows the host interface 2-bit code for setting the audio sample word length. When the presence of extended audio packets is detected in SD mode, the GV7601 defaults to 24-bit audio sample word length.

**Table 4-30: Audio Sample Word Lengths** 

|   | ASWL[1:0] | Audio Sample Word Length<br>(SD) | Audio Sample Word Length<br>(HD) |
|---|-----------|----------------------------------|----------------------------------|
|   | 00        | 24-bit                           | 24-bit                           |
|   | 01        | 20-bit                           | 20-bit                           |
| _ | 10        | 16-bit                           | 16-bit                           |



Table 4-30: Audio Sample Word Lengths (Continued)

| ASWL[1:0] | Audio Sample Word Length<br>(SD) | Audio Sample Word Length<br>(HD) |
|-----------|----------------------------------|----------------------------------|
| 11        | Auto 24/20-bit (Default)         | Reserved (Default)               |

**Note**: By default, at power-up, the word length is set to 12 bits. The desired word length should be programmed through the host interface.

#### 4.17.3.4 Audio Channel Status

The GV7601 detects the AES/EBU or S/PDIF Audio Channel Status (ACS) block information for each of the selected channel pairs.

ACS data detection is indicated by corresponding ACS\_DET flag bits in the host interface. The flag is cleared by writing to the same location.

#### 4.17.3.4.1 AUDIO CHANNEL STATUS READ

ACS data is available separately for each of the channels in a stereo pair. The GV7601 defaults to reading the first channel of each pair. There are 184 bits in each ACS packet, which are written to twelve 16-bit right-justified registers in the host interface.

The ACS\_USE\_SECOND bit (default LOW) selects the second channel in each audio pair when set HIGH.

Once all of the ACS data for a channel has been acquired, the corresponding ACS\_DET bit is set, and acquisition stops. The ACS data is overwritten with new data when the ACS\_DET bit is cleared in the system.

#### 4.17.3.4.2 AUDIO CHANNEL STATUS REGENERATION

When the ACS\_REGEN bit in the host interface is set HIGH, the audio de-embedder embeds the 24 bytes of the Audio Channel Status information programmed in the ACSR[183:0] registers into the 'C' bit of the AES/EBU or S/PDIF outputs. The same Audio Channel Status information is used for all output channels.

In order to apply ACSR data;

- Set the ACS REGEN bit to logic HIGH
- Write the desired ACSR data to the ACSR registers
- Set the ACS APPLY bit to HIGH

At the next status boundary, the device outputs the contents of the ACSR registers as ACS data. This event may occur at a different time for each of the output channels. While waiting for the status boundary, the device sets the appropriate ACS\_APPLY\_WAIT[A:D] flag.

Table 4-31 shows the host interface default settings for the Audio Channel Status block. The audio de-embedder automatically generates the CRC word.



**Table 4-31: Audio Channel Status Information Registers** 

| Name                          | Description                                                                        | Default           |
|-------------------------------|------------------------------------------------------------------------------------|-------------------|
| ACSR[7-0]                     | Audio channel status block byte 0 set. Used when ACS_REGEN is set HIGH             | 85h               |
| ACSR[15-8]                    | Audio channel status block byte 1 set. Used when ACS_REGEN is set HIGH             | 08h               |
| ACSR[23-16]                   | Audio channel status block byte 2 set. Used when ACS_REGEN is set HIGH             | 28h (SD) 2Ch (HD) |
| ACSR[31-24]:<br>ACSR[183-176] | Audio channel status block data for bytes 3 to 22. Used when ACS_REGEN is set HIGH | 00h               |
| ACS_REGEN                     | Audio channel status regenerate                                                    | 0                 |
| ACS_APPLY                     | Apply new ACSR data                                                                | 0                 |
| ACS_APPLY_W<br>AIT[A:D]       | Waiting to apply new ACSR data                                                     | 0                 |
| ACS[7-0]:<br>ACS[183-176]     | Audio channel status block data for bytes 0 to 22                                  | 00h: 00h          |

Table 4-31: Audio Channel Status Block for Regenerate Mode Default Settings

| 0 0<br>0 2-<br>0 6-                  |      | 1b<br>100b                                     | Professional use of channel status block  100b None. Rec. manual override disabled      |
|--------------------------------------|------|------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                      | -4   | 100b                                           | 100h None Rec manual override disabled                                                  |
| 0 6                                  |      |                                                | 1005 None. Rec. mandal override disabled                                                |
| U 6-                                 | -7   | 01b                                            | 48kHz. Manual override or auto disabled                                                 |
| 1 0-                                 | -3   | 0001b                                          | Two channels. Manual override disabled                                                  |
| 2 0-2 000b SD Modes: Maximum audio v |      | SD Modes: Maximum audio word length is 20 bits |                                                                                         |
|                                      | _    | 001b                                           | HD Mode: Maximum audio word length is 24 bits                                           |
| 2 3-                                 | -5   | 101b                                           | Maximum word length (based on AUX setting).<br>24-bit for HD Modes; 20-bit for SD Modes |
|                                      | 2 0- | 2 3-5                                          | 2 0-2 000b 001b                                                                         |

## 4.17.3.5 Audio Mute

When the MUTE bits in the host interface are set HIGH, the audio outputs are muted (all audio sample bits are set to zero). To set all the audio output channels to mute, set the host interface MUTE\_ALL bit HIGH.



Table 4-32: Audio Mute Control Bits

| Name     | Description                          | Default |
|----------|--------------------------------------|---------|
| MUTE_ALL | Ch1-8 audio mute enable (1: Enabled) | 0       |
| MUTE8    | Ch8 audio mute enable (1: Enabled)   | 0       |
| MUTE7    | Ch7 audio mute enable (1: Enabled)   | 0       |
| MUTE6    | Ch6 audio mute enable (1: Enabled)   | 0       |
| MUTE5    | Ch5 audio mute enable (1: Enabled)   | 0       |
| MUTE4    | Ch4 audio mute enable (1: Enabled)   | 0       |
| MUTE3    | Ch3 audio mute enable (1: Enabled)   | 0       |
| MUTE2    | Ch2 audio mute enable (1: Enabled)   | 0       |
| MUTE1    | Ch1 audio mute enable (1: Enabled)   | 0       |

#### 4.17.3.5.1 MUTE ON LOSS OF LOCK

When the GV7601 loses lock (LOCKED signal is LOW), the device sets all audio outputs LOW (no audio formatting is performed). The ACLK, WCLK and MCLK outputs are also forced LOW.

## 4.17.4 Error Reporting

#### 4.17.4.1 Data Block Number Error

When the 1-255 count sequence in the Data Block Number (DBN) word of Group A audio data packets is discontinuous, the DBNA\_ERR bit in the host interface is set HIGH. When the 1-255 count sequence in the DBN word of Group B audio data packets is discontinuous, the DBNB\_ERR bit is set HIGH. The DBNx\_ERR flags are in register 401h for SD, and register 201h for HD.

The DBNA\_ERR and DBNB\_ERR flags also have associated error interrupt mask register flags for configuration of error reporting in the Receiver. The interrupt mask flags for SD are in register 407h, and register 207h for HD. The DBNA\_ERR and DBNB\_ERR flags remains set until cleared by writing to these locations.

#### 4.17.4.2 ECC Error

The GV7601 monitors the ECC error status of the two selected audio groups, as described in Section 4.17.2.6 on page 96.

The ECC[N]\_ERROR flags also have an associated error interrupt mask register flag for configuration of error reporting. The ECC[N]\_ERROR flags remain set until read via the host interface. The ECC error flags are in register 203h with associated error mask flags in register 207h.



## 4.18 Gennum Serial Peripheral Interface

The GSPI, or Gennum Serial Peripheral Interface, is a 4-wire interface provided to allow the system to access additional status and control information through configuration registers in the GV7601.

The GSPI is comprised of a Serial Data Input signal (SDIN), Serial Data Output signal (SDOUT), an active low Chip Select ( $\overline{\text{CS}}$ ), and a Burst Clock (SCLK).

Because these pins are shared with the JTAG interface port, an additional control signal pin JTAG\_EN is provided.

When JTAG\_EN is LOW, the GSPI interface is enabled. When JTAG\_EN is HIGH, the JTAG interface is enabled.

When operating in GSPI mode, the SCLK, SDIN, and  $\overline{\text{CS}}$  signals must be provided by the system. The SDOUT pin is a non-clocked loop-through of SDIN and may be connected to the SDIN of another device, allowing multiple devices to be connected to the GSPI chain. See Section 4.18.2 for details. The interface is illustrated in the Figure 4-59.

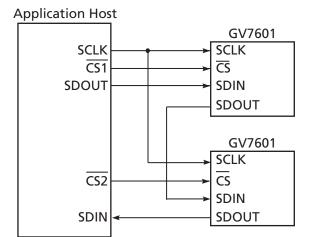



Figure 4-59: GSPI Application Interface Connection

All read or write access to the GV7601 is initiated and terminated by the system host processor. Each access always begins with a Command/Address Word, followed by a data write to, or data read from, the GV7601.

## 4.18.1 Command Word Description

The Command Word consists of a 16-bit word transmitted MSB first and contains a read/write bit, an Auto-Increment bit and a 12-bit address.

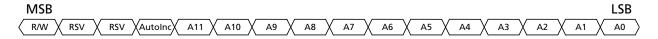



Figure 4-60: Command Word Format



Command Words are clocked into the GV7601 on the rising edge of the Serial Clock SCLK, which operates in a burst fashion. The chip select ( $\overline{\text{CS}}$ ) signal must be set low a minimum of 1.5ns (t0 in Figure 4-62) before the first clock edge to ensure proper operation.

When the Auto-Increment bit is set LOW, each Command Word must be followed by only one Data Word to ensure proper operation.

If the Auto-Increment bit is set HIGH, the following Data Word is written into the address specified in the Command Word, and subsequent Data Words is written into incremental addresses from the first Data Word. This facilitates multiple address writes without sending a Command Word for each Data Word.

### 4.18.2 Data Read or Write Access

During a read sequence (Command Word R/W bit set HIGH) serial data is transmitted or received MSB first, synchronous with the rising edge of the serial clock SCLK. The Chip Select ( $\overline{\text{CS}}$ ) signal must be set low a minimum of 1.5ns ( $t_0$  in Figure 4-62) before the first clock edge to ensure proper operation. The first bit (MSB) of the Serial Output (SDOUT) is available ( $t_5$  in Figure 4-63) following the last falling SCLK edge of the read Command Word, the remaining bits are clocked out on the negative edges of SCLK.

**Note**: When several devices are connected to the GSPI chain, only one  $\overline{CS}$  may be asserted during a read sequence.

During a write sequence (Command Word R/W bit set LOW), a wait state of 37.1ns ( $t_4$  in Figure 4-62) is required between the Command Word and the following Data Word. This wait state must also be maintained between successive Command Word/Data Word write sequences. When Auto Increment mode is selected (AutoInc = 1), the wait state must be maintained between successive Data Words after the initial Command Word/Data Word sequence.

During the write sequence, all Command and following Data Words input at the SDIN pin are output at the SDOUT pin unchanged. When several devices are connected to the GSPI chain, data can be written simultaneously to all the devices which have  $\overline{\text{CS}}$  set LOW.

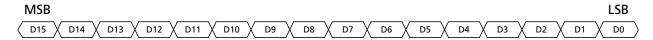



Figure 4-61: Data Word Format



**Proprietary & Confidential** 

Write and Read Mode timing for the GSPI interface;



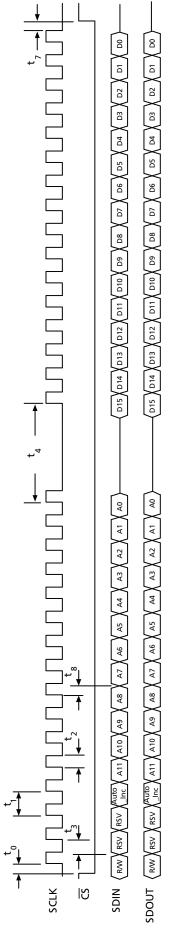



Figure 4-62: Write Mode

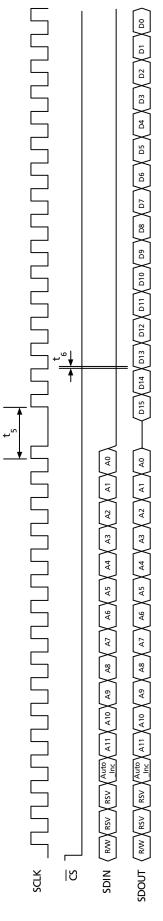



Figure 4-63: Read Mode

## 4.18.3.1 GSPI Timing Delays

SDIN to SDOUT combinational path for daisy chain connection of multiple GV7601.

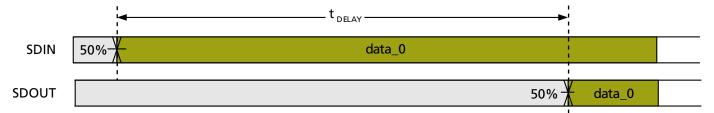



Figure 4-64: GV7601 GSPI Timing Delays

**Table 4-34: GV7601 GSPI Electrical Characteristics** 

| Parameter             | Symbol             | Conditions                    | Min | Тур | Max  | Units |
|-----------------------|--------------------|-------------------------------|-----|-----|------|-------|
| Input data delay time | t <sub>DELAY</sub> | 50% levels;<br>1.8V operation | _   | _   | 13.1 | ns    |
| Input data delay time | t <sub>DELAY</sub> | 50% levels;<br>3.3V operation | -   | -   | 9.7  | ns    |



# **4.19 Host Interface Register Maps**

**Note**: The GV7601 only accepts write/read commands to/from the Audio Register Maps when the audio de-embedder is locked to the incoming video data rate. The Video Register Map is always active, whether valid serial input data is present or not.

**Note**: ROCW denotes register bits which are Read Only, but which must be cleared by writing a one to the same bit location (Read Only Clear on Write).

