GQ2131

CMOS Positive Voltage Regulator

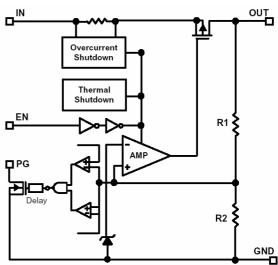
Description

The GQ2131 is a fixed 1.2V of positive, linear regulators feature low quiescent current (60µA typ.) with low dropout voltage, making them ideal for battery applications.

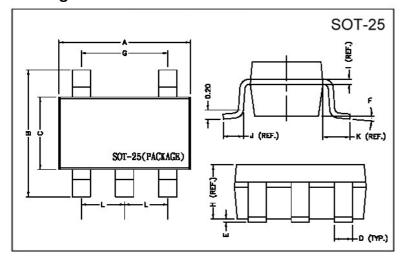
This rugged device has both Thermal Shutdown, and Current Fold-back to prevent device failure under the "Worst" of operating conditions.

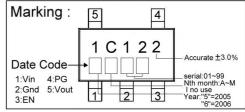
An additional feature is a "Power Good" detector, which pulls low when the output is out of regulation.

The GQ2131 is stable with an output capacitance of 2.2µF or greater.

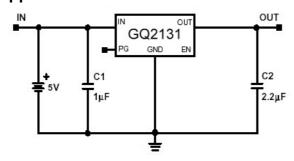

Features

- Very Low Dropout Voltage
- Guaranteed 150mA output
- Over-Temperature Shutdown
- Current Limiting
- Short Circuit Current Fold-back
- Accurate± 3.0%
- Power Good Output Function
- Power-saving Shutdown Mode
- Low Temperature coefficient


Applications


- Battery Powered Widgets
- Instrumentation
- Wireless Devices
- PC Peripherals
- Portable Electronics
- Cordless Phones
- Electronic Scales

Functional Block Diagram


Package Dimensions

REF.	Millimeter		REF.	Dimensions		
111.	Min.	Max.	rLI.	Millimeter		
Α	2.70	3.10	G	1.90 REF.		
В	2.60	3.00	Н	1.20 REF.		
С	1.40	1.80	1	0.12 REF.		
D	0.30	0.55	J	0.37 REF.		
Е	0	0.10	K	0.60 REF.		
F	0°	10°	L	0.95 REF.		

Typical Application Circuit

GQ2131 Page: 1/5

Fig 1. Typical Application Schematic

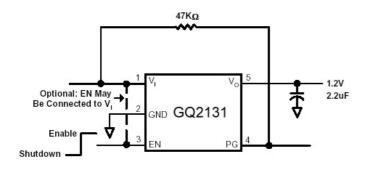


Fig 2. Typical Application For Processor VID Code Power Sequencing Schematic

Pin Description

Pin Number	Pin Name	Pin Function
1	VIN	Supply Input
2	Gnd	Ground
3	EN	Enable/Shutdown (Input): CMOS compatible input. Logic high= enable; Logic low= shutdown. Do not leave open.
4	PG	Power Good Output
5	Vout	Regulator Output

Ordering Information (contd.)

Part Number	Marking	Output Voltage	Part Number	Marking	Output Voltage
GQ2131-12	1C122 XXXX	1.2V			

Detailed Description

The GQ2131 of COMS regulator contains a PMOS pass transistor, voltage reference, error amplifier, over -current protection, thermal shutdown and Power Good function.

The P-channel pass transistor receives data from the error amplifier, over-current shutdown, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 150° C, or the current exceeds 300mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120° C.

The GQ2131 switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over-stress. The GQ2131 also incorporates current fold-back to reduce power dissipation when the output is short circuited. This feature becomes active when the output drops below 0.8 volts, and reduces the current flow by 65%. Full current is restored when the voltage exceeds 0.8 volts.

External Capacitors

The GQ2131 is stable with an output capacitance to ground of $2.2\mu\text{F}$ or greater. Ceramic capacitors have the lowest ESR, and will offer the best AC performance. Conversely, Aluminum Electrolytic capacitors exhibit the highest ESR, resulting in the poorest AC response. Unfortunately, large value ceramic capacitors are comparatively expensive. One option is to parallel a $0.1\mu\text{F}$ ceramic capacitor with a $10\mu\text{F}$ Aluminum Electrolytic. The benefit is low ESR, high capacitance, and low overall cost.

A second capacitor is recommended between the input and ground to stabilize Vin. The input capacitor should be at least 0.1µF to have a beneficial effect.

All capacitors should be placed in close proximity to the pins. A "Quiet" ground termination is desirable. This can be achieved with a "Star" connection.

Enable

The Enable pin normally floats high. When actively, pulled low, the PMOS pass transistor shuts off, and all internal circuits are powered down. In this state, the quiescent current is less than 1µA. This pin behaves much like an electronic switch.

GQ2131 Page: 2/5

Power Good

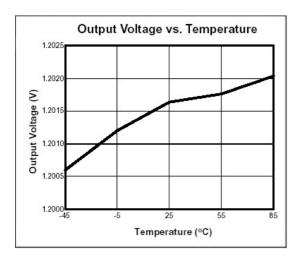
The GQ2131 includes the Power Good feature. When the output is not within $\pm 15\%$ of the specified voltage, it pulls low. This can occur under the following conditions:

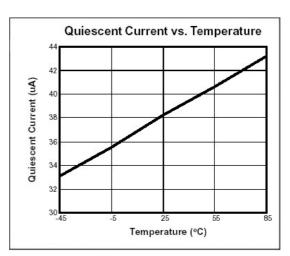
- 1) Input Voltage too low.
- 2) During Over-Temperature.
- 3) During Over-Current.
- 4) If output is pulled up.

