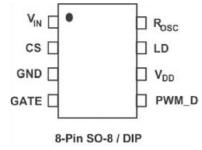


GM9910BS8RG


УНИВЕРСАЛЬНЫЙ ДРАЙВЕР LED ВЫСОКОЙ ЯРКОСТИ

Октябрь 2011г. – пересмотрено в октябре 2013г.

КОНФИГУРАЦИЯ ВЫВОДОВ

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ

- □ Эффективность >90%
- Диапазон входного напряжения от 10В до 600В
- Выдерживает всплеск входного напряжения до 600В
- Диапазон выходного тока от нескольких миллиампер до 1A и более
- Линейка светодиодов от 1 диода до нескольких сотен
- Драйвер, управляющий светодиодами постоянным током
- Возможность линейного и ШИМ-регулирования силы света

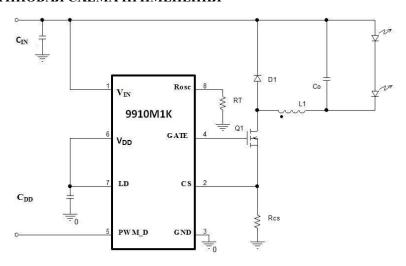
ПРИМЕНЕНИЕ

- Драйвер светодиодов в применениях с DC/DC или AC/DC преобразованием
- Драйвер светодиодов RGB-подсветки
- Подсветка плоскопанельных дисплеев
- Источник постоянного тока общего назначения
- Освещение рекламы и наружных декоративных предметов
- Автомобили
- Зарядные устройства

ОБЩЕЕ ОПИСАНИЕ

GM9910BS8RG на базе кристалла 9910M1K представляет собой высокоэффективную интегральную схему LED драйвера с ШИМ-управлением силы света светодиодов (димминг) и допускает эффективное работу светодиодов высокой яркости от источников напряжения от 10В постоянного тока до 600В постоянного тока. Схема управляет внешним МОПтранзистором с фиксированными частотами переключения до 300кГц. Частота может программироваться использованием единственного резистора. Особенностью прибора является то, что линейка светодиодов управляется на постоянном токе, а не постоянном напряжении, тем самым обеспечивается постоянная светоотдача и повышенная надежность. Выходной ток может программироваться от нескольких миллиампер до 1.0A и более. В процессе изготовления использовался усиленный высоковольтный процесс изоляции переходом, позволивший прибору выдерживать всплески входного напряжения до 600В. Выходной ток для линейки светодиодов программируем на любую величину от нуля до максимума подачей внешнего управляющего напряжения на вход управления LD (Линейный димминг). Чтобы прибор принимал внешний управляющий сигнал со скважностью от 0% до 100% и частотой до нескольких килогерц схема имеет низкочастотный вход РWD D (ШИМ-димминг).

-0.3B до V_{DD}+0.3B



GM9910BS8RG

УНИВЕРСАЛЬНЫЙ ДРАЙВЕР LED ВЫСОКОЙ ЯРКОСТИ

Октябрь 2011г. – пересмотрено в октябре 2013г.

ТИПОВАЯ СХЕМА ПРИМЕНЕНИЯ

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

-0.5В до +600В V_{IN} относительно GND

CS, LD, PWM_D, GATE относительно GND

Рассеяние мощности в непрерывном режиме работы ($T_A = +25$ °C) (Прим.1): 8-выводной DIP (понижать на 9мВт/°С при температуре свыше +25°С)

900мВт 8-выводной SO-8 (понижать на 6.3мВт/°С при температуре свыше +25°С) 630 MB T

Рабочий диапазон температур

-40°С до +85°С

+125°C Температура р-п перехода

Диапазон температур хранения -65°С до +150°С

Нагрузки свыше указанных в разделе ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ могут привести к повреждению прибора. Это нагрузочные значения, работа прибора в этих или иных условиях, превышающих указанных выше в спецификации не допускается. Воздействие в течение продолжительного времени условий с предельно допустимыми значениями параметров на прибор может повлиять на надежность прибора.