## **4.19.1 Video Core Registers**

**Table 4-33: Video Core Configuration and Status Registers** 

| Address | Register Name                   | Bit | Description                                                                                                                                                                                                                                                                                            | R/W | Default |
|---------|---------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|
| 000h    | RSVD                            | 15  | Reserved.                                                                                                                                                                                                                                                                                              | R   | 0       |
|         | TRS_WORD_REMAP<br>_DISABLE_MASK | 14  | Disables 8-bit TRS word remapping.                                                                                                                                                                                                                                                                     | R/W | 0       |
|         | RSVD                            | 13  | Reserved.                                                                                                                                                                                                                                                                                              | R/W | 0       |
|         | EDH_FLAG_UPDATE<br>_MASK        | 12  | Disables updating of EDH error flags.                                                                                                                                                                                                                                                                  | R/W | 0       |
|         | EDH_CRC_INS_MASK                | 11  | Disables EDH_CRC error correction and insertion.                                                                                                                                                                                                                                                       | R/W | 0       |
|         | H_CONFIG                        | 10  | Selects the H blanking indication:  HIGH = TRS based blanking - the H output is set HIGH for the entire horizontal blanking period as indicated by the H bit in the received TRS signals.  LOW = Active line blanking - the H output is HIGH for all the horizontal blanking period, including the EAV | R/W | 0       |
|         |                                 |     | and SAV TRS words.  This signal is only valid when 861_EN is set to '0' (via pin or host interface).                                                                                                                                                                                                   |     |         |
|         | ANC_DATA_EXT_MASK               | 9   | Disables ancillary data extraction.                                                                                                                                                                                                                                                                    | R/W | 0       |
|         | AUD_EXT_MASK                    | 8   | Disables audio extraction block.                                                                                                                                                                                                                                                                       | R/W | 0       |
|         | 861_EN_PIN_DISABLE              | 7   | Disable 861_EN pin control when set to '1', and use TIMING_861 bit instead.                                                                                                                                                                                                                            | R/W | 0       |
|         | TIMING_861                      | 6   | Selects the output timing reference format:  HIGH = CEA-861 timing output.  LOW = Digital FVH timing output.                                                                                                                                                                                           | R/W | 0       |
|         | RSVD                            | 5   | Reserved.                                                                                                                                                                                                                                                                                              | R/W | 0       |
|         | ILLEGAL_WORD_REMAP<br>_MASK     | 4   | Disables illegal word remapping.                                                                                                                                                                                                                                                                       | R/W | 0       |
|         | ANC_CHECKSUM<br>_INSERTION_MASK | 3   | Disables insertion of ancillary data checksums.                                                                                                                                                                                                                                                        | R/W | 0       |
|         | CRC_INS_MASK                    | 2   | Disables insertion of HD CRC words.                                                                                                                                                                                                                                                                    | R/W | 0       |
|         | LNUM_INS_MASK                   | 1   | Disables insertion of line numbers.                                                                                                                                                                                                                                                                    | R/W | 0       |
|         | TRS_INS_MASK                    | 0   | Disables insertion of TRS words.                                                                                                                                                                                                                                                                       | R/W | 0       |



Table 4-33: Video Core Configuration and Status Registers (Continued)

| Address | Register Name | Bit   | Description                                                | R/W  | Default |
|---------|---------------|-------|------------------------------------------------------------|------|---------|
| 001h    | RSVD          | 15-0  | Reserved.                                                  | R/W  | 256     |
| 002h    | RSVD          | 15-11 | Reserved.                                                  | ROCW | 0       |
|         | VD_STD_ERR    | 10    | Video Standard Error indication.                           | ROCW | 0       |
|         | FF_CRC_ERR    | 9     | EDH Full Frame CRC error indication.                       | ROCW | 0       |
|         | AP_CRC_ERR    | 8     | EDH Active Picture CRC error indication.                   | ROCW | 0       |
|         | RSVD          | 7     | Reserved.                                                  | ROCW | 0       |
|         | CCS_ERR       | 6     | Chroma ancillary data checksum error indication.           | ROCW | 0       |
|         | YCS_ERR       | 5     | Luma ancillary data checksum error indication.             | ROCW | 0       |
|         | CCRC_ERR      | 4     | Chroma CRC error indication.                               | ROCW | 0       |
|         | YCRC_ERR      | 3     | Luma CRC error indication.                                 | ROCW | 0       |
|         | LNUM_ERR      | 2     | Line number error indication.                              | ROCW | 0       |
|         | SAV_ERR       | 1     | SAV error indication.                                      | ROCW | 0       |
|         | EAV_ERR       | 0     | EAV error indication.                                      | ROCW | 0       |
| 003h    | RSVD          | 15-0  | Reserved.                                                  | ROCW | 0       |
| 004h    | EDH_DETECT    | 15    | Embedded EDH packet detected.                              | R    | 0       |
|         | ANC_UES_IN    | 14    | Ancillary data – unknown error status flag.                | R    | 0       |
|         | ANC_IDA_IN    | 13    | Ancillary data – internal error detected already flag.     | R    | 0       |
|         | ANC_IDH_IN    | 12    | Ancillary data – internal error detected here flag         | R    | 0       |
|         | ANC_EDA_IN    | 11    | Ancillary data – error detected already flag.              | R    | 0       |
|         | ANC_EDH_IN    | 10    | Ancillary data – error detected here flag.                 | R    | 0       |
|         | FF_UES_IN     | 9     | EDH Full Field – unknown error status flag.                | R    | 0       |
|         | FF_IDA_IN     | 8     | EDH Full Field – internal error detected already flag.     | R    | 0       |
|         | FF_IDH_IN     | 7     | EDH Full Field – internal error detected here flag.        | R    | 0       |
|         | FF_EDA_IN     | 6     | EDH Full Field – error detected already flag.              | R    | 0       |
|         | FF_EDH_IN     | 5     | EDH Full Field – error detected here flag.                 | R    | 0       |
|         | AP_UES_IN     | 4     | EDH Active Picture – unknown error status flag.            | R    | 0       |
|         | AP_IDA_IN     | 3     | EDH Active Picture – internal error detected already flag. | R    | 0       |
|         | AP_IDH_IN     | 2     | EDH Active Picture – internal error detected here flag.    | R    | 0       |
|         | AP_EDA_IN     | 1     | EDH Active Picture – error detected already flag.          | R    | 0       |
|         | AP_EDH_IN     | 0     | EDH Active Picture – error detected here flag.             | R    | 0       |



Table 4-33: Video Core Configuration and Status Registers (Continued)

| Address | Register Name | Bit  | Description                                                | R/W | Default |
|---------|---------------|------|------------------------------------------------------------|-----|---------|
| 005h    | RSVD          | 15   | Reserved.                                                  | R   | 0       |
|         | ANC_UES       | 14   | Ancillary data – Unknown Error Status flag.                | R   | 1       |
|         | ANC_IDA       | 13   | Ancillary data – Internal error Detected Already flag.     | R   | 0       |
|         | ANC_IDH       | 12   | Ancillary data – Internal error Detected Here flag.        | R   | 0       |
|         | ANC_EDA       | 11   | Ancillary data – Error Detected Already flag.              | R   | 0       |
|         | ANC_EDH       | 10   | Ancillary data – Error Detected Here flag.                 | R   | 0       |
|         | FF_UES        | 9    | EDH Full Field – Unknown Error Status flag.                | R   | 1       |
|         | FF_IDA        | 8    | EDH Full Field – Internal error Detected Already flag.     | R   | 0       |
|         | FF_IDH        | 7    | EDH Full Field – Internal error Detected Here flag.        | R   | 0       |
|         | FF_EDA        | 6    | EDH Full Field – Error Detected Already flag.              | R   | 0       |
|         | FF_EDH        | 5    | EDH Full Field – Error Detected Here flag.                 | R   | 0       |
|         | AP_UES        | 4    | EDH Active Picture – Unknown Error Status flag.            | R   | 1       |
|         | AP_IDA        | 3    | EDH Active Picture – Internal error Detected Already flag. | R   | 0       |
|         | AP_IDH        | 2    | EDH Active Picture – Internal error Detected Here flag.    | R   | 0       |
|         | AP_EDA        | 1    | EDH Active Picture – Error Detected Already flag.          | R   | 0       |
|         | AP_EDH        | 0    | EDH Active Picture – Error Detected Here flag.             | R   | 0       |
| 006h    | FF_CRC_V      | 15   | EDH Full Field CRC Validity bit.                           | R   | 0       |
|         | AP_CRC_V      | 14   | EDH Active Picture CRC Validity bit.                       | R   | 0       |
|         | VD_STD        | 13-8 | Detected Video Standard.                                   | R   | 29      |
|         | RSVD          | 7-0  | Reserved.                                                  | R   | 255     |
| 007h    | RSVD          | 15-0 | Reserved.                                                  | R   | 0       |



Table 4-33: Video Core Configuration and Status Registers (Continued)

| Address | Register Name   | Bit   | Description                                                                                      | R/W | Defau |
|---------|-----------------|-------|--------------------------------------------------------------------------------------------------|-----|-------|
| 008h    | RSVD            | 15    | Reserved.                                                                                        | RW  | 0     |
|         | STAT2_CONFIG    | 14-10 | Configure STAT2 output pin:                                                                      | RW  | 2     |
|         |                 |       | 00000 = H Blanking when 861_EN = 0; HSYNC when 861_EN = 1                                        |     |       |
|         |                 |       | 00001 = V Blanking when 861_EN = 0; VSYNC when 861_EN = 1                                        |     |       |
|         |                 |       | 00010 = F bit when 861_EN = 0; Data Enable (DE) when 861_EN = 1                                  |     |       |
|         |                 |       | 00011 = LOCKED                                                                                   |     |       |
|         |                 |       | 00100 = Y/1ANC: ANC indication (SD), Luma ANC indication (HD), DS1 ANC data indication (Full HD) |     |       |
|         |                 |       | 00101 = C/2ANC: Chroma ANC indication (HD) or DS2<br>ANC data indication (Full HD)               |     |       |
|         |                 |       | 00110 = Data Error                                                                               |     |       |
|         |                 |       | 00111 = Video Error                                                                              |     |       |
|         |                 |       | 01000 = Audio Error                                                                              |     |       |
|         |                 |       | 01001 = EDH Detected                                                                             |     |       |
|         |                 |       | 01010 = Carrier Detect                                                                           |     |       |
|         |                 |       | 01011 = RATE_DET0                                                                                |     |       |
|         |                 |       | 01100 = RATE_DET1                                                                                |     |       |
|         |                 |       | 01101 to 11111 = Reserved                                                                        |     |       |
|         | STAT1_CONFIG    | 9-5   | Configure STAT1 output pin. (Refer to above for decoding)                                        | RW  | 1     |
|         | STAT0_CONFIG    | 4-0   | Configure STAT0 output pin. (Refer to above for decoding)                                        | RW  | 0     |
| 009h    | RSVD            | 15    | Reserved.                                                                                        | RW  | 0     |
|         | STAT5_CONFIG    | 14-10 | Configure STAT5 output pin. (Refer to above for decoding)                                        | RW  | 6     |
|         | STAT4_CONFIG    | 9-5   | Configure STAT4 output pin. (Refer to above for decoding)                                        | RW  | 4     |
|         | STAT3_CONFIG    | 4-0   | Configure STAT3 output pin. (Refer to above for decoding)                                        | RW  | 3     |
| 00Ah    | RSVD            | 15-4  | Reserved.                                                                                        | RW  | 0     |
|         | ANC_DATA_SWITCH | 3     | Switches between ancillary data memory banks.                                                    | RW  | 0     |
|         | ANC_DATA_DEL    | 2     | Remove Ancillary Data from output video stream, set to Luma and Chroma blanking values.          | RW  | 0     |
|         | HD_ANC_Y1_C2    | 1     | Extract Ancillary data from Luma and Chroma channels (HD inputs)                                 | RW  | 0     |
|         |                 |       | Extract Ancillary data from DS1 and DS2 (Full HD inputs)                                         |     |       |
|         | HD_ANC_C2       | 0     | Extract Ancillary data only from Chroma channel (HD inputs)                                      | RW  | 0     |
|         |                 |       | Extract Ancillary data only from DS2 (Full HD inputs)                                            |     |       |



Table 4-33: Video Core Configuration and Status Registers (Continued)

| Address         | Register Name     | Bit   | Description                                                                | R/W | Default |
|-----------------|-------------------|-------|----------------------------------------------------------------------------|-----|---------|
| 00Bh            | RSVD              | 15-11 | Reserved.                                                                  | R/W | 0       |
|                 | ANC_LINE_A        | 10-0  | Video Line to extract Ancillary data from.                                 | R/W | 0       |
| 00Ch            | RSVD              | 15-11 | Reserved.                                                                  | R/W | 0       |
|                 | ANC_LINE_B        | 10-0  | Second video Line to extract Ancillary data from.                          | R/W | 0       |
| 00Dh            | RSVD              | 15-0  | Reserved.                                                                  | R   | 0       |
| 00Eh            | RSVD              | 15-0  | Reserved.                                                                  | R   | 0       |
| 00Fh            | ANC_TYPE1         | 15-0  | Programmable DID/SDID pair #1 to extract.                                  | R/W | 0       |
| 010h            | ANC_TYPE2         | 15-0  | Programmable DID/SDID pair #2 to extract.                                  | R/W | 0       |
| 011h            | ANC_TYPE3         | 15-0  | Programmable DID/SDID pair #3 to extract.                                  | R/W | 0       |
| 012h            | ANC_TYPE4         | 15-0  | Programmable DID/SDID pair #4 to extract.                                  | R/W | 0       |
| 013h            | ANC_TYPE5         | 15-0  | Programmable DID/SDID pair #5 to extract.                                  | R/W | 0       |
| 014h to<br>01Eh | RSVD              | -     | Reserved.                                                                  | R/W | 0       |
| 01Fh            | RSVD              | 15-14 | Reserved.                                                                  | R   | 0       |
|                 | WORDS_PER_ACTLINE | 13-0  | Words Per Active Line.                                                     | R   | 0       |
| 020h            | RSVD              | 15-14 | Reserved.                                                                  | R   | 0       |
|                 | WORDS_PER_LINE    | 13-0  | Total Words Per Line.                                                      | R   | 0       |
| 021h            | RSVD              | 15-11 | Reserved.                                                                  | R   | 0       |
|                 | LINES_PER_FRAME   | 10-0  | Total Lines Per Frame.                                                     | R   | 0       |
| 022h            | RATE_SEL_READBACK | 15-14 | Read back detected data rate:  0 = HD  1 & 3 = SD  2 = Full HD             | R   | 0       |
|                 | M                 | 13    | Specifies detected M value $0 = 1.000$ $1 = 1.001$                         | R   | 0       |
|                 | STD_LOCK          | 12    | Video standard lock.                                                       | R   | 0       |
|                 | INT_PROG          | 11    | Interlaced or progressive.                                                 | R   | 0       |
|                 | ACTLINE_PER_FIELD | 10-0  | Active lines per frame.                                                    | R   | 0       |
| 023h            | RSVD              | 15-2  | Reserved.                                                                  | R   | 0       |
|                 | V_LOCK            | 1     | Indicates that the timing signal generator is locked to vertical timing.   | R   | 0       |
|                 | H_LOCK            | 0     | Indicates that the timing signal generator is locked to horizontal timing. | R   | 0       |



Table 4-33: Video Core Configuration and Status Registers (Continued)

| Address         | Register Name | Bit   | Description                                                                                       | R/W | Default |
|-----------------|---------------|-------|---------------------------------------------------------------------------------------------------|-----|---------|
| 024h            | RSVD          | 15-3  | Reserved.                                                                                         | R   | 0       |
|                 | AUTO/MAN      | 2     | Detect data rate automatically (1) or program manually (0).                                       | R/W | 1       |
|                 | RATE_SEL_TOP  | 1-0   | Programmable rate select in manual (slave) mode:                                                  | R/W | 0       |
|                 |               |       | 0 = HD                                                                                            |     |         |
|                 |               |       | 1 & 3 = SD<br>2 = Full HD                                                                         |     |         |
|                 |               |       |                                                                                                   |     |         |
| 025h            | RSVD          | 15-7  | Reserved.                                                                                         | R   | 0       |
|                 | FORMAT_ERR    | 6     | Indicates standard is not recognized for CEA 861 conversion.                                      | R   | 1       |
|                 | FORMAT_ID_861 | 5-0   | CEA-861 format ID of input video stream. Refer to Table 4-20: Supported CEA-861 Formats.          | R   | 0       |
| 026h            | RSVD          | 15-3  | Reserved.                                                                                         | R   | 0       |
|                 | VSYNC_INVERT  | 2     | Invert output VSYNC pulse.                                                                        | R/W | 0       |
|                 | HSYNC_INVERT  | 1     | Invert output HSYNC pulse.                                                                        | R/W | 0       |
|                 | TRS_861       | 0     | For 525i video input format:                                                                      | R/W | 0       |
|                 |               |       | When TRS_861 is set LOW (default), the DE output will be set HIGH for 480 lines as per CEA-861.   |     |         |
|                 |               |       | When TRS_861 is set HIGH, the DE output will be set HIGH for 487 lines (based on ITU-R BT.656 TRS |     |         |
|                 |               |       | timing).                                                                                          |     |         |
|                 |               |       | Only valid when 861_EN is set to '1'. See Section 4.11.1.1.                                       |     |         |
| 027h to<br>036h | RSVD          | _     | Reserved.                                                                                         | R   | 0       |
| 037h            | RSVD          | 15-11 | Reserved.                                                                                         | R   | 0       |
|                 | ERROR_MASK    | 10-0  | Error mask for global error vector:                                                               | R/W | 0       |
|                 |               |       | bit[0] = EAV_ERR mask                                                                             |     |         |
|                 |               |       | bit[1] = SAV_ERR mask                                                                             |     |         |
|                 |               |       | bit[2] = LNUM_ERR mask                                                                            |     |         |
|                 |               |       | bit[3] = YCRC_ERR mask                                                                            |     |         |
|                 |               |       | bit[4] = CCRC_ERR mask                                                                            |     |         |
|                 |               |       | bit[5] = YCS_ERR mask                                                                             |     |         |
|                 |               |       | bit[6] = CCS_ERR mask                                                                             |     |         |
|                 |               |       | bit[7] = Reserved                                                                                 |     |         |
|                 |               |       | bit[8] = AP_CRC_ERR mask                                                                          |     |         |
|                 |               |       | bit[9] = FF_CRC_ERR mask                                                                          |     |         |
| 038h            | RSVD          | 15-0  | Reserved.                                                                                         | R   | 0       |



