High Power, Class B **Output Stage**

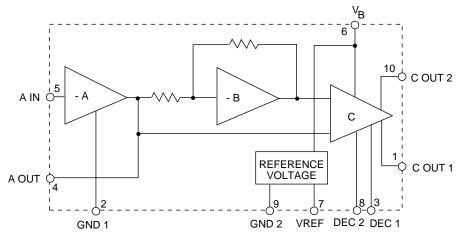
GS551 DATA SHEET

FEATURES

- adjustable gain to 48 dB
- · capable of driving low impedance receiver
- · low component count, 3 small capacitors and 1 resistor
- gain trim can be used as vol. control for reduced noise
- · minimal start-up transient
- no gain expansion

STANDARD PACKAGING

- 10 pin MICROpac
- 10 pin PLID®
- 10 pin SLT
- Chip (68 x 60 mils)


CIRCUIT DESCRIPTION

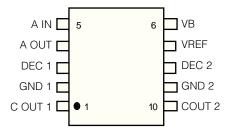
The GS551 is a 10 pin, low voltage, class B amplifier which operates over a battery range of 1.1 VDC to 3 VDC.

The GS551 consists of three gain blocks. The first block is an inverting amplifier with the gain set by two external resistors. The gain trim feature can be used as a volume control in hearing aid applications. The second block is an inverting unity gain amplifier which serves as a phase splitter. The outputs from the first and second blocks drive the differential input of the third block. The third block has a fixed AC gain of 28 dB when driving a receiver.

The amplifier has internal compensation eliminating the need for a capacitor across the receiver. Two ground pins are available for "Star" grounding to reduce any second order harmonic distortion introduced by ground line resistance.

www.DataSheet4U.com

U.S. Patent No. 4,719,430 Other Patents Pending


BLOCK DIAGRAM

Document No. 510 - 31 - 04 Revision Date: January 2001

ABSOLUTE MAXIMUM RATINGS

CAUTION CLASS 1 ESD SENSITIVITY	A			
Storage Temperature	-20 to +70 °C			
Operating Temperature	-10 to +40 °C			
Supply Voltage	5 VDC			
PARAMETER	VALUE/UNITS			

PIN CONNECTION

ELECTRICAL CHARACTERISTICS

Conditions: Frequency = 1 kHz, Temperature = 25° C, Supply Voltage V_{B} = 1.3 VDC

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Gain	A _V	V _O =0.707 VRMS	46	48	50	dB
Amplifier Current	I _{AMP}		120	220	335	μА
Transducer Current	I _{TRANS}		120	250	390	μА
Input Referred Noise	IRN	NFB 0.2 to 10 kHz at 12 dB/Oct	-	1.3	2.5	μV
Total Harmonic Distortion THD	THD	V _O =0.707 VRMS	-	0.25	1.3	%
	1110	V _O =1.3 VRMS	-	0.3	1.5	%
Stable with R _B to	R _{STAB}	$R_B = 22\Omega$	-	-	22	Ω
Maximum Output Current	I _{OUT}	V _{P8} =0	-	>35	-	mA

All parameters remain as shown in Test Circuit unless otherwise stated in "Conditions" column

