数据手册

GM8283C

28 位可编程数据选通发送器

2012.2

成都国腾电子技术股份有限公司

GM8283C

GM8283C		
版本记录: 1.0)	当前版本时间: 2012 年 2 月
新旧版本改动日	北较:	
旧版 文档页数	当前版本 文档页数	主题(和旧版本相比的主要变化)

如果您有技术、交付或价格方面的任何问题,请联系成都国腾电子技术股份有限公司的相关办公室或 当地的代理商,或访问我们的网站: www. gotecom. com 谢谢!

编制时间: 2012年2月

由成都国腾电子技术股份有限公司发布

发布地点:成都

成都国腾电子技术股份有限公司版权所有

GM8283C

1 概述

GM8283C型28位可编程数据选通发送器主要用于视频/图像传输中的发送部分,它可将 并行输入的 28 bits LVTTL/LVCMOS 数据转换为 4 路串行 LVDS 数据流。输入时钟经内部锁相 后,同频率输出,同时转换为 LVDS 差分形式,并保持与输出串行数据流的同步关系;时钟 频率为 10MHz~90MHz。

在每一时钟周期内, 24 bits 的 RGB 数据和 3 bits 的控制数据分别在 4 个 LVDS 串行通 道中传输,单通道数据率最高可达 630Mbps。

本器件与 DS90CR285、DS90CR287、DS90CF383、DS90C383、DS90C385、SN65LVDS93、 SN75LVDS81、SN75LVDS83 兼容,并可与 GM8284、DS90CR286、DS90CR288、DS90CF384、 DS90CF386、SN65LVDS94、SN75LVDS82 配对使用。

2 特征

- a) 电源电压: 3.0V~3.6V;
- b) 工作温度范围: -40~85℃;
- c) 锁相环内部全集成,无需外部元件;
- d) 输入时钟频率: 10MHz~90MHz:
- e) 总数据率: 2520Mbps;
- f) 通道压缩比: 28: 4;
- g) 输入信号: 28 bits LVTTL/LVCMOS 数据和 1 路 LVTTL/LVCMOS 时钟信号;
- h) 输出信号: 满足 EIA/TIA-644 标准的 4 路 LVDS 数据流和 1 路 LVDS 时钟信号;
- i) 封装形式: TSSOP56;
- j) 器件等级: 工业级;
- k) 适合 VGA、SVGA、XGA、SXGA (dual pixel)、UXGA (dual pixel) 等格式的数据从 控制器到显示设备的传输。

封装及引脚功能说明

1) 引出端排列: 如图 1 所示:

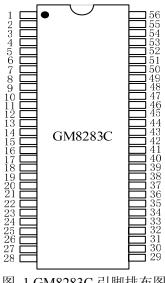


图 1 GM8283C 引脚排布图

GM8283C

2) 引脚功能说明如表1所示。

表 1 芯片引脚功能说明

引出端号	符号	功能说明	引出端号	符号	功能说明
1	VCC	PAD 电源端	29	GND	TX 数字地端
2	TXIN5	数据输入端	30	TXIN26	数据输入端
3	TXIN6	数据输入端	31	TXCLKIN	时钟输入端
4	TXIN7	数据输入端	32	PWR DWN	关断输入端
5	GND	PAD 地端	33	PLLGND	PLL 地端
6	TXIN8	数据输入端	34	PLLVCC	PLL 电源端
7	TXIN9	数据输入端	35	PLLGND	PLL 地端
8	TXIN10	数据输入端	36	LVDSGND	LVDS 地端
9	VCC	TX 数字电源端	37	TXOUT3+	数据输出端
10	TXIN11	数据输入端	38	TXOUT3-	数据输出端
11	TXIN12	数据输入端	39	TXCLKOUT+	时钟输出端
12	TXIN13	数据输入端	40	TXCLKOUT-	时钟输出端
13	GND	TX 数字地端	41	TXOUT2+	数据输出端
14	TXIN14	数据输入端	42	TXOUT2-	数据输出端
15	TXIN15	数据输入端	43	LVDSGND	LVDS 地端
16	TXIN16	数据输入端	44	LVDSVCC	LVDS 电源端
17	RFC	边沿选择端	45	TXOUT1+	数据输出端
18	TXIN17	数据输入端	46	TXOUT1-	数据输出端
19	TXIN18	数据输入端	47	TXOUT0+	数据输出端
20	TXIN19	数据输入端	48	TXOUTO-	数据输出端
21	GND	TX 数字地端	49	LVDSGND	LVDS 地端
22	TXIN20	数据输入端	50	TXIN27	数据输入端
23	TXIN21	数据输入端	51	TXIN0	数据输入端
24	TXIN22	数据输入端	52	TXIN1	数据输入端
25	TXIN23	数据输入端	53	GND	TX 数字地端
26	VCC	TX 数字电源端	54	TXIN2	数据输入端
27	TXIN24	数据输入端	55	TXIN3	数据输入端
28	TXIN25	数据输入端	56	TXIN4	数据输入端