Table 4-33: Video Core Configuration and Status Registers (Continued)

| Address         | Register Name       | Bit   | Description                                                                                                                                                 | R/W | Defaul |
|-----------------|---------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| 039h            | RSVD                | 15-5  | Reserved.                                                                                                                                                   | R   | 0      |
|                 | SCLK_INV            | 4     | Invert polarity of output serial audio clock.                                                                                                               | R/W | 0      |
|                 | MCLK_INV            | 3     | Invert polarity of output audio master clock.                                                                                                               | R/W | 0      |
|                 | RSVD                | 2     | Reserved.                                                                                                                                                   | R/W | 0      |
|                 | MCLK_SEL            | 1-0   | Audio Master Clock Select.  0 = 128 fs  1 = 256 fs  2 = 512 fs                                                                                              | R/W | 0      |
| 03Ah to<br>06Bh | RSVD                | _     | Reserved.                                                                                                                                                   | R   | 0      |
| 06Ch            | RSVD                | 15-6  | Reserved.                                                                                                                                                   | R/W | 0      |
|                 | DEL_LINE_CLK_SEL    | 5     | Choses between the in-phase (0) and quadrature (1) clocks for DDR mode.                                                                                     | R/W | 0      |
|                 | DEL_LINE_OFFSET     | 4-0   | Controls the offset for the delay line.                                                                                                                     | R/W | 0      |
| 06Dh            | RSVD                | 15-6  | Reserved.                                                                                                                                                   | R/W | 0      |
|                 | IO_DS_CTRL_DOUT_MSB | 5-4   | Drive strength adjustment for DOUT[19:10] outputs<br>and PCLK output:<br>00 = 4mA<br>01 = 8mA<br>10 = 10mA(1.8V), 12mA(3.3V)<br>11 = 12mA(1.8V), 16mA(3.3V) | R/W | 2      |
|                 | IO_DS_CTRL_STAT     | 3-2   | Drive strength adjustment for STAT[5:0] outputs:<br>00 = 4mA<br>01 = 6mA<br>10 = 8mA(1.8V), 10mA(3.3V)<br>11 = 10mA(1.8V), 12mA(3.3V)                       | R/W | 2      |
|                 | IO_DS_CTRL_DOUT_LSB | 1-0   | Drive strength adjustment for DOUT[9:0] outputs:<br>00 = 4mA<br>01 = 6mA<br>10 = 8mA(1.8V), 10mA(3.3V)<br>11 = 10mA(1.8V), 12mA(3.3V)                       | R/W | 3      |
| 06Eh to<br>072h | RSVD                | -     | Reserved.                                                                                                                                                   | R/W | 0      |
| 073h            | RSVD                | 15-10 | Reserved.                                                                                                                                                   | R/W | 0      |
|                 | EQ_BYPASS           | 9     | 0 = EQ enabled<br>1 = bypass EQ                                                                                                                             | R/W | 0      |
|                 | RSVD                | 8-0   | Reserved.                                                                                                                                                   | R/W | 0      |
| 074h to<br>085h | RSVD                |       | Reserved.                                                                                                                                                   | R/W | 0      |



### 4.19.2 SD Audio Core

**Note**: The GV7601 only accepts write/read commands to/from the SD Audio Register Map when the audio de-embedder is locked to the incoming SD video format.

**Table 4-34: SD Audio Core Configuration and Status Registers** 

| Address | Register Name  | Bit   | Description                                                                                                   | R/W | Default |
|---------|----------------|-------|---------------------------------------------------------------------------------------------------------------|-----|---------|
| 400h    | RSVD           | 15-14 | Reserved.                                                                                                     | R/W | 0       |
|         | ALL_DEL        | 13    | Selects deletion of all audio data and all audio control packets.                                             | R/W | 0       |
|         |                |       | 0 = Do not delete existing audio packets                                                                      |     |         |
|         |                |       | 1 = Delete existing audio packets                                                                             |     |         |
|         | MUTE_ALL       | 12    | Mute all output channels.                                                                                     | R/W | 0       |
|         |                |       | 0 = Normal                                                                                                    |     |         |
|         |                |       | 1 = Muted                                                                                                     |     |         |
|         | ACS_USE_SECOND | 11    | Extract Audio Channel Status from second channel pair.                                                        | R/W | 0       |
|         | RSVD           | 10-8  | Reserved.                                                                                                     | R/W | 0       |
|         | LSB_FIRSTD     | 7     | Causes the channel 7 and 8 output format to use LSB first.                                                    | R/W | 0       |
|         |                |       | 0 = MSB first                                                                                                 |     |         |
|         |                |       | 1 = LSB first                                                                                                 |     |         |
|         | LSB_FIRSTC     | 6     | Causes the channel 5 and 6 output format to use LSB first.                                                    | R/W | 0       |
|         |                |       | 0 = MSB first                                                                                                 |     |         |
|         |                |       | 1 = LSB first                                                                                                 |     |         |
|         | LSB_FIRSTB     | 5     | Causes the channel 3 and 4 output format to use LSB first.                                                    | R/W | 0       |
|         |                |       | 0 = MSB first                                                                                                 |     |         |
|         |                |       | 1 = LSB first                                                                                                 |     |         |
|         | LSB_FIRSTA     | 4     | Causes the channel 1 and 2 output format to use LSB first.                                                    | R/W | 0       |
|         |                |       | 0 = MSB first                                                                                                 |     |         |
|         |                |       | 1 = LSB first                                                                                                 |     |         |
|         | IDB            | 3-2   | Specifies the Secondary audio group to extract.                                                               | R/W | 1       |
|         |                |       | 00 = Audio group #1                                                                                           |     |         |
|         |                |       | 01 = Audio group #2                                                                                           |     |         |
|         |                |       | 10 = Audio group #3                                                                                           |     |         |
|         |                |       | 11 = Audio group #4                                                                                           |     |         |
|         |                |       | <b>Note</b> : Should IDA and IDB be set to the same value, they automatically revert to their default values. |     |         |



Table 4-34: SD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name | Bit | Description                                                                                                        | R/W  | Default |
|---------|---------------|-----|--------------------------------------------------------------------------------------------------------------------|------|---------|
| 400h    | IDA           | 1-0 | Specifies the Primary audio group to extract.                                                                      | R/W  | 0       |
|         |               |     | 00 = Audio group #1                                                                                                |      |         |
|         |               |     | 01 = Audio group #2                                                                                                |      |         |
|         |               |     | 10 = Audio group #3                                                                                                |      |         |
|         |               |     | 11 = Audio group #4                                                                                                |      |         |
|         |               |     | <b>Note</b> : Should IDA and IDB be set to the same value, they automatically revert to their default values.      |      |         |
| 401h    | EXT_DET3_4B   | 15  | Set when Secondary group channels 3 and 4 have extended data. Cleared on write.                                    | ROCW | 0       |
|         | EXT_DET1_2B   | 14  | Set when Secondary group channels 1 and 2 have extended data. Cleared on write.                                    | ROCW | 0       |
|         | EXT_DET3_4A   | 13  | Set when Primary group channels 3 and 4 have extended data. Cleared on write.                                      | ROCW | 0       |
|         | EXT_DET1_2A   | 12  | Set when Primary group channels 1 and 2 have extended data. Cleared on write.                                      | ROCW | 0       |
|         | CTL_DBNB_ERR  | 11  | Set when Secondary group control packet Data Block<br>Number sequence is discontinuous. Cleared on write.          | ROCW | 0       |
|         | CTL_DBNA_ERR  | 10  | Set when Primary group control packet Data Block<br>Number sequence is discontinuous. Cleared on write.            | ROCW | 0       |
|         | EXT_DBNB_ERR  | 9   | Set when Secondary group extended data packet Data<br>Block Number sequence is discontinuous. Cleared on<br>write. | ROCW | 0       |
|         | EXT_DBNA_ERR  | 8   | Set when Primary group extended data packet Data<br>Block Number sequence is discontinuous. Cleared on<br>write.   | ROCW | 0       |
|         | SAMP_DBNB_ERR | 7   | Set when Secondary group data packet Data Block<br>Number sequence is discontinuous. Cleared on write.             | ROCW | 0       |
|         | SAMP_DBNA_ERR | 6   | Set when Primary group data packet Data Block<br>Number sequence is discontinuous. Cleared on write.               | ROCW | 0       |
|         | CTRB_DET      | 5   | Set when Secondary group audio control packet is detected. Cleared on write.                                       | ROCW | 0       |
|         | CTRA_DET      | 4   | Set when Primary group audio control packet is detected. Cleared on write.                                         | ROCW | 0       |
|         | ACS_DET3_4B   | 3   | Secondary group audio status detected for channels 3 and 4. Cleared on write.                                      | ROCW | 0       |
|         | ACS_DET1_2B   | 2   | Secondary group audio status detected for channels 1 and 2. Cleared on write.                                      | ROCW | 0       |
|         | ACS_DET3_4A   | 1   | Primary group audio status detected for channels 3 and 4. Cleared on write.                                        | ROCW | 0       |
|         | ACS_DET1_2A   | 0   | Primary group audio status detected for channels 1 and 2. Cleared on write.                                        | ROCW | 0       |



Table 4-34: SD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name   | Bit   | Description                                                                                                                                                         | R/W  | Defaul |
|---------|-----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|
| 402h    | RSVD            | 15-2  | Reserved.                                                                                                                                                           | R/W  | 0      |
|         | ACS_APPLY       | 1     | Cause channel status data in ACSR[183:0] to be transferred to the channel status replacement mechanism. The transfer does not occur until the next status boundary. | R/W  | 0      |
|         | ACS_REGEN       | 0     | Specifies that Audio Channel Status of all channels should be replaced with ACSR[183:0] field.                                                                      | R/W  | 0      |
|         |                 |       | 0 = Do not replace Channel Status                                                                                                                                   |      |        |
|         |                 |       | 1 = Replace Channel Status of all channels                                                                                                                          |      |        |
| 403h    | IDB_READBACK    | 15-14 | Actual value of IDB in the hardware.                                                                                                                                | R    | 1      |
|         | IDA_READBACK    | 13-12 | Actual value of IDA in the hardware.                                                                                                                                | R    | 0      |
|         | XDPG4_DET       | 11    | Set while embedded Group 4 audio extended packets are detected.                                                                                                     | R    | 0      |
|         | XDPG3_DET       | 10    | Set while embedded Group 3 audio extended packets are detected.                                                                                                     | R    | 0      |
|         | XDPG2_DET       | 9     | Set while embedded Group 2 audio extended packets are detected.                                                                                                     | R    | 0      |
|         | XDPG1_DET       | 8     | Set while embedded Group 1 audio extended packets are detected.                                                                                                     | R    | 0      |
|         | ADPG4_DET       | 7     | Set while Group 4 audio data packets are detected.                                                                                                                  | R    | 0      |
|         | ADPG3_DET       | 6     | Set while Group 3 audio data packets are detected.                                                                                                                  | R    | 0      |
|         | ADPG2_DET       | 5     | Set while Group 2 audio data packets are detected.                                                                                                                  | R    | 0      |
|         | ADPG1_DET       | 4     | Set while Group 1 audio data packets are detected.                                                                                                                  | R    | 0      |
|         | ACS_APPLY_WAITD | 3     | Set while output channels 7 and 8 are waiting for a status boundary to apply the ACSR[183:0] data.                                                                  | R    | 0      |
|         | ACS_APPLY_WAITC | 2     | Set while output channels 5 and 6 are waiting for a status boundary to apply the ACSR[183:0] data.                                                                  | R    | 0      |
|         | ACS_APPLY_WAITB | 1     | Set while output channels 3 and 4 are waiting for a status boundary to apply the ACSR[183:0] data.                                                                  | R    | 0      |
|         | ACS_APPLY_WAITA | 0     | Set while output channels 1 and 2 are waiting for a status boundary to apply the ACSR[183:0] data.                                                                  | R    | 0      |
| 404h    | RSVD            | 15-1  | Reserved.                                                                                                                                                           | R/W  | 0      |
|         | CSUM_ERROR      | 0     | Embedded packet checksum error detected. Cleared on write.                                                                                                          | ROCW | 0      |
| 405h    | RSVD            | 15-8  | Reserved.                                                                                                                                                           | R/W  | 0      |
|         | MUTE            | 7-0   | Mute output channels 81 Where bits 7:0 = channel 8:1                                                                                                                | R/W  | 0      |
|         |                 |       | 1 = Mute<br>0 = Normal                                                                                                                                              |      |        |