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

 $(T_A = +25$ °C, если не оговорено иное)

Обозначе	Описание	Мин.	Тип.	Макс.	Единица	Условия
ние					измерения	
V _{INDC} (Прим.1)	Диапазон входного напряжения питания постоянного тока	10.0		600	В	Входное напряжение постоянного тока
Insd	Ток питания в режиме отключения схемы	0.5		1	мА	Вывод PWM_D относительно GND, $V_{IN} = 8B$
V_{DD}	Внутренне регулируемое напряжение	7.0	7.5	8.0	В	$V_{IN} = 10 B$ до $600 B$, $I_{DD(ext)} = 0$, вывод GATE не подсоединен
$\Delta V_{DD, load}$	Регулирование V_{DD} по току нагрузки	0	-	100	мВ	$I_{DD(ext)} = 0$ до 1.0 мA, 500 пФ на выводе GATE; $R_{OSC} = 226$ кОм, $PWM_D = V_{DD}$
V _{DD,max}	Максимальное напряжение на выводе V_{DD}			10.0	В	При подаче внешнего напряжения на вывод V_{DD}
IDD(ext)	Ток V_{DD} доступный для внешней схемы			0.7	мА	$V_{IN} = 10$ В до 100 В
UVLO	Порог для блокировки схемы при падении V _{DD}	0.87*V _{DD}	0.89*V _{DD}	0.91*V _{DD}	%	Повышение V _{IN}
ΔUVLO	Гистерезис блокировки при падении V_{DD}		500		мВ	Падение V _{IN}

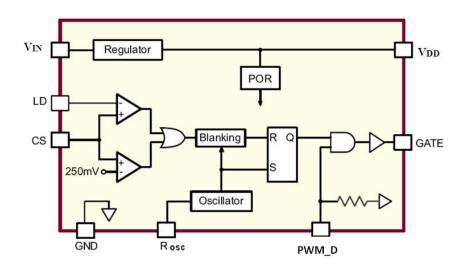
GM9910BS8RG

УНИВЕРСАЛЬНЫЙ ДРАЙВЕР LED ВЫСОКОЙ ЯРКОСТИ

Октябрь 2011г. – пересмотрено в октябре 2013г.

	OKINOPB 20111. IIC	occ.morpeme	b oktrope	20151.		
$V_{EN(lo)} \\$	Напряжение на входе PWM_D, низкий уровень			0.8	В	V _{IN} = 10В до 600В
V _{EN(hi)}	Напряжение на входе PWM_D, высокий уровень	2.0			В	V _{IN} = 10В до 600В
R _{EN}	Понижающее сопротивление на выводе PWM_D	50	100	150	кОм	$V_{\rm EN} = 5 \mathrm{B}$
V _{CS(hi)}	Пороговое напряжения для срабатывания считывания тока	238	250	262	мВ	$T_A = -40^{\circ} C$ до $+85^{\circ} C$
$V_{\text{GATE}(\text{hi})}$	Выходное напряжение на выводе GATE, высокий уровень	V _{DD} -0.3		V_{DD}	В	$I_{OUT} = 10_{M}A$
V _{GATE(lo)}	Выходное напряжение на выводе GATE, низкий уровень	0		0.3	В	$I_{OUT} = -10$ mA
fosc	Частота генератора	20 80	25 100	30 120	кГц	$R_{OSC} = 1.00 MO_M R_{OSC}$ = 226 κ O _M
D _M AX hf	Максимальная скважность ШИМ генератора			100%		$F_{PWM hf} = 25 \kappa \Gamma$ ц на выводе GATE, CS относительно GND
V_{LD}	Диапазон напряжения на выводе LD (Линейный димминг)	0		250	мВ	$T_A = <85^{\circ}C, V_{IN} = 12B$
TBLANK	Длительность бланкирования в ходе считывания тока	150	215	280	нс	$V_{CS} = 0.55 V_{LD}, V_{LD} = V_{DD}$
t DELAY	Задержка от вывода CS до GATE Io			300	нс	V_{IN} = 12B, V_{LD} = 0.15B, V_{CS} = 0 до 0.22B после T_{BLANK}
trise	Время нарастания сигнала на выходе GATE	30		50	нс	$C_{GATE} = 500\pi\Phi, V_{DD} = 7.5B$
tfall	Время падения сигнала на выходе GATE	30		50	ns	$C_{GATE} = 500\pi\Phi, V_{DD} = 7.5B$

Прим.1: Ограничивается также предельным значением рассеяния мощности корпусом, которое ниже.