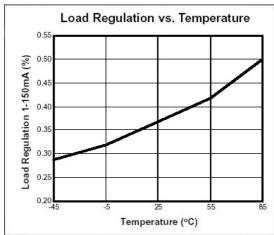
(Note: PG pin is an open-drain output.)

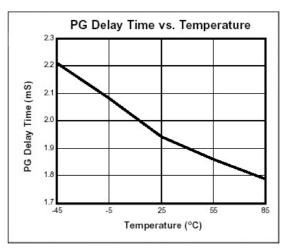
Absolute Maximum Ratings

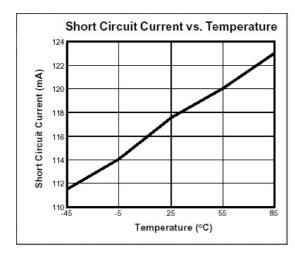
Parameter	Symbol	Ratings	Unit
Input Max Voltage	VIN	7	V
Output Current	Iout	PD/(VIN- VO)	mA
Input, Output Voltage		GND-0.3 to VIN+0.3	V
Operating Ambient Temperature	Topr	-40 ~ +85	$^{\circ}\mathbb{C}$
Junction Temperature	Tj	-40 ~ +125	$^{\circ}\!\mathbb{C}$
Maximum Junction Temperature	Tj Max	150	$^{\circ}\!\mathbb{C}$
Thermal Resistance	θја	260	°C/W
Power Dissipation(△T=100°C)	PD	380	mW
EDS Classification		В	

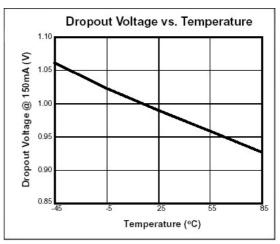

Electrical Characteristics Ta=25°C VIN=2.7V, VEN= VIN, Io=100uA unless otherwise noted

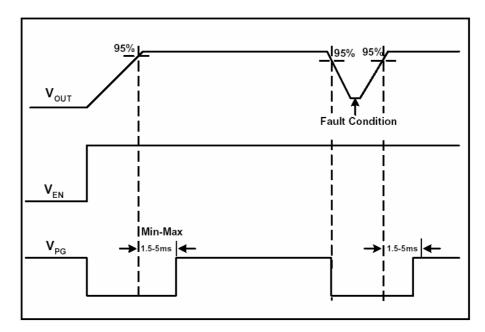

Parameter	Symbol	Condition		Min	TYP	Max	Unit
Output Voltage	Vo	Io=0.1mA		-3.0%	-	3.0%	V
Current Limit	ILIM	Vo<0.1V		150	350	-	mA
Load Regulation	REGLOAD	Io=0.1mA to 150mA		-4	1	4	%
Dropout Voltage	VDROPOUT	Io=150mA,	Vout=Vo-2%	-	-	1300	mV
Quiescent Current	IQ	Vin=6V, Io=0n	nA, Vo=Vo(NOM)	-	60	80	μA
Ground Pin Current	Ignd	Vin=6V, Io=1	mA to150mA	-	65	-	μΑ
Line Regulation	REGLINE	Io=0.1mA, V	IN=2.7V to 6V	-0.3	-	0.3	%
Input Voltage	VIN			2.7	-	6	V
Over Temperature Shutdown	OTS			-	150	-	$^{\circ}\mathbb{C}$
Over Temperature Hysterisis			-	30	-	$^{\circ}\mathbb{C}$	
Output Voltage Temperature Coefficient	TC			-	30	-	ppm/°C
	PSRR	Io=100mA Co=2.2μF	f=1kHz	-	50	-	dB
Power Supply Rejection			f=10kHz	-	20	-	
			f=100kHz	-	15	-	
Output Voltage Noise	eN	f=10Hz to 100kHz Io=10mA	Co=2.2µF	-	30	-	μVrms
EN Input Threshold	VEH			1.6	-	VIN	V
LN Input Threshold	VEL			0	-	0.4	V
EN Input Bias Current	Iен	V _{EN} =V _{IN}		-	0.1	-	μΑ
·	IEL	V _{EN} = 0V		-	0.1	-	μΑ
Shutdown Supply Current	Isd	VIN=5V, VO=0V, VEN=0V		-	0.5	1	μΑ
Shutdown Output Voltage	V o,sd	Output Loading≦1200Ω, VEN=0V		0	-	0.4	V
Output Under Voltage	V uv	PG ON @ % of Vout		-	-	95	$\% Vo_{(NOM)}$
PG Leakage Current	ILC	V _{PG} =6V, PG is off		-	0.1	-	μA
PG Voltage Low	Vol	Isink=0.1mA		-	-	0.1	V
Vpg Delay	Tpgd	See Timing Diagram on page 5		1.5	-	5	ms


Note 1: VIN (MIN) = VOUT+VDROPOUT


GQ2131 Page: 3/5


Characteristics Curve





GQ2131 Page: 4/5

Timing Diagram

Important Notice:

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM.
 GTM reserves the right to make changes to its products without notice.
 GTM semiconductor products are not warranted to be suitable for use in life-support Applications, or systems.
 GTM assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.
 Head Office And Factory:

 Taiwan: No. 17-1 Tatung Rd. Fu Kou Hsin-Chu Industrial Park, Hsin-Chu, Taiwan, R. O. C.
 TEL: 886-3-597-7061 FAX: 886-3-597-9220, 597-0785
 China: (201203) No.255, Jang-Jiang Tsai-Lueng RD. , Pu-Dung-Hsin District, Shang-Hai City, China
 TEL: 86-21-5895-7671 ~ 4 FAX: 86-21-38950165

GQ2131 Page: 5/5