Table 4-34: SD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name  | Bit  | Description                                            | R/W | Default |
|---------|----------------|------|--------------------------------------------------------|-----|---------|
| 406h    | RSVD           | 15-8 | Reserved.                                              | R/W | 0       |
|         | CH4_VALIDB     | 7    | Secondary group channel 4 sample validity flag.        | R   | 0       |
|         | CH3_VALIDB     | 6    | Secondary group channel 3 sample validity flag.        | R   | 0       |
|         | CH2_VALIDB     | 5    | Secondary group channel 2 sample validity flag.        | R   | 0       |
|         | CH1_VALIDB     | 4    | Secondary group channel 1 sample validity flag.        | R   | 0       |
|         | CH4_VALIDA     | 3    | Primary group channel 4 sample validity flag.          | R   | 0       |
|         | CH3_VALIDA     | 2    | Primary group channel 3 sample validity flag.          | R   | 0       |
|         | CH2_VALIDA     | 1    | Primary group channel 2 sample validity flag.          | R   | 0       |
|         | CH1_VALIDA     | 0    | Primary group channel 1 sample validity flag.          | R   | 0       |
| 407h    | RSVD           | 15   | Reserved.                                              | R/W | 0       |
|         | EN_NOT_LOCKED  | 14   | Asserts interrupt when LOCKED signal is not asserted.  | R/W | 0       |
|         | EN_NO_VIDEO    | 13   | Asserts <i>interrupt</i> when video format is unknown. | R/W | 0       |
|         | EN_CSUM_ERROR  | 12   | Asserts interrupt when checksum error is detected.     | R/W | 0       |
|         | EN_ACS_DET3_4B | 11   | Asserts interrupt when EN_ACS_DET3_4B flag is set.     | R/W | 0       |
|         | EN_ACS_DET1_2B | 10   | Asserts interrupt when EN_ACS_DET1_2B flag is set.     | R/W | 0       |
|         | EN_ACS_DET3_4A | 9    | Asserts interrupt when EN_ACS_DET3_4A flag is set.     | R/W | 0       |
|         | EN_ACS_DET1_2A | 8    | Asserts interrupt when EN_ACS_DET1_2A flag is set.     | R/W | 0       |
|         | EN_CTRB_DET    | 7    | Asserts interrupt when EN_CTRB_DET flag is set.        | R/W | 0       |
|         | EN_CTRA_DET    | 6    | Asserts interrupt when EN_CTRA_DET flag is set.        | R/W | 0       |
|         | EN_DBNB_ERR    | 5    | Asserts interrupt when EN_DBNB_ERR flag is set.        | R/W | 0       |
|         | EN_DBNA_ERR    | 4    | Asserts interrupt when EN_DBNA_ERR flag is set.        | R/W | 0       |
|         | EN_ADPG4_DET   | 3    | Asserts interrupt when the ADPG4_DET flag is set.      | R/W | 0       |
|         | EN_ADPG3_DET   | 2    | Asserts interrupt when the ADPG3_DET flag is set.      | R/W | 0       |
|         | EN_ADPG2_DET   | 1    | Asserts interrupt when the ADPG2_DET flag is set.      | R/W | 0       |
|         | EN_ADPG1_DET   | 0    | Asserts interrupt when the ADPG1_DET flag is set.      | R/W | 0       |



Table 4-34: SD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name | Bit   | Description                                                        | R/W | Defaul |
|---------|---------------|-------|--------------------------------------------------------------------|-----|--------|
| 408h    | ASWLD         | 15-14 | Output channels 7 and 8 word length.  00 = 24-bit                  | R/W | 3      |
|         |               |       | 01 = 20-bit                                                        |     |        |
|         |               |       | 10 = 16-bit                                                        |     |        |
|         |               |       | 11 = Automatic 20-bit or 24-bit                                    |     |        |
|         | ASWLC         | 13-12 | Output channels 5 and 6 word length. (See above for decoding)      | R/W | 3      |
|         | ASWLB         | 11-10 | Output channels 3 and 4 word length. (See above for decoding)      | R/W | 3      |
|         | ASWLA         | 9-8   | Output channels 1 and 2 word length. (See above for decoding)      | R/W | 3      |
|         | AMD           | 7-6   | Output channels 7 and 8 format selector.                           | R/W | 3      |
|         |               |       | 00 = AES/EBU or S/PDIF audio output                                |     |        |
|         |               |       | 01 = Serial audio output: Left justified; MSB first                |     |        |
|         |               |       | 10 = Serial audio output: Right justified; MSB first               |     |        |
|         |               |       | 11 = I <sup>2</sup> S serial audio output                          |     |        |
|         | AMC           | 5-4   | Output channels 5 and 6 format selector. (See above for decoding). | R/W | 3      |
|         | AMB           | 3-2   | Output channels 3 and 4 format selector. (See above for decoding). | R/W | 3      |
|         | AMA           | 1-0   | Output channels 1 and 2 format selector. (See above for decoding). | R/W | 3      |
| 409h    | RSVD          | 15-12 | Reserved.                                                          | R/W | 0      |
|         | OP4_SRC       | 11-9  | Output channel 4 source selector.                                  | R/W | 3      |
|         |               |       | 000 = Primary audio group channel 1                                |     |        |
|         |               |       | 001 = Primary audio group channel 2                                |     |        |
|         |               |       | 010 = Primary audio group channel 3                                |     |        |
|         |               |       | 011 = Primary audio group channel 4                                |     |        |
|         |               |       | 100 = Secondary audio group channel 1                              |     |        |
|         |               |       | 101 = Secondary audio group channel 2                              |     |        |
|         |               |       | 110 = Secondary audio group channel 3                              |     |        |
|         |               |       | 111 = Secondary audio group channel 4                              |     |        |
|         | OP3_SRC       | 8-6   | Output channel 3 source selector (Decode as above).                | R/W | 2      |
|         | OP2_SRC       | 5-3   | Output channel 2 source selector (Decode as above).                | R/W | 1      |
|         | OP1_SRC       | 2-0   | Output channel 1 source selector (Decode as above).                | R/W | 0      |



Table 4-34: SD Audio Core Configuration and Status Registers (Continued)

| Address         | Register Name | Bit   | Description                                                                                                                                                                                                                                                         | R/W | Defaul |
|-----------------|---------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| 40Ah            | RSVD          | 15-12 | Reserved.                                                                                                                                                                                                                                                           | R/W | 0      |
|                 | OP8_SRC       | 11-9  | Output channel 8 source selector.  000 = Primary audio group channel 1  001 = Primary audio group channel 2  010 = Primary audio group channel 3  011 = Primary audio group channel 4  100 = Secondary audio group channel 1  101 = Secondary audio group channel 2 | R/W | 7      |
|                 |               |       | 110 = Secondary audio group channel 3<br>110 = Secondary audio group channel 4                                                                                                                                                                                      |     |        |
|                 | OP7_SRC       | 8-6   | Output channel 7 source selector (Decode as above).                                                                                                                                                                                                                 | R/W | 6      |
|                 | OP6_SRC       | 5-3   | Output channel 6 source selector (Decode as above).                                                                                                                                                                                                                 | R/W | 5      |
|                 | OP5_SRC       | 2-0   | Output channel 5 source selector (Decode as above).                                                                                                                                                                                                                 | R/W | 4      |
| 40Bh to<br>41Fh | RSVD          | -     | Reserved.                                                                                                                                                                                                                                                           | -   | _      |
| 420h            | RSVD          | 15-9  | Reserved.                                                                                                                                                                                                                                                           | R/W | 0      |
|                 | AFN1_2A       | 8-0   | Primary group audio frame number for channels 1 and 2.                                                                                                                                                                                                              | R   | 0      |
| 421h            | RSVD          | 15-9  | Reserved.                                                                                                                                                                                                                                                           | R/W | 0      |
|                 | AFN3_4A       | 8-0   | Primary group audio frame number for channels 3 and 4.                                                                                                                                                                                                              | R   | 0      |
| 422h            | RSVD          | 15-8  | Reserved.                                                                                                                                                                                                                                                           | R/W | 0      |
|                 | RATE3_4A      | 7-5   | Primary group sampling frequency for channels 3 and 4                                                                                                                                                                                                               | R   | 0      |
|                 | ASX3_4A       | 4     | Primary group asynchronous mode for channels 3 and 4.                                                                                                                                                                                                               | R   | 0      |
|                 | RATE1_2A      | 3-1   | Primary group sampling frequency for channels 1 and 2.                                                                                                                                                                                                              | R   | 0      |
|                 | ASX1_2A       | 0     | Primary group asynchronous mode for channels 1 and 2.                                                                                                                                                                                                               | R   | 0      |
| 423h            | RSVD          | 15-4  | Reserved.                                                                                                                                                                                                                                                           | R/W | 0      |
|                 | ACTA          | 3-0   | Primary group active channels.                                                                                                                                                                                                                                      | R   | 0      |
| 424h            | RSVD          | 15-9  | Reserved.                                                                                                                                                                                                                                                           | R/W | 0      |
|                 | DEL1A_1       | 8-1   | Primary Audio group delay data for channel 1.                                                                                                                                                                                                                       | R   | 0      |
|                 | EBIT1A        | 0     | Primary Audio group delay data valid flag for channel<br>1.                                                                                                                                                                                                         | R   | 0      |
| 425h            | RSVD          | 15-9  | Reserved.                                                                                                                                                                                                                                                           | R/W | 0      |
|                 | DEL1A_2       | 8-0   | Primary Audio group delay data for channel 1.                                                                                                                                                                                                                       | R   | 0      |



Table 4-34: SD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name | Bit  | Description                                              | R/W | Default |
|---------|---------------|------|----------------------------------------------------------|-----|---------|
| 426h    | RSVD          | 15-9 | Reserved.                                                | R/W | 0       |
|         | DEL1A_3       | 8-0  | Primary Audio group delay data for channel 1.            | R   | 0       |
| 427h    | RSVD          | 15-9 | Reserved.                                                | R/W | 0       |
|         | DEL2A_4       | 8-1  | Primary Audio group delay data for channel 2.            | R   | 0       |
|         | EBIT2A        | 0    | Primary Audio group delay data valid flag for channel 2. | R   | 0       |
| 428h    | RSVD          | 15-9 | Reserved.                                                | R/W | 0       |
|         | DEL2A_5       | 8-0  | Primary Audio group delay data for channel 2.            | R   | 0       |
| 429h    | RSVD          | 15-9 | Reserved.                                                | R/W | 0       |
|         | DEL2A_6       | 8-0  | Primary Audio group delay data for channel 2.            | R   | 0       |
| 42Ah    | RSVD          | 15-9 | Reserved.                                                | R/W | 0       |
|         | DEL3A_7       | 8-1  | Primary Audio group delay data for channel 3.            | R   | 0       |
|         | EBIT3A        | 0    | Primary Audio group delay data valid flag for channel 3. | R   | 0       |
| 42Bh    | RSVD          | 15-9 | Reserved.                                                | R/W | 0       |
|         | DEL3A_8       | 8-0  | Primary Audio group delay data for channel 3.            | R   | 0       |
| 42Ch    | RSVD          | 15-9 | Reserved.                                                | R/W | 0       |
|         | DEL3A_9       | 8-0  | Primary Audio group delay data for channel 3.            | R   | 0       |
| 42Dh    | RSVD          | 15-9 | Reserved.                                                | R/W | 0       |
|         | DEL4A_10      | 8-1  | Primary Audio group delay data for channel 4.            | R   | 0       |
|         | EBIT4A        | 0    | Primary Audio group delay data valid flag for channel 4. | R   | 0       |
| 42Eh    | RSVD          | 15-9 | Reserved.                                                | R/W | 0       |
|         | DEL4A_11      | 8-0  | Primary Audio group delay data for channel 4.            | R   | 0       |
| 42Fh    | RSVD          | 15-9 | Reserved.                                                | R/W | 0       |
|         | DEL4A_12      | 8-0  | Primary Audio group delay data for channel 4.            | R   | 0       |
| 430h    | RSVD          | 15-9 | Reserved.                                                | R/W | 0       |
|         | AFN1_2B       | 8-0  | Secondary group audio frame number for channels 1 and 2. | R   | 0       |
| 431h    | RSVD          | 15-9 | Reserved.                                                | R/W | 0       |
|         | AFN3_4B       | 8-0  | Secondary group audio frame number for channels 3 and 4. | R   | 0       |



Table 4-34: SD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name | Bit  | Description                                                | R/W | Defau |
|---------|---------------|------|------------------------------------------------------------|-----|-------|
| 432h    | RSVD          | 15-8 | Reserved.                                                  | R   | 0     |
|         | RATE3_4B      | 7-5  | Secondary group sampling frequency for channels 3 and 4.   | R   | 0     |
|         | ASX3_4B       | 4    | Secondary group asynchronous mode for channels 3 and 4.    | R   | 0     |
|         | RATE1_2B      | 3-1  | Secondary group sampling frequency for channels 1 and 2.   | R   | 0     |
|         | ASX1_2B       | 0    | Secondary group asynchronous mode for channels 1 and 2.    | R   | 0     |
| 433h    | RSVD          | 15-4 | Reserved.                                                  | R/W | 0     |
|         | АСТВ          | 3-0  | Secondary group active channels.                           | R   | 0     |
| 434h    | RSVD          | 15-9 | Reserved.                                                  | R/W | 0     |
|         | DEL1B_1       | 8-1  | Secondary Audio group delay data for channel 1.            | R   | 0     |
|         | EBIT1B        | 0    | Secondary Audio group delay data valid flag for channel 1. | R   | 0     |
| 435h    | RSVD          | 15-9 | Reserved.                                                  | R/W |       |
|         | DEL1B_2       | 8-0  | Secondary Audio group delay data for channel 1.            | R   | 0     |
| 436h    | RSVD          | 15-9 | Reserved.                                                  | R/W | 0     |
|         | DEL1B_3       | 8-0  | Secondary Audio group delay data for channel 1.            | R   | 0     |
| 437h    | RSVD          | 15-9 | Reserved.                                                  | R/W | 0     |
|         | DEL2B_4       | 8-1  | Secondary Audio group delay data for channel 2.            | R   | 0     |
|         | EBIT2B        | 0    | Secondary Audio group delay data valid flag for channel 2. | R   | 0     |
| 438h    | RSVD          | 15-9 | Reserved.                                                  | R/W | 0     |
|         | DEL2B_5       | 8-0  | Secondary Audio group delay data for channel 2.            | R   | 0     |
| 439h    | RSVD          | 15-9 | Reserved.                                                  | R/W | 0     |
|         | DEL2B_6       | 8-0  | Secondary Audio group delay data for channel 2.            | R   | 0     |
| 43Ah    | RSVD          | 15-9 | Reserved.                                                  | R/W | 0     |
|         | DEL3B_7       | 8-1  | Secondary Audio group delay data for channel 3.            | R   | 0     |
|         | EBIT3B        | 0    | Secondary Audio group delay data valid flag for channel 3. | R   | 0     |
| 43Bh    | RSVD          | 15-9 | Reserved.                                                  | R/W | 0     |
|         | DEL3B_8       | 8-0  | Secondary Audio group delay data for channel 3.            | R   | 0     |
| 43Ch    | RSVD          | 15-9 | Reserved.                                                  | R/W | 0     |
|         | DEL3B_9       | 8-0  | Secondary Audio group delay data for channel 3.            | R   | 0     |



Table 4-34: SD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name | Bit  | Description                                                           | R/W | Default |
|---------|---------------|------|-----------------------------------------------------------------------|-----|---------|
| 43Dh    | RSVD          | 15-9 | Reserved.                                                             | R/W | 0       |
|         | DEL4B_10      | 8-1  | Secondary Audio group delay data for channel 4.                       | R   | 0       |
|         | EBIT4B        | 0    | Secondary Audio group delay data valid flag for channel 4.            | R   | 0       |
| 43Eh    | RSVD          | 15-9 | Reserved.                                                             | R/W | 0       |
|         | DEL4B_11      | 8-0  | Secondary Audio group delay data for channel 4.                       | R   | 0       |
| 43Fh    | RSVD          | 15-9 | Reserved.                                                             | R/W | 0       |
|         | DEL4B_12      | 8-0  | Secondary Audio group delay data for channel 4.                       | R   | 0       |
| 440h    | ACSR1_2A_0    | 15-0 | Bytes 0 and 1 of audio group A channel status for channels 1 and 2.   | R   | 0       |
| 441h    | ACSR1_2A_2    | 15-0 | Bytes 2 and 3 of audio group A channel status for channels 1 and 2.   | R   | 0       |
| 442h    | ACSR1_2A_4    | 15-0 | Bytes 4 and 5 of audio group A channel status for channels 1 and 2.   | R   | 0       |
| 443h    | ACSR1_2A_6    | 15-0 | Bytes 6 and 7 of audio group A channel status for channels 1 and 2.   | R   | 0       |
| 444h    | ACSR1_2A_8    | 15-0 | Bytes 8 and 9 of audio group A channel status for channels 1 and 2.   | R   | 0       |
| 445H    | ACSR1_2A_10   | 15-0 | Bytes 10 and 11 of audio group A channel status for channels 1 and 2. | R   | 0       |
| 446H    | ACSR1_2A_12   | 15-0 | Bytes 12 and 13 of audio group A channel status for channels 1 and 2. | R   | 0       |
| 447h    | ACSR1_2A_14   | 15-0 | Bytes 14 and 15 of audio group A channel status for channels 1 and 2. | R   | 0       |
| 448h    | ACSR1_2A_16   | 15-0 | Bytes 16 and 17 of audio group A channel status for channels 1 and 2. | R   | 0       |
| 449h    | ACSR1_2A_18   | 15-0 | Bytes 18 and 19 of audio group A channel status for channels 1 and 2. | R   | 0       |
| 44Ah    | ACSR1_2A_20   | 15-0 | Bytes 20 and 21 of audio group A channel status for channels 1 and 2. | R   | 0       |
| 44Bh    | ACSR1_2A_22   | 15-0 | Bytes 22 of audio group A channel status for channels 1 and 2.        | R   | 0       |
| 450h    | ACSR3_4A_0    | 15-0 | Bytes 0 and 1 of audio group A channel status for channels 3 and 4.   | R   | 0       |
| 451h    | ACSR3_4A_2    | 15-0 | Bytes 2 and 3 of audio group A channel status for channels 3 and 4.   | R   | 0       |
| 452h    | ACSR3_4A_4    | 15-0 | Bytes 4 and 5 of audio group A channel status for channels 3 and 4.   | R   | 0       |
| 453h    | ACSR3_4A_6    | 15-0 | Bytes 6 and 7 of audio group A channel status for channels 3 and 4.   | R   | 0       |