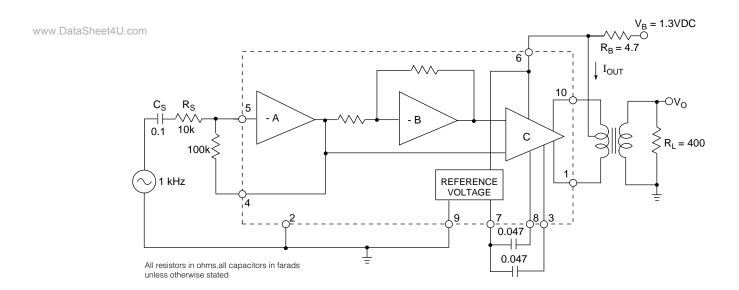


Fig. 1 Test Circuit

510 - 31 - 04

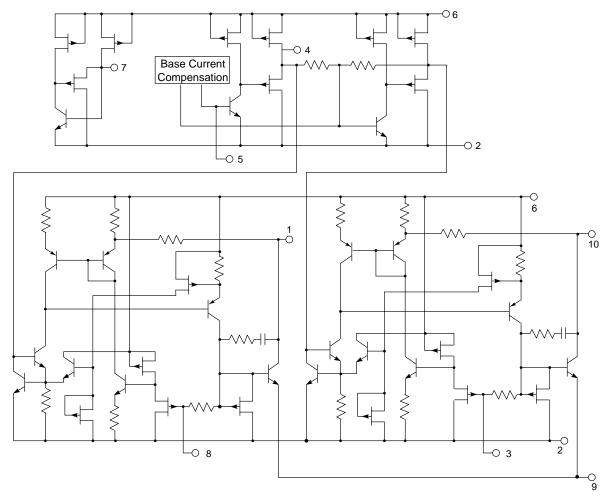


Fig. 2 GS551 Functional Schematic

www.DataSheet4U.com

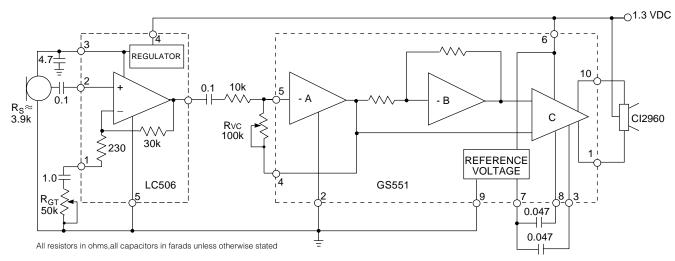


Fig. 3 Application Circuit

3 510 - 31 - 04

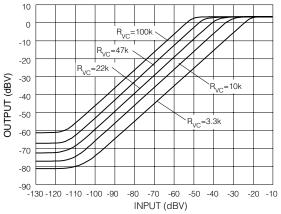


Fig. 4 I/O Characteristics at Various Gain Settings (R_S =3.92k)



Fig. 6 Power Outout vs Load Resistance at 7% Distortion, $R_B=0\Omega$, $V_B=1.35V$

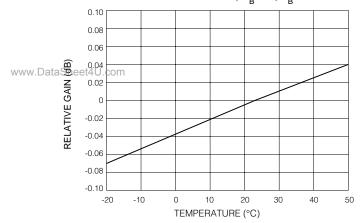


Fig. 8 Gain vs Temperature

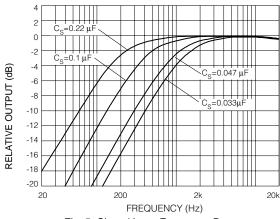


Fig. 5 Closed Loop Frequency Response at Various C_S Values (R_S =3.92k)

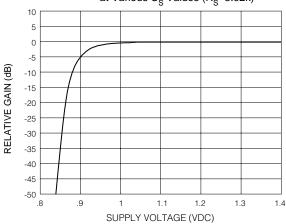


Fig. 7 Gain vs Supply Voltage

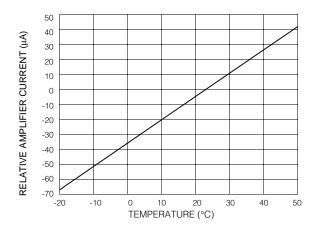


Fig. 9 Amplifier Current vs Temperature

GENNUM CORPORATION

MAILING ADDRESS:

P.O. Box 489, Stn. A, Burlington, Ontario, Canada L7R 3Y3 Tel. +1 (905) 632-2996 Fax +1 (905) 632-2814 SHIPPING ADDRESS:

970 Fraser Drive, Burlington, Ontario, Canada L7L 5P5

GENNUM JAPAN CORPORATION

C-101, Miyamae Village, 2-10-42 Miyamae, Suginami-ku, Tokyo 168-0081, Japan Tel. +81 (3) 3334-7700 Fax: +81 (3) 3247-8839

DOCUMENT IDENTIFICATION: DATA SHEET

The product is in production. Gennum reserves the right to make changes at any time to improve reliability, function or design, in order to provide the best product possible.

REVISION NOTES:

Changes to standard packaging information.

Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

© Copyright August 1988 Gennum Corporation.

All rights reserved.