GM9910BS8RG

УНИВЕРСАЛЬНЫЙ ДРАЙВЕР LED ВЫСОКОЙ ЯРКОСТИ

Октябрь 2011г. – пересмотрено в октябре 2013г.

БЛОК СХЕМА

ИНФОРМАЦИЯ ПО ПРИМЕНЕНИЮ Генератор

Генератор в 9910M1К контролируется единственным резистором, который подсоединен к выводу RT. При помощи

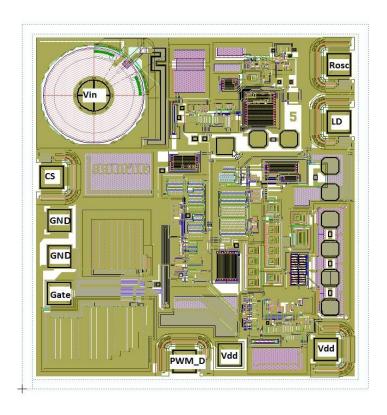
следующей формулы можно рассчитать интервал времени генератора tosc:

$$t_{OSC}(\mu s) = \frac{R_T(k\Omega) + 22}{25}$$

Если резистор подсоединен между выводами RT и GND, 9910M1K работает в режиме постоянной частоты, и вышеприведенная формула определяет интервал времени. Если резистор подсоединен между выводами RT и GATE, 9910M1K работает в режиме постоянного отключения, тогда вышеприведенная формула определяет время отключения.

Резистор считывания тока

Для типовой схемы применения формула для расчёта I_{LED} следующая:


$$R_{CS} = \frac{0.25V (or V_{LD})}{1.15 \cdot I_{LED} (A)}$$

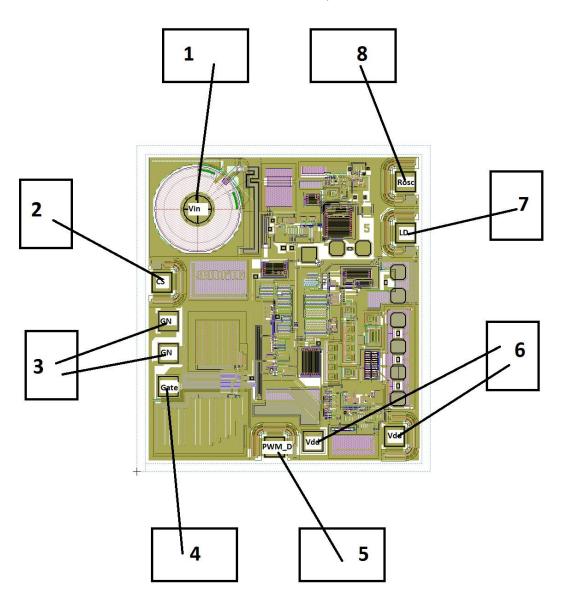
УНИВЕРСАЛЬНЫЙ ДРАЙВЕР LED ВЫСОКОЙ ЯРКОСТИ

Октябрь 2011г. – пересмотрено в октябре 2013г.

МЕСТОРАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК И ИХ КООРДИНАТЫ

Размер кристалла: 1.35мм х 1.50мм

КП	Цен	р КП	Размер КП (под пассивацию)		
	Х	Y	Х	Y	
Vin	280	1210	Ø = 130		
CS	115	870	92	92	
ONE	145	696	92	92	
GND	145	545	92	92	
GATE	145	392	92	92	
PWM_D	632	116	92	92	
1/00	808	142	92	92	
VDD	1185	160	92	92	
LD	1235	1100	92	92	
Rosc	1235	1336	92	92	



УНИВЕРСАЛЬНЫЙ ДРАЙВЕР LED ВЫСОКОЙ ЯРКОСТИ

Октябрь 2011г. – пересмотрено в октябре 2013г.

СБОРОЧНЫЙ ЧЕРТЕЖ

Вид снизу

Внешний вид соответствует требованиям стандартов компании.