Table 4-34: SD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name | Bit  | Description                                                           | R/W | Default |
|---------|---------------|------|-----------------------------------------------------------------------|-----|---------|
| 454h    | ACSR3_4A_8    | 15-0 | Bytes 8 and 9 of audio group A channel status for channels 3 and 4.   | R   | 0       |
| 455h    | ACSR3_4A_10   | 15-0 | Bytes 10 and 11 of audio group A channel status for channels 3 and 4. | R   | 0       |
| 456h    | ACSR3_4A_12   | 15-0 | Bytes 12 and 13 of audio group A channel status for channels 3 and 4. | R   | 0       |
| 457h    | ACSR3_4A_14   | 15-0 | Bytes 14 and 15 of audio group A channel status for channels 3 and 4. | R   | 0       |
| 458h    | ACSR3_4A_16   | 15-0 | Bytes 16 and 17 of audio group A channel status for channels 3 and 4. | R   | 0       |
| 459h    | ACSR3_4A_18   | 15-0 | Bytes 18 and 19 of audio group A channel status for channels 3 and 4. | R   | 0       |
| 45Ah    | ACSR3_4A_20   | 15-0 | Bytes 20 and 21 of audio group A channel status for channels 3 and 4. | R   | 0       |
| 45Bh    | RSVD          | 15-8 | Reserved.                                                             | R/W | 0       |
|         | ACSR3_4A_22   | 7-0  | Bytes 22 of audio group A channel status for channels 3 and 4.        | R   | 0       |
| 460h    | ACSR1_2B_0    | 15-0 | Bytes 0 and 1 of audio group B channel status for channels 1 and 2.   | R   | 0       |
| 461h    | ACSR1_2B_2    | 15-0 | Bytes 2 and 3 of audio group B channel status for channels 1 and 2.   | R   | 0       |
| 462h    | ACSR1_2B_4    | 15-0 | Bytes 4 and 5 of audio group B channel status for channels 1 and 2.   | R   | 0       |
| 463h    | ACSR1_2B_6    | 15-0 | Bytes 6 and 7 of audio group B channel status for channels 1 and 2.   | R   | 0       |
| 464h    | ACSR1_2B_8    | 15-0 | Bytes 8 and 9 of audio group B channel status for channels 1 and 2.   | R   | 0       |
| 465h    | ACSR1_2B_10   | 15-0 | Bytes 10 and 11 of audio group B channel status for channels 1 and 2. | R   | 0       |
| 466h    | ACSR1_2B_12   | 15-0 | Bytes 12 and 13 of audio group B channel status for channels 1 and 2. | R   | 0       |
| 467h    | ACSR1_2B_14   | 15-0 | Bytes 14 and 15 of audio group B channel status for channels 1 and 2. | R   | 0       |
| 468h    | ACSR1_2B_16   | 15-0 | Bytes 16 and 17 of audio group B channel status for channels 1 and 2. | R   | 0       |
| 469h    | ACSR1_2B_18   | 15-0 | Bytes 18 and 19 of audio group B channel status for channels 1 and 2. | R   | 0       |
| 46Ah    | ACSR1_2B_20   | 15-0 | Bytes 20 and 21 of audio group B channel status for channels 1 and 2. | R   | 0       |



Table 4-34: SD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name | Bit  | Description                                                                                                                                       | R/W | Default |
|---------|---------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|
| 46Bh    | RSVD          | 15-8 | Reserved.                                                                                                                                         | R/W | 0       |
|         | ACSR1_2B_22   | 7-0  | Bytes 22 of audio group B channel status for channels 1 and 2.                                                                                    | R   | 0       |
| 470h    | ACSR3_4B_0    | 15-0 | Bytes 0 and 1 of audio group B channel status for channels 3 and 4.                                                                               | R   | 0       |
| 471h    | ACSR3_4B_2    | 15-0 | Bytes 2 and 3 of audio group B channel status for channels 3 and 4.                                                                               | R   | 0       |
| 472h    | ACSR3_4B_4    | 15-0 | Bytes 4 and 5 of audio group B channel status for channels 3 and 4.                                                                               | R   | 0       |
| 473h    | ACSR3_4B_6    | 15-0 | Bytes 6 and 7 of audio group B channel status for channels 3 and 4.                                                                               | R   | 0       |
| 474h    | ACSR3_4B_8    | 15-0 | Bytes 8 and 9 of audio group B channel status for channels 3 and 4.                                                                               | R   | 0       |
| 475h    | ACSR3_4B_10   | 15-0 | Bytes 10 and 11 of audio group B channel status for channels 3 and 4.                                                                             | R   | 0       |
| 476h    | ACSR3_4B_12   | 15-0 | Bytes 12 and 13 of audio group B channel status for channels 3 and 4.                                                                             | R   | 0       |
| 477h    | ACSR3_4B_14   | 15-0 | Bytes 14 and 15 of audio group B channel status for channels 3 and 4.                                                                             | R   | 0       |
| 478h    | ACSR3_4B_16   | 15-0 | Bytes 16 and 17 of audio group B channel status for channels 3 and 4.                                                                             | R   | 0       |
| 479h    | ACSR3_4B_18   | 15-0 | Bytes 18 and 19 of audio group B channel status for channels 3 and 4.                                                                             | R   | 0       |
| 47Ah    | ACSR3_4B_20   | 15-0 | Bytes 20 and 21 of audio group B channel status for channels 3 and 4.                                                                             | R   | 0       |
| 47Bh    | ACSR3_4B_22   | 15-0 | Bytes 22 of audio group B channel status for channels 3 and 4.                                                                                    | R   | 0       |
| 480h    | ACSR_BYTE0    | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU audio. 8 bits per register for 23 registers. | R   | 0       |
| 481h    | ACSR_BYTE1    | 7-0  | -                                                                                                                                                 | W   | 0       |
| 482h    | ACSR_BYTE2    | 7-0  | -                                                                                                                                                 | W   | 0       |
| 483h    | ACSR_BYTE3    | 7-0  | -                                                                                                                                                 | W   | 0       |
| 484h    | ACSR_BYTE4    | 7-0  | -                                                                                                                                                 | W   | 0       |
| 485h    | ACSR_BYTE5    | 7-0  | -                                                                                                                                                 | W   | 0       |
| 486h    | ACSR_BYTE6    | 7-0  | -                                                                                                                                                 | W   | 0       |
| 487h    | ACSR_BYTE7    | 7-0  | -                                                                                                                                                 | W   | 0       |
| 488h    | ACSR_BYTE8    | 7-0  | -                                                                                                                                                 | W   | 0       |
| 489h    | ACSR_BYTE9    | 7-0  | -                                                                                                                                                 | W   | 0       |
|         |               |      |                                                                                                                                                   |     |         |



Table 4-34: SD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name | Bit | Description | R/W | Default |
|---------|---------------|-----|-------------|-----|---------|
| 48Ah    | ACSR_BYTE10   | 7-0 | -           | W   | 0       |
| 48Bh    | ACSR_BYTE11   | 7-0 | -           | W   | 0       |
| 48Ch    | ACSR_BYTE12   | 7-0 | -           | W   | 0       |
| 48Dh    | ACSR_BYTE13   | 7-0 | -           | W   | 0       |
| 48Eh    | ACSR_BYTE14   | 7-0 | -           | W   | 0       |
| 48Fh    | ACSR_BYTE15   | 7-0 | -           | W   | 0       |
| 490h    | ACSR_BYTE16   | 7-0 | -           | W   | 0       |
| 491h    | ACSR_BYTE17   | 7-0 | -           | W   | 0       |
| 492h    | ACSR_BYTE18   | 7-0 | -           | W   | 0       |
| 493h    | ACSR_BYTE19   | 7-0 | -           | W   | 0       |
| 494h    | ACSR_BYTE20   | 7-0 | -           | W   | 0       |
| 495h    | ACSR_BYTE21   | 7-0 | -           | W   | 0       |
| 496h    | ACSR_BYTE22   | 7-0 | -           | W   | 0       |



# 4.19.3 HD Audio Core Registers

**Note**: The GV7601 only accepts write/read commands to/from the HD Audio Register Map when the device is locked to the incoming HD video format.

**Table 4-35: HD Audio Core Configuration and Status Registers** 

| Address | Register Name  | Bit   | Description                                                      | R/W | Default |
|---------|----------------|-------|------------------------------------------------------------------|-----|---------|
| 200h    | ECC_OFF        | 15    | Disables ECC error correction.                                   | R/W | 0       |
|         | ALL_DEL        | 14    | Selects deletion of all audio data and all audio control packets | R/W | 0       |
|         |                |       | 0 = Do not delete existing audio control packets                 |     |         |
|         |                |       | 1 = Delete existing audio control packets.                       |     |         |
|         | MUTE_ALL       | 13    | Mute all output channels                                         | R/W | 0       |
|         |                |       | 0 = Normal                                                       |     |         |
|         |                |       | 1 = Muted                                                        |     |         |
|         | ACS_USE_SECOND | 12    | Extract Audio Channel Status from second channel pair.           | R/W | 0       |
|         | ASWLB          | 11-10 | Secondary group output word length.                              | R/W | 3       |
|         |                |       | 00 = 24 bits                                                     |     |         |
|         |                |       | 01 = 20 bits                                                     |     |         |
|         |                |       | 10 = 16 bits                                                     |     |         |
|         |                |       | 11 = invalid                                                     |     |         |
|         | ASWLA          | 9-8   | Primary group output word length                                 | R/W | 3       |
|         |                |       | 00 = 24 bits                                                     |     |         |
|         |                |       | 01 = 20 bits                                                     |     |         |
|         |                |       | 10 = 16 bits                                                     |     |         |
|         |                |       | 11 = invalid                                                     |     |         |
|         | AMB            | 7-6   | Secondary group output format selector.                          | R/W | 3       |
|         |                |       | 00 = AES/EBU or S/PDIF audio output                              |     |         |
|         |                |       | 01 = Serial audio output: left justified MSB first               |     |         |
|         |                |       | 10 = Serial audio output: right justified. MSB first             |     |         |
|         |                |       | 11 = I <sup>2</sup> S serial audio output                        |     |         |
|         | AMA            | 5-4   | Primary group output format selector.                            | R/W | 3       |
|         |                |       | 00 = AES/EBU or S/PDIF audio output                              |     |         |
|         |                |       | 01 = Serial audio output: left justified MSB first               |     |         |
|         |                |       | 10 = Serial audio output: right justified MSB first              |     |         |
|         |                |       | 11 = I <sup>2</sup> S serial audio output                        |     |         |



Table 4-35: HD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name  | Bit  | Description                                                                                                   | R/W  | Defaul |
|---------|----------------|------|---------------------------------------------------------------------------------------------------------------|------|--------|
| 200h    | IDB            | 3-2  | Specifies the Secondary audio group to extract.                                                               | R/W  | 1      |
|         |                |      | 00 = Audio group #1                                                                                           |      |        |
|         |                |      | 01 = Audio group #2                                                                                           |      |        |
|         |                |      | 10 = Audio group #3                                                                                           |      |        |
|         |                |      | 11 = Audio group #4                                                                                           |      |        |
|         |                |      | <b>Note</b> : Should IDA and IDB be set to the same value, they automatically revert to their default values. |      |        |
|         | IDA            | 1-0  | Specifies the Primary audio group to extract.                                                                 | R/W  | 0      |
|         |                |      | 00 = Audio group #1                                                                                           |      |        |
|         |                |      | 01 = Audio group #2                                                                                           |      |        |
|         |                |      | 10 = Audio group #3                                                                                           |      |        |
|         |                |      | 11 = Audio group #4                                                                                           |      |        |
|         |                |      | <b>Note</b> : Should IDA and IDB be set to the same value, they automatically revert to their default values. |      |        |
| 201h    | RSVD           | 15-8 | Reserved.                                                                                                     | R/W  | 0      |
|         | DBNB_ERR       | 7    | Set when Secondary group audio Data Block<br>Number sequence is discontinuous.                                | ROCW | 0      |
|         | DBNA_ERR       | 6    | Set when Primary group audio Data Block Number sequence is discontinuous.                                     | ROCW | 0      |
|         | CTRB_DET       | 5    | Set when Secondary group audio control packet is detected.                                                    | ROCW | 0      |
|         | CTRA_DET       | 4    | Set when Primary group audio control packet is detected.                                                      | ROCW | 0      |
|         | ACS_DET3_4B    | 3    | Secondary group audio status detected for channels 3 and 4.                                                   | ROCW | 0      |
|         | ACS_DET1_2B    | 2    | Secondary group audio status detected for channels 1 and 2.                                                   | ROCW | 0      |
|         | ACS_DET3_4A    | 1    | Primary group audio status detected for channels 3 and 4.                                                     | ROCW | 0      |
|         | ACS_DET1_2A    | 0    | Primary group audio status detected for channels 1 and 2.                                                     | ROCW | 0      |
| 202h    | RSVD           | 15-9 | Reserved.                                                                                                     | R    | 0      |
|         | IDB_READBACK   | 8-7  | Actual value of IDB in the hardware.                                                                          | R    | 1      |
|         | IDA_READBACK   | 6-5  | Actual value of IDA in the hardware.                                                                          | R    | 0      |
|         | ADPG4_DET      | 4    | Set while Group 4 audio data packets are detected.                                                            | R    | 0      |
|         | ADPG3_DET      | 3    | Set while Group 3 audio data packets are detected.                                                            | R    | 0      |
|         | ADPG2_DET      | 2    | Set while Group 2 audio data packets are detected.                                                            | R    | 0      |
|         | ADPG1_DET      | 1    | Set while Group 1 audio data packets are detected.                                                            | R    | 0      |
|         | ACS_APPLY_WAIT | 0    | Set while output channels 1 and 2 are waiting for a status boundary to apply the ACSR[183:0] data.            | R    | 0      |



Table 4-35: HD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name | Bit  | Description                                                                                                                                                         | R/W  | Default |
|---------|---------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 203h    | RSVD          | 15-2 | Reserved.                                                                                                                                                           | R/W  | 0       |
|         | ECCA_ERROR    | 1    | Primary group audio data packet error detected.                                                                                                                     | ROCW | 0       |
|         | ECCB_ERROR    | 0    | Secondary group audio data packet error detected.                                                                                                                   | ROCW | 0       |
| 204h    | RSVD          | 15-2 | Reserved.                                                                                                                                                           | R/W  | 0       |
|         | ACS_APPLY     | 1    | Cause channel status data in ACSR[183:0] to be transferred to the channel status replacement mechanism. The transfer does not occur until the next status boundary. | R/W  | 0       |
|         | ACS_REGEN     | 0    | Specifies that Audio Channel Status of all channels should be replaced with ACSR[183:0] field.                                                                      | R/W  | 0       |
|         |               |      | 0 = Do not replace Channel Status                                                                                                                                   |      |         |
|         |               |      | 1 = Replace Channel Status of all channels                                                                                                                          |      |         |
| 205h    | RSVD          | 15   | Reserved.                                                                                                                                                           | R/W  | 0       |
|         | MUTEB         | 7-4  | Mute Secondary output channels 41 where bits 7:4 = channel 4:1                                                                                                      | R/W  | 0       |
|         |               |      | 1 = Mute                                                                                                                                                            |      |         |
|         |               |      | 0 = Normal                                                                                                                                                          |      |         |
|         | MUTEA         | 3-0  | Mute Primary output channels 41 where bits 3:0 = channel 4:1                                                                                                        | R/W  | 0       |
|         |               |      | 1 = Mute                                                                                                                                                            |      |         |
|         |               |      | 0 = Normal                                                                                                                                                          |      |         |
| 206h    | RSVD          | 15-8 | Reserved.                                                                                                                                                           | R/W  | 0       |
|         | CH4_VALIDB    | 7    | Secondary group channel 4 sample validity flag.                                                                                                                     | R    | 0       |
|         | CH3_VALIDB    | 6    | Secondary group channel 3 sample validity flag.                                                                                                                     | R    | 0       |
|         | CH2_VALIDB    | 5    | Secondary group channel 2 sample validity flag.                                                                                                                     | R    | 0       |
|         | CH1_VALIDB    | 4    | Secondary group channel 1 sample validity flag.                                                                                                                     | R    | 0       |
|         | CH4_VALIDA    | 3    | Primary group channel 4 sample validity flag.                                                                                                                       | R    | 0       |
|         | CH3_VALIDA    | 2    | Primary group channel 3 sample validity flag.                                                                                                                       | R    | 0       |
|         | CH2_VALIDA    | 1    | Primary group channel 2 sample validity flag.                                                                                                                       | R    | 0       |
|         | CH1_VALIDA    | 0    | Primary group channel 1 sample validity flag.                                                                                                                       | R    | 0       |



Table 4-35: HD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name    | Bit   | Description                                                        | R/W | Default |
|---------|------------------|-------|--------------------------------------------------------------------|-----|---------|
| 207h    | RSVD             | 15    | Reserved.                                                          | R/W | 0       |
|         | EN_MISSING_PHASE | 14    | Asserts interrupt when chosen group's phase data is missing        | R/W | 0       |
|         | EN_ACS_DET3_4B   | 13    | Asserts interrupt when ACS_DET3_4B flag is set.                    | R/W | 0       |
|         | EN_ACS_DET1_2B   | 12    | Asserts interrupt when ACS_DET1_2B flag is set.                    | R/W | 0       |
|         | EN_ACS_DET3_4A   | 11    | Asserts interrupt when ACS_DET3_4A flag is set.                    | R/W | 0       |
|         | EN_ACS_DET1_2A   | 10    | Asserts interrupt when ACS_DET1_2A flag is set.                    | R/W | 0       |
|         | EN_CTRB_DET      | 9     | Asserts interrupt when CTRB_DET flag is set.                       | R/W | 0       |
|         | EN_CTRA_DET      | 8     | Asserts interrupt when CTRA_DET flag is set.                       | R/W | 0       |
|         | EN_DBNB_ERR      | 7     | Asserts interrupt when DBNB_ERR flag is set.                       | R/W | 0       |
|         | EN_DBNA_ERR      | 6     | Asserts interrupt when DBNA_ERR flag is set.                       | R/W | 0       |
|         | EN_ECCB_ERR      | 5     | Asserts interrupt when ECCB_ERR flag is set.                       | R/W | 0       |
|         | EN_ECCA_ERR      | 4     | Asserts interrupt when ECCA_ERR flag is set.                       | R/W | 0       |
|         | EN_ADPG4_DET     | 3     | Asserts interrupt when ADPG4_DET flag is set.                      | R/W | 0       |
|         | EN_ADPG3_DET     | 2     | Asserts interrupt when ADPG3_DET flag is set.                      | R/W | 0       |
|         | EN_ADPG2_DET     | 1     | Asserts interrupt when ADPG2_DET flag is set.                      | R/W | 0       |
|         | EN_ADPG1_DET     | 0     | Asserts interrupt when ADPG1_DET flag is set.                      | R/W | 0       |
| 208h    | RSVD             | 15-11 | Reserved.                                                          | R/W | 0       |
|         | SEL_PHASE_SRC    | 10    | Selects between the Primary and Secondary embedded phase info.     | R/W | 0       |
|         | LSB_FIRSTB       | 9     | Causes the Secondary group serial output formats to use LSB first. | R/W | 0       |
|         | LSB_FIRSTA       | 8     | Causes the Primary group serial output formats to use LSB first.   | R/W | 0       |
|         | RSVD             | 7-4   | Reserved.                                                          | R/W | 0       |
|         | EN_NOT_LOCKED    | 3     | Asserts interrupt when locked is not asserted.                     | R/W | 0       |
|         | EN_NO_VIDEO      | 2     | Asserts interrupt when the video format is unknown.                | R/W | 0       |
|         | EN_NO_PHASEB     | 1     | Asserts interrupt when NO_PHASEB_DATA is set.                      | R/W | 0       |
|         | EN_NO_PHASEA     | 0     | Asserts interrupt when NO_PHASEA_DATA is set.                      | R/W | 0       |



Table 4-35: HD Audio Core Configuration and Status Registers (Continued)

| Address         | Register Name  | Bit   | Description                                                                                                                                                                                                                                                                                                                               | R/W | Defaul |
|-----------------|----------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| 209h            | RSVD           | 15-3  | Reserved.                                                                                                                                                                                                                                                                                                                                 | R/W | 0      |
|                 | MISSING_PHASE  | 2     | Embedded phase info for chosen group missing or incorrect.                                                                                                                                                                                                                                                                                | R   | 0      |
|                 | NO_PHASEB_DATA | 1     | Secondary group has invalid embedded clock information.                                                                                                                                                                                                                                                                                   | R   | 0      |
|                 | NO_PHASEA_DATA | 0     | Primary group has invalid embedded clock information.                                                                                                                                                                                                                                                                                     | R   | 0      |
| 20Ah            | RSVD           | 15-12 | Reserved.                                                                                                                                                                                                                                                                                                                                 | R   | 0      |
|                 | OP4_SRC        | 11-9  | Output channel 4 source selector.  000: Primary audio group channel 1  001: Primary audio group channel 2  010: Primary audio group channel 3  011: Primary audio group channel 4  100: Secondary audio group channel 1  101: Secondary audio group channel 2  110: Secondary audio group channel 3  111: Secondary audio group channel 4 | R/W | 3      |
|                 | OP3_SRC        | 8-6   | Output channel 3 source selector (Decode as above).                                                                                                                                                                                                                                                                                       | R/W | 2      |
|                 | OP2_SRC        | 5-3   | Output channel 2 source selector (Decode as above).                                                                                                                                                                                                                                                                                       | R/W | 1      |
|                 | OP1_SRC        | 2-0   | Output channel 1 source selector (Decode as above).                                                                                                                                                                                                                                                                                       | R/W | 0      |
| 20Bh            | RSVD           | 15-12 | Reserved.                                                                                                                                                                                                                                                                                                                                 | R/W | 0      |
|                 | OP8_SRC        | 11-9  | Output channel 8 source selector.  000: Primary audio group channel 1  001: Primary audio group channel 2  010: Primary audio group channel 3  011: Primary audio group channel 4  100: Secondary audio group channel 1  101: Secondary audio group channel 2  110: Secondary audio group channel 3  111: Secondary audio group channel 4 | R/W | 7      |
|                 | OP7_SRC        | 8-6   | Output channel 7 source selector (Decode as above).                                                                                                                                                                                                                                                                                       | R/W | 6      |
|                 | OP6_SRC        | 5-3   | Output channel 6 source selector (Decode as above).                                                                                                                                                                                                                                                                                       | R/W | 5      |
|                 | OP5_SRC        | 2-0   | Output channel 5 source selector (Decode as above).                                                                                                                                                                                                                                                                                       | R/W | 4      |
| 20Ch to<br>21Fh | RSVD           | -     | Reserved.                                                                                                                                                                                                                                                                                                                                 | -   | -      |
| 220h            | RSVD           | 15-9  | Reserved.                                                                                                                                                                                                                                                                                                                                 | R/W | 0      |
|                 | AFNA           | 8-0   | Primary group audio frame number.                                                                                                                                                                                                                                                                                                         | R   | 0      |
| 221h            | RSVD           | 15-4  | Reserved.                                                                                                                                                                                                                                                                                                                                 | R/W | 0      |
|                 | RATEA          | 3-1   | Primary group sampling frequency for channels 1 and 2.                                                                                                                                                                                                                                                                                    | R   | 0      |
|                 | ASXA           | 0     | Primary group asynchronous mode for channels 1 and 2.                                                                                                                                                                                                                                                                                     | R   | 0      |



Table 4-35: HD Audio Core Configuration and Status Registers (Continued)

| Address         | Register Name | Bit  | Description                                                     | R/W | Default |
|-----------------|---------------|------|-----------------------------------------------------------------|-----|---------|
| 222h            | RSVD          | 15-4 | Reserved.                                                       | R/W | 0       |
|                 | ACTA          | 3-0  | Primary group active channels.                                  | R   | 0       |
| 223h            | RSVD          | 15-9 | Reserved.                                                       | R/W | 0       |
|                 | DEL1_2A_1     | 8-1  | Primary Audio group delay data for channels 1 and 2 [7:0].      | R   | 0       |
|                 | EBIT1_2A      | 0    | Primary Audio group delay data valid flag for channels 1 and 2. | R   | 0       |
| 224h            | RSVD          | 15-9 | Reserved.                                                       | R/W | 0       |
|                 | DEL1_2A_2     | 8-0  | Primary Audio group delay data for channels 1 and 2 [16:8].     | R   | 0       |
| 225h            | RSVD          | 15-9 | Reserved.                                                       | R/W | 0       |
|                 | DEL1_2A_3     | 8-0  | Primary Audio group delay data for channels 1 and 2 [25:17].    | R   | 0       |
| 226h            | RSVD          | 15-9 | Reserved.                                                       | R/W | 0       |
|                 | DEL3_4A_4     | 8-1  | Primary Audio group delay data for channels 3 and 4 [7:0].      | R   | 0       |
|                 | EBIT3_4A      | 0    | Primary Audio group delay data valid flag for channels 3 and 4. | R   | 0       |
| 227h            | RSVD          | 15-9 | Reserved.                                                       | R/W | 0       |
|                 | DEL3_4A_5     | 8-0  | Primary Audio group delay data for channels 3 and 4 [16:8].     | R   | 0       |
| 228h            | RSVD          | 15-9 | Reserved.                                                       | R/W | 0       |
|                 | DEL3_4A_6     | 8-0  | Primary Audio group delay data for channels 3 and 4 [25:17].    | R   | 0       |
| 229h to<br>22Fh | RSVD          | -    | Reserved.                                                       | R/W | 0       |
| 230h            | RSVD          | 15-9 | Reserved.                                                       | R/W | 0       |
|                 | AFNB          | 8-0  | Secondary group audio frame number.                             | R   | 0       |
| 231h            | RSVD          | 15-4 | Reserved.                                                       | R/W | 0       |
|                 | RATEB         | 3-1  | Secondary group sampling frequency for channels 1 and 2.        | R   | 0       |
|                 | ASXB          | 0    | Secondary group asynchronous mode for channels 1 and 2.         | R   | 0       |
| 232h            | RSVD          | 15-4 | Reserved.                                                       | R/W | 0       |
|                 | ACTB          | 3-0  | Secondary group active channels.                                | R   | 0       |



Table 4-35: HD Audio Core Configuration and Status Registers (Continued)

| Address         | Register Name | Bit  | Description                                                           | R/W | Defaul |
|-----------------|---------------|------|-----------------------------------------------------------------------|-----|--------|
| 233h            | RSVD          | 15-9 | Reserved.                                                             | R/W | 0      |
|                 | DEL1_2B_1     | 8-1  | Secondary Audio group delay data valid flag for channels 1 and 2.     | R   | 0      |
|                 | EBIT1_2B      | 0    | Secondary Audio group delay data for channels 1 and 2 [7:0].          | R   | 0      |
| 234h            | RSVD          | 15-9 | Reserved.                                                             | R/W | 0      |
|                 | DEL1_2B_2     | 8-0  | Secondary Audio group delay data for channels 1 and 2 [16:8].         | R   | 0      |
| 235h            | RSVD          | 15-9 | Reserved.                                                             | R/W | 0      |
|                 | DEL1_2B_3     | 8-0  | Secondary Audio group delay data for channels 1 and 2 [25:17].        | R   | 0      |
| 236h            | RSVD          | 15-9 | Reserved.                                                             | R/W | 0      |
|                 | DEL3_4B_4     | 8-1  | Secondary Audio group delay data for channels 3 and 4 [7:0].          | R   | 0      |
|                 | EBIT3_4B      | 0    | Secondary Audio group delay data valid flag for channels 3 and 4.     | R   | 0      |
| 237h            | RSVD          | 15-9 | Reserved.                                                             | R/W | 0      |
|                 | DEL3_4B_5     | 8-0  | Secondary Audio group delay data for channels 3 and 4 [16:8].         | R   | 0      |
| 238h            | RSVD          | 15-9 | Reserved.                                                             | R/W | 0      |
|                 | DEL3_4B_6     | 8-0  | Secondary Audio group delay data for channels 3 and 4 [25:17].        | R   | 0      |
| 239h to<br>23Fh | RSVD          | -    | Reserved.                                                             | R/W | 0      |
| 240h            | ACSR1_2A_0    | 15-0 | Bytes 0 and 1 of audio group A channel status for channels 1 and 2.   | R   | 0      |
| 241h            | ACSR1_2A_2    | 15-0 | Bytes 2 and 3 of audio group A channel status for channels 1 and 2.   | R   | 0      |
| 242h            | ACSR1_2A_4    | 15-0 | Bytes 4 and 5 of audio group A channel status for channels 1 and 2.   | R   | 0      |
| 243h            | ACSR1_2A_6    | 15-0 | Bytes 6 and 7 of audio group A channel status for channels 1 and 2.   | R   | 0      |
| 244h            | ACSR1_2A_8    | 15-0 | Bytes 8 and 9 of audio group A channel status for channels 1 and 2.   | R   | 0      |
| 245h            | ACSR1_2A_10   | 15-0 | Bytes 10 and 11 of audio group A channel status for channels 1 and 2. | R   | 0      |
| 246h            | ACSR1_2A_12   | 15-0 | Bytes 12 and 13 of audio group A channel status for channels 1 and 2. | R   | 0      |
| 247h            | ACSR1_2A_14   | 15-0 | Bytes 14 and 15 of audio group A channel status for channels 1 and 2. | R   | 0      |



Table 4-35: HD Audio Core Configuration and Status Registers (Continued)

| Address         | Register Name | Bit  | Description                                                           | R/W | Defaul |
|-----------------|---------------|------|-----------------------------------------------------------------------|-----|--------|
| 248h            | ACSR1_2A_16   | 15-0 | Bytes 16 and 17 of audio group A channel status for channels 1 and 2. | R   | 0      |
| 249h            | ACSR1_2A_18   | 15-0 | Bytes 18 and 19 of audio group A channel status for channels 1 and 2. | R   | 0      |
| 24Ah            | ACSR1_2A_20   | 15-0 | Bytes 20 and 21 of audio group A channel status for channels 1 and 2. | R   | 0      |
| 24Bh            | RSVD          | 15-8 | Reserved.                                                             | R/W | 0      |
|                 | ACSR1_2A_22   | 7-0  | Bytes 22 of audio group A channel status for channels 1 and 2.        | R   | 0      |
| 24Ch to<br>24Fh | RSVD          | -    | Reserved.                                                             | R/W | 0      |
| 250h            | ACSR3_4A_0    | 15-0 | Bytes 0 and 1 of audio group A channel status for channels 3 and 4.   | R   | 0      |
| 251h            | ACSR3_4A_2    | 15-0 | Bytes 2 and 3 of audio group A channel status for channels 3 and 4.   | R   | 0      |
| 252h            | ACSR3_4A_4    | 15-0 | Bytes 4 and 5 of audio group A channel status for channels 3 and 4.   | R   | 0      |
| 253h            | ACSR3_4A_6    | 15-0 | Bytes 6 and 7 of audio group A channel status for channels 3 and 4.   | R   | 0      |
| 254h            | ACSR3_4A_8    | 15-0 | Bytes 8 and 9 of audio group A channel status for channels 3 and 4.   | R   | 0      |
| 255h            | ACSR3_4A_10   | 15-0 | Bytes 10 and 11 of audio group A channel status for channels 3 and 4. | R   | 0      |
| 256h            | ACSR3_4A_12   | 15-0 | Bytes 12 and 13 of audio group A channel status for channels 3 and 4. | R   | 0      |
| 257h            | ACSR3_4A_14   | 15-0 | Bytes 14 and 15 of audio group A channel status for channels 3 and 4. | R   | 0      |
| 258h            | ACSR3_4A_16   | 15-0 | Bytes 16 and 17 of audio group A channel status for channels 3 and 4. | R   | 0      |
| 259h            | ACSR3_4A_18   | 15-0 | Bytes 18 and 19 of audio group A channel status for channels 3 and 4. | R   | 0      |
| 25Ah            | ACSR3_4A_20   | 15-0 | Bytes 20 and 21 of audio group A channel status for channels 3 and 4. | R   | 0      |
| 25Bh            | RSVD          | 15-8 | Reserved.                                                             | R/W | 0      |
|                 | ACSR3_4A_22   | 7-0  | Bytes 22 of audio group A channel status for channels 3 and 4.        | R   | 0      |
| 25Ch to<br>25Fh | RSVD          | -    | Reserved.                                                             | R/W | 0      |
| 260h            | ACSR1_2B_0    | 15-0 | Bytes 0 and 1 of audio group B channel status for channels 1 and 2.   | R   | 0      |



Table 4-35: HD Audio Core Configuration and Status Registers (Continued)

| Address Register Name Bit Description |             | Description | R/W Def                                                                 |     |   |
|---------------------------------------|-------------|-------------|-------------------------------------------------------------------------|-----|---|
| 261h                                  | ACSR1_2B_2  | 15-0        | Bytes 2 and 3 of audio group B channel status for channels 1 and 2.     | R   | 0 |
| 262h                                  | ACSR1_2B_4  | 15-0        | Bytes 4 and 5 of audio group B channel status for channels 1 and 2.     |     | 0 |
| 263h                                  | ACSR1_2B_6  | 15-0        | Bytes 6 and 7 of audio group B channel status for channels 1 and 2.     | R   | 0 |
| 264h                                  | ACSR1_2B_8  | 15-0        | Bytes 8 and 9 of audio group B channel status for channels 1 and 2.     | R   | 0 |
| 265h                                  | ACSR1_2B_10 | 15-0        | Bytes 10 and 11 of audio group B channel status for channels 1 and 2.   | R   | 0 |
| 266h                                  | ACSR1_2B_12 | 15-0        | Bytes 12 and 13 of audio group B channel status for channels 1 and 2.   | R   | 0 |
| 267h                                  | ACSR1_2B_14 | 15-0        | Bytes 14 and 15 of audio group B channel status for channels 1 and 2.   | R   | 0 |
| 268h                                  | ACSR1_2B_16 | 15-0        | Bytes 16 and 17 of audio group B channel status for channels 1 and 2.   | R   | 0 |
| 269h                                  | ACSR1_2B_18 | 15-0        | Bytes 18 and 19 of audio group B channel status for channels 1 and 2.   | R   | 0 |
| 26Ah                                  | ACSR1_2B_20 | 15-0        | Bytes 20 and 21 of audio group B channel status for channels 1 and 2.   | R   | 0 |
| 26Bh                                  | RSVD        | 15-8        | Reserved.                                                               | R/W | 0 |
|                                       | ACSR1_2B_22 | 7-0         | Bytes 22 of audio group B channel status for channels 1 and 2.          | R   | 0 |
| 26Ch to<br>26Fh                       | RSVD        | -           | Reserved. R/W                                                           |     | 0 |
| 270h                                  | ACSR3_4B_0  | 15-0        | 0 Bytes 0 and 1 of audio group B channel status for R channels 3 and 4. |     | 0 |
| 271h                                  | ACSR3_4B_2  | 15-0        | Bytes 2 and 3 of audio group B channel status for channels 3 and 4.     | R   | 0 |
| 272h                                  | ACSR3_4B_4  | 15-0        | Bytes 4 and 5 of audio group B channel status for channels 3 and 4.     | R   | 0 |
| 273h                                  | ACSR3_4B_6  | 15-0        | Bytes 6 and 7 of audio group B channel status for channels 3 and 4.     | R   | 0 |
| 274h                                  | ACSR3_4B_8  | 15-0        | Bytes 8 and 9 of audio group B channel status for R channels 3 and 4.   |     | 0 |
| 275h                                  | ACSR3_4B_10 | 15-0        | Bytes 10 and 11 of audio group B channel status for R channels 3 and 4. |     | 0 |
| 276h                                  | ACSR3_4B_12 | 15-0        | Bytes 12 and 13 of audio group B channel status for R channels 3 and 4. |     | 0 |
| 277h                                  | ACSR3_4B_14 | 15-0        | Bytes 14 and 15 of audio group B channel status for channels 3 and 4.   | R   | 0 |



Table 4-35: HD Audio Core Configuration and Status Registers (Continued)

| Address         | Address Register Name Bit Description |      | Description                                                                                                                                                                                               | R/W | Defaul |
|-----------------|---------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| 278h            | ACSR3_4B_16                           | 15-0 | Bytes 16 and 17 of audio group B channel status for channels 3 and 4.                                                                                                                                     | R   | 0      |
| 279h            | ACSR3_4B_18                           | 15-0 | Bytes 18 and 19 of audio group B channel status for channels 3 and 4.                                                                                                                                     | R   | 0      |
| 27Ah            | ACSR3_4B_20                           | 15-0 | Bytes 20 and 21 of audio group B channel status for channels 3 and 4.                                                                                                                                     | R   | 0      |
| 27Bh            | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                                 |     | 0      |
|                 | ACSR3_4B_22                           | 7-0  | Bytes 22 of audio group B channel status for channels 3 and 4.                                                                                                                                            | R   | 0      |
| 27Ch to<br>27Fh | RSVD                                  | -    | Reserved.                                                                                                                                                                                                 | R/W | 0      |
| 280h            | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                                 | R/W | 0      |
|                 | ACSR0                                 | 7-0  | Audio channel status to use when ACS_REGEN is set<br>or when adding audio channel status to<br>non-AES/EBU or S/PDIF audio. 8 bits per register<br>starting at register 280h and ending at register 296h. | W   | 0      |
| 281h            | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                                 | R/W | 0      |
|                 | ACSR1                                 | 7-0  | Audio channel status to use when ACS_REGEN is set<br>or when adding audio channel status to<br>non-AES/EBU or S/PDIF audio. 8 bits per register<br>starting at register 280h and ending at register 296h. | W   | 0      |
| 282h            | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                                 | R/W | 0      |
|                 | ACSR2                                 | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h.          | W   | 0      |
| 283h            | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                                 | R/W | 0      |
|                 | ACSR3                                 | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h.          | W   | 0      |
| 284h            | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                                 | R/W | 0      |
|                 | ACSR4                                 | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h.          | W   | 0      |
| 285h            | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                                 | R/W | 0      |
|                 | ACSR5                                 | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h.          | W   | 0      |



Table 4-35: HD Audio Core Configuration and Status Registers (Continued)

| Address | Address Register Name Bit Description |      | Description                                                                                                                                                                                      | R/W | Default |  |
|---------|---------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|--|
| 286h    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR6                                 | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 287h    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR7                                 | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 288h    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR8                                 | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 289h    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR9                                 | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 28Ah    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR10                                | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 28Bh    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR11                                | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 28Ch    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR12                                | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 28Dh    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR13                                | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |



Table 4-35: HD Audio Core Configuration and Status Registers (Continued)

| Address | Address Register Name Bit Description |      | Description                                                                                                                                                                                      | R/W | Default |  |
|---------|---------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|--|
| 28Eh    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR14                                | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 28Fh    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR15                                | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 290h    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR16                                | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 291h    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
| _       | ACSR17                                | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. |     | 0       |  |
| 292h    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR18                                | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 293h    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR19                                | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 294h    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR20                                | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |
| 295h    | RSVD                                  | 15-8 | Reserved.                                                                                                                                                                                        | R/W | 0       |  |
|         | ACSR21                                | 7-0  | Audio channel status to use when ACS_REGEN is set or when adding audio channel status to non-AES/EBU or S/PDIF audio. 8 bits per register starting at register 280h and ending at register 296h. | W   | 0       |  |



Table 4-35: HD Audio Core Configuration and Status Registers (Continued)

| Address | Register Name | Bit  | Description                                                                                                                                                                                               | R/W | Default |
|---------|---------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|
| 296h    | RSVD          | 15-8 | Reserved.                                                                                                                                                                                                 | R/W | 0       |
|         | ACSR22        | 7-0  | Audio channel status to use when ACS_REGEN is set<br>or when adding audio channel status to<br>non-AES/EBU or S/PDIF audio. 8 bits per register<br>starting at register 280h and ending at register 296h. | W   | 0       |
| 297h    | RSVD          | 15-0 | Reserved.                                                                                                                                                                                                 | R   | 29      |

### Table 4-36: Ancillary Data Extraction Memory Access Registers

| Address         | Register Name   | Bit  | Description                                                                                                        | R/W | Default |
|-----------------|-----------------|------|--------------------------------------------------------------------------------------------------------------------|-----|---------|
| 800h to<br>BFFh | ANC_PACKET_BANK | 15-0 | Extracted Ancillary Data (1024 words). Bit 15-8: Most Significant Word (MSW) Bit 7-0: Least Significant Word (LSW) | R   | 0       |
|                 |                 |      | See 4.16.8 Ancillary Data Extraction.                                                                              |     |         |

### Legend:

R = Read only
ROCW = Read Only, Clear on Write (must write ones to clear)
R/W = Read or Write
W = Write only

### 4.20 JTAG Test Operation

When the JTAG\_EN pin of the GV7601 is set HIGH, the host interface port is configured for JTAG test operation. In this mode, pins E7, F8, F7, and E8 become TDO, TCK, TMS, and TDI. In addition, the  $\overline{\text{RESET}}$  pin operates as the test reset pin.

Boundary scan testing using the JTAG interface is enabled in this mode.

There are two ways in which JTAG can be used:

- 1. As a stand-alone JTAG interface to be used at in-circuit ATE (Automatic Test Equipment) during PCB assembly.
- 2. Under control of a host processor for applications such as system power on self tests.

When the JTAG tests are applied by ATE, care must be taken to disable any other devices driving the digital I/O pins. If the tests are to be applied only at ATE, this can be accomplished with tri-state buffers used in conjunction with the JTAG\_EN input signal. This is shown in Figure 4-65.



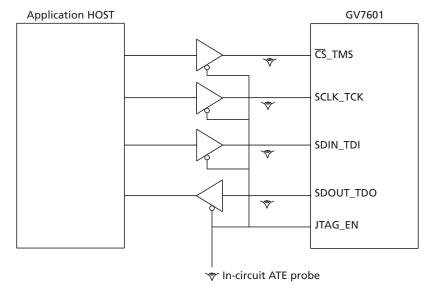



Figure 4-65: In-Circuit JTAG

Alternatively, if the test capabilities are to be used in the system, the host processor may still control the JTAG\_EN input signal, but some means for tri-stating the host must exist in order to use the interface at ATE. This is represented in Figure 4-66.

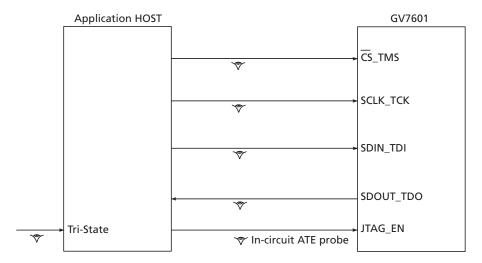



Figure 4-66: System JTAG

Scan coverage is limited to digital pins only. There is no scan coverage for analog pins VBG, SDO/ $\overline{\text{SDO}}$ , TERM, LF, and LB\_CONT.

The JTAG\_EN pin must be held LOW during scan and therefore has no scan coverage.

Please contact your Gennum representative to obtain the BSDL model for the GV7601.



### 4.21 Device Power-up

The GV7601 is designed to operate in a multi-voltage environment, therefore, any power-up sequence is allowed. The charge pump, phase detector, core logic, serial digital output and I/O buffers can all be powered up in any order.

### 4.22 Device Reset

**Note**: At power-up, the device must be reset to operate correctly.

In order to initialize all internal operating conditions to their default states, hold the  $\overline{\text{RESET}}$  signal LOW for a minimum of  $t_{\text{reset}}$  = 1ms after all power supplies are stable. There are no requirements for power supply sequencing.

When held in reset, all device outputs are driven to a high-impedance state.

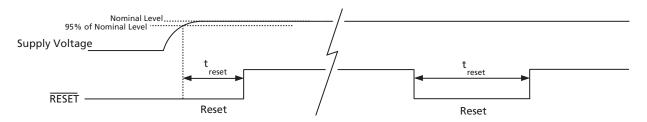
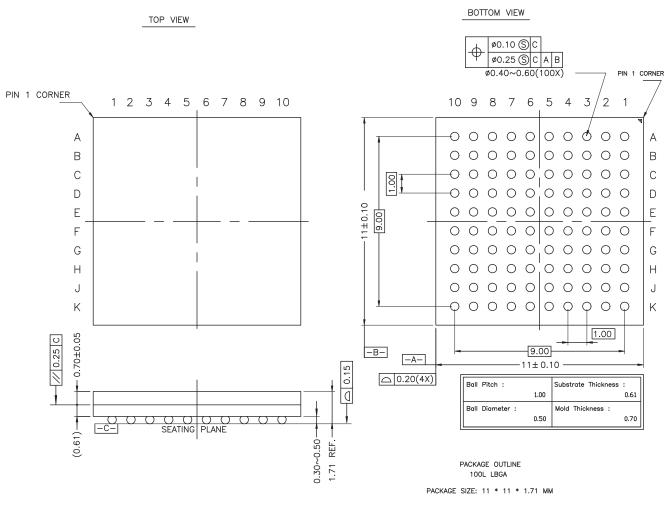



Figure 4-67: Reset Pulse

### 4.23 Standby Mode

The STANDBY pin reduces power to a minimum by disabling all circuits except for the register configuration. Upon removal of the signal to the STANDBY pin, the device returns to its previous operating condition within 1 second, without requiring input from the host interface.




# 5. References & Relevant Standards

| EN 50083-9      | Interfaces for CATV/SMATV headends and similar professional equipment for DVG/MPEG-2 transport streams    |
|-----------------|-----------------------------------------------------------------------------------------------------------|
| ISO/IEC 13818-1 | Generic Coding of Moving Pictures and Associated Audio Systems                                            |
| ITU-R BT.1120-6 | Digital interfaces for HDTV studio signals                                                                |
| ITU-R BT.656    | Interface for digital component video signals                                                             |
| ITU-R BT.709    | Parameter values for the HDTV standards for production and international programme exchange               |
| SMPTE 272M      | Formatting AES Audio and Auxiliary Data into Digital Video Ancillary Data<br>Space                        |
| SMPTE 291M      | Ancillary Data Packet and Space Formatting                                                                |
| SMPTE 296M      | 1280 x 720 Progressive Image Sample Structure - Analog and Digital<br>Representation and Analog Interface |
| SMPTE 299M      | 24-Bit Digital Audio Format for SMPTE 292M Bit-Serial Interface                                           |
| SMPTE RP165     | Error Detection Checkwords and Status Flags for Use in Bit-Serial Digital Interfaces for Television       |

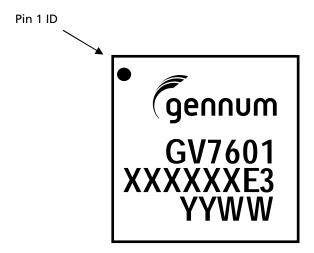


# 6. Package & Ordering Information

# **6.1 Package Dimensions**



<sup>\*</sup> THE BALL DIAMETER, BALL PITCH, STAND-OFF & PACKAGE THICKNESS ARE DIFFERENT FROM JEDEC SPEC M0192 (LOW PROFILE BGA FAMILY)


Figure 6-1: GV7601 Package Dimensions

# **6.2 Packaging Data**

Table 6-1: Packaging Data

| Parameter                                                            | Value                                                                  |
|----------------------------------------------------------------------|------------------------------------------------------------------------|
| Package Type                                                         | 11mm x 11mm 100-ball LBGA                                              |
| Package Drawing<br>Reference                                         | JEDEC M0192 (with exceptions noted in Package Dimensions on page 141). |
| Moisture Sensitivity Level                                           | 3                                                                      |
| Junction to Case Thermal Resistance, $\theta_{j-c}$                  | 15.4°C/W                                                               |
| Junction to Air Thermal Resistance, $\theta_{j-a}$ (at zero airflow) | 37.1°C/W                                                               |
| Junction to Board Thermal Resistance, $\theta_{j-b}$                 | 26.4°C/W                                                               |
| Psi, ψ                                                               | 0.4°C/W                                                                |
| Pb-free and RoHS<br>Compliant                                        | Yes                                                                    |

# **6.3 Marking Diagram**



XXXXXX - Last 6 digits (excluding decimal) of SAP Batch Assembly (FIN) as listed on Packing Slip.
E3 - Pb-free & Green indicator
YYWW - Date Code

Figure 6-2: GV7601 Marking Diagram

# **6.4 Solder Reflow Profiles**

The GV7601 is available in a Pb-free package. It is recommended that the Pb-free package be soldered with Pb-free paste using the reflow profile shown in Figure 6-3.

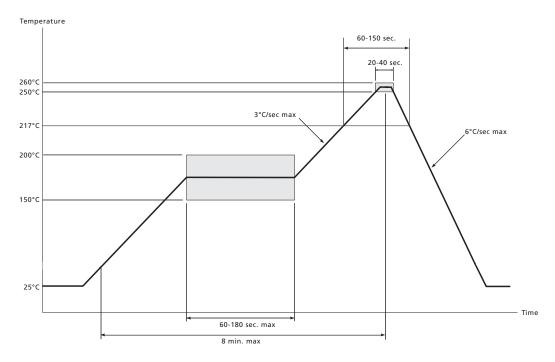



Figure 6-3: Pb-free Solder reflow Profile

# **6.5 Ordering Information**

| Part Number | Package      | Pb-free | Temperature Range |
|-------------|--------------|---------|-------------------|
| GV7601-IBE3 | 100-ball BGA | Yes     | -20°C to 85°C     |



# Index

| A                                                       | external crystal/reference 34                               |  |  |
|---------------------------------------------------------|-------------------------------------------------------------|--|--|
| AES/EBU or S/PDIF mode 94                               | PCLK 56                                                     |  |  |
| ancillary data                                          | clock generation                                            |  |  |
| checksum error 82                                       | audio 97                                                    |  |  |
| checksum error correction & insertion 85                | clock timing                                                |  |  |
| extraction 86                                           | DDR parallel 57                                             |  |  |
| preamble remapping, TRS 86                              | command work description 102                                |  |  |
| programmable, checksum calculation 83                   | correction & insertion                                      |  |  |
| programmable, detection 82                              | ancillary data checksum 85                                  |  |  |
| ancillary data checksum error 82                        | EDH CRC 85                                                  |  |  |
| ancillary data checksum error correction & insertion 85 | line based CRC 84                                           |  |  |
| ancillary data detection & indication 79                | line number error 85                                        |  |  |
| ancillary data extraction 86                            | TRS 84                                                      |  |  |
| asynchronous lock 36                                    | D                                                           |  |  |
| audio                                                   | D                                                           |  |  |
| HD registers 125–137                                    | data block number error 101                                 |  |  |
| SD registers 113–124                                    | data read or write access 103  DDR parallel clock timing 57 |  |  |
| audio channel status 99                                 |                                                             |  |  |
| read 99                                                 | descrambling and word alignment 51                          |  |  |
| regeneration 99                                         | detailed descripton 32–139                                  |  |  |
| audio clock generation 97                               | detect                                                      |  |  |
| audio control packets 95                                | ancillary data, indication 79                               |  |  |
| audio crosspoint block 98                               | automatic video standards 73                                |  |  |
| audio data packet extraction block 95                   | ECC error, correction (HD mode only) 96                     |  |  |
| audio de-embedder 91                                    | EDH 75                                                      |  |  |
| audio mute 100                                          | EDH CRC error 79                                            |  |  |
| audio packet delete block 96                            | EDH polyet 76                                               |  |  |
| audio processing 97–101                                 | EDH packet 76<br>HD line number error 79                    |  |  |
| audio, serial                                           | line based CRC error 78                                     |  |  |
| data format support 93                                  |                                                             |  |  |
| data I/O signals 91                                     | lock 35                                                     |  |  |
| output word length 98                                   | programmable ancillary data 82<br>TRS error 78              |  |  |
| automatic video standards detection 73                  | video signal error, indication 77                           |  |  |
| C                                                       | device power-up 139                                         |  |  |
|                                                         | device reset 139                                            |  |  |
| CEA-861 timing generation 62 checksum error             | DOUT[19:0] 51–58                                            |  |  |
|                                                         | 2001[13.0] 31 30                                            |  |  |
| ancillary data 82, 85                                   |                                                             |  |  |
| clock                                                   |                                                             |  |  |



| E                                                        | I                                                   |  |  |
|----------------------------------------------------------|-----------------------------------------------------|--|--|
| ECC error 101                                            | illegal word remapping 85                           |  |  |
| ECC error detection & correction block (HD mode only) 96 | indication                                          |  |  |
| EDH CRC correction & insertion 85                        | ancillary data, detection 79                        |  |  |
| EDH CRC error detection 79                               | video signal error, detection 77                    |  |  |
| EDH detection 75                                         | input                                               |  |  |
| EDH flag detection 76                                    | serial digital 32                                   |  |  |
| EDH packet detection 76                                  | interruption                                        |  |  |
| error correction                                         | signal 36                                           |  |  |
| line number 85                                           |                                                     |  |  |
| video 83                                                 | J                                                   |  |  |
| Error Correction Codes See ECC                           | JTAG test operation 137                             |  |  |
| error detection                                          | L                                                   |  |  |
| ECC 96                                                   |                                                     |  |  |
| EDH CRC 79                                               | line based CRC correction & insertion 84            |  |  |
| HD line number 79                                        | line based CRC error detection 78                   |  |  |
| line based CRC 78                                        | line number error correction & insertion 85         |  |  |
| TRS 78                                                   | lock                                                |  |  |
| video signal 77                                          | asynchronous 36                                     |  |  |
| Error Detection and Handling See EDH                     | lock detect 35                                      |  |  |
| error reporting 101                                      | M                                                   |  |  |
| external crystal/reference clock 34                      | marking diagram 142                                 |  |  |
| _                                                        | mute on loss of lock 101                            |  |  |
| F                                                        |                                                     |  |  |
| full HD output formats 43                                | 0                                                   |  |  |
| functional description 32                                | ordering information 143                            |  |  |
| G                                                        | output                                              |  |  |
|                                                          | serial digital 33                                   |  |  |
| Gennum serial peripheral interface 102<br>GSPI 102       | <b>D</b>                                            |  |  |
|                                                          | P                                                   |  |  |
| GSPI timing 104                                          | package & ordering information 141                  |  |  |
| H                                                        | package dimensions 141                              |  |  |
| H:V:F timing signal generation 60                        | packaging data 142                                  |  |  |
| HD audio registers 125–137                               | parallel data bus buffers 51                        |  |  |
| HD line number error detection 79                        | parallel output clock (PCLK) 56                     |  |  |
| HD mode                                                  | parallel output in ASI mode 55                      |  |  |
| ECC error detection & correction block 96                | parallel output in data-through mode 56             |  |  |
| high definition 1080p output formats 41                  | parallel output in video mode 55                    |  |  |
| high definition 720p output formats 43                   | parallel video data outputs DOUT[19:0] 51–58        |  |  |
| high definition video output formats 40                  | PCLK 56                                             |  |  |
| host interface register maps 106–137                     | power-up, device 139                                |  |  |
| 0 1                                                      | programmable ancillary data checksum calculation 83 |  |  |



programmable ancillary data detection 82 programmable multi-function outputs 59 R reclocker serial digital 33 reclocker PLL loop bandwidth 34 references δ relevant standards 140 register maps host interface 106-137 registers HD audio 125-137 SD audio 113-124 video core 106-112 reset, device 139 S SD audio core registers 113-124 serial audio data format support 93 serial audio data I/O signals 91 serial audio output word length 98 serial digital input 32 serial digital output 33 serial digital reclocker 33 setting packet DID 96 signal interruption 36 solder reflow profiles 143 standard definition video output formats 37 standby mode 139 T timing vertical 62 timing generation CEA-861 62 timing signal generator 58 genration, H:V:F 60 timing signal generator 58 TRS and ancillary data preamble remapping 86 TRS correction & insertion 84 TRS error detection 78

### $\mathbf{v}$

vertical timing 62
video core registers 106–112
video error correction 83
video functionality 37–51
video output formats
full HD 43
high definition 40
high definition 1080p 41
high definition 720p 43
standard definition 37
video signal error detection δ indication 77



Aviia<sup>TM</sup> is Gennum's high bandwidth, all digital, long reach A/V interface for professional and industrial applications; providing high definition video, digital audio, bi-directional control and power over a single-wire robust and cost effective interface.

#### **DOCUMENT IDENTIFICATION** DATA SHEET

The product is in production. Gennum reserves the right to make changes to the product at any time without notice to improve reliability, function or design, in order to provide the best product possible.

#### **CAUTION**

Phone: +1 (905) 632-2996

E-mail: corporate@gennum.com

ELECTROSTATIC SENSITIVE DEVICES DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A STATIC-FREE WORKSTATION



#### **GENNUM CORPORATE HEADQUARTERS**

4281 Harvester Road, Burlington, Ontario L7L 5M4 Canada

#### **OTTAWA**

232 Herzberg Road, Suite 101 Kanata, Ontario K2K 2A1 Canada

Phone: +1 (613) 270-0458 Fax: +1 (613) 270-0429

#### **CALGARY**

3553 - 31st St. N.W., Suite 210 Calgary, Alberta T2L 2K7

Phone: +1 (403) 284-2672

### **UNITED KINGDOM**

North Building, Walden Court Parsonage Lane. Bishop's Stortford Hertfordshire, CM23 5DB United Kingdom

Phone: +44 1279 714170 Fax: +44 1279 714171

### INDIA

#208(A), Nirmala Plaza, Airport Road, Forest Park Square Bhubaneswar 751009

Phone: +91 (674) 653-4815 Fax: +91 (674) 259-5733

#### **SNOWBUSH IP - A DIVISION OF GENNUM**

439 University Ave. Suite 1700 Toronto, Ontario M5G 1Y8

Phone: +1 (416) 925-5643 Fax: +1 (416) 925-0581 E-mail: sales@snowbush.com Web Site: http://www.snowbush.com

### MEXICO

288-A Paseo de Maravillas Jesus Ma., Aquascalientes

Mexico 20900 Phone: +1 (416) 848-0328

#### JAPAN KK

Shinjuku Green Tower Building 27F 6-14-1, Nishi Shinjuku Shinjuku-ku, Tokyo, 160-0023 Japan

Phone: +81 (03) 3349-5501 Fax: +81 (03) 3349-5505

E-mail: gennum-japan@gennum.com Web Site: http://www.gennum.co.jp

6F-4, No.51, Sec.2, Keelung Rd. Sinyi District, Taipei City 11502

Taiwan R.O.C.

Phone: (886) 2-8732-8879 Fax: (886) 2-8732-8870

E-mail: gennum-taiwan@gennum.com

### **GERMANY**

Hainbuchenstraße 2 80935 Muenchen (Munich), Germany

Fax: +1 (905) 632-2055

www.gennum.com

Phone: +49-89-35831696 Fax: +49-89-35804653

E-mail: gennum-germany@gennum.com

#### NORTH AMERICA WESTERN REGION

691 South Milpitas Blvd., Suite #200

Milpitas, CA 95035 **United States** 

Phone: +1 (408) 934-1301 Fax: +1 (408) 934-1029

E-mail: naw\_sales@gennum.com

### **NORTH AMERICA EASTERN REGION**

4281 Harvester Road Burlington, Ontario L7L 5M4 Canada

Phone: +1 (905) 632-2996 Fax: +1 (905) 632-2055

E-mail: nae\_sales@gennum.com

8F Jinnex Lakeview Bldg. 65-2, Bangidong, Songpagu Seoul, Korea 138-828

Phone: +82-2-414-2991 Fax: +82-2-414-2998

E-mail: gennum-korea@gennum.com

Gennum Corporation assumes no liability for any errors or omissions in this document, or for the use of the circuits or devices described herein. The sale of the circuit or device described herein does not imply any patent license, and Gennum makes no representation that the circuit or device is free from patent infringement.

All other trademarks mentioned are the properties of their respective owners.

GENNUM, the Gennum logo and Aviia are trademarks or registered trademarks of Gennum Corporation.

© Copyright 2009 Gennum Corporation. All rights reserved.

www.gennum.com