3) 引脚功能详细描述如表 2 所示。

表 2 芯片引脚功能详细描述

引脚符号	引脚详细功能描述			
TXINn	LVTTL/LVCMOS 输入数据,包含 24 bits RGB 信号和 3 bits 控制信号。			
TXOUTn+/TXOUTn-	正/反相输出 LVDS 串行数据流,满足 EIA/TIA-644 标准。			
TXCLKIN	LVTTL/LVCMOS 输入参考时钟信号。			
RFC	输入时钟采样沿选择信号,控制在时钟上升沿或下降沿载入数据。			
TXCLKOUT+/TXCLKOUT-	正/反相输出 LVDS 时钟信号,满足 EIA/TIA-644 标准。			

GM8283C

表 2 (续)

引脚符号	引脚详细功能描述			
PWR DWN	电源关断(低功耗)控制信号,同时也是输出三态控制信号。			
VCC	数字模块电源。			
GND	数字模块地。			
PLLVCC	锁相环模块电源。			
PLLGND	锁相环模块地。			
LVDSVCC	LVDS 模块电源。			
LVDSGND	LVDS 模块地。			

4 功能描述

GM8283C型28位可编程数据选通发送器由串行器、锁相环、LVDS驱动器和使能模块四部分组成。芯片完成的功能如下:串行器载入28bits并行数据后,在同步时钟的触发下将数据移出,同时将时钟信号与数据信号同步后输出,高速同步时钟是由锁相环产生。LVDS驱动器模块将串行器同步输出的4路串行数据流信号和1路同步时钟信号转化为LVDS格式的信号后输出。使能模块在待机状态下,可将内部模块电流关断,使器件进入低功耗状态。GM8283C具有可编程数据选通控制功能,通过RFC控制可实现时钟对数据的上升沿采样或下降沿采样,RFC为高电平时为上升沿采样,RFC为低电平时为下降沿采样。

5 参数指标

5.1 极限工作条件

- b) 输入电压 (V_I) ··············· -0.5V~VCC +0.5V
- d) 贮存温度 (T_h) (10s) ·······260℃

5.2 推荐工作条件

表 3 推荐工作条件

符号	参数	最小	典型	最 大	单 位
VCC	电源电压	3. 0	3. 3	3. 6	V
VCCPP	电源电压噪声幅值	_	_	100	mV
$t_{\scriptscriptstyle{ ext{CIP}}}$	输入时钟周期	11. 1	_	100.0	ns
tcir	输入时钟转换时间	1.0	3. 0	6. 0	ns
$t_{\scriptscriptstyle{\mathrm{CIH}}}$	输入时钟高电平时间	0.35t _{CIP}	0.50t _{CIP}	0.65t _{CIP}	ns
$t_{\scriptscriptstyle{ ext{CIL}}}$	输入时钟低电平时间	0.35t _{CIP}	0.50t _{CIP}	0.65t _{CIP}	ns
$t_{\mathtt{XIT}}$	输入数据转换时间	1.0	3. 0	6. 0	ns
$t_{ ext{src}}$	建立时间	2. 5			ns
t _{HTC}	保持时间	0			ns
TA	工作温度	-40	25	85	$^{\circ}$

GM8283C

5.3 静态参数

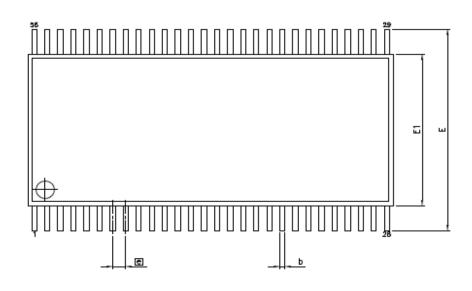
静态参数如表 4 所示。

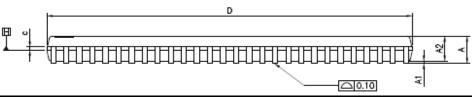
表 4 静态特性参数

特性	符号	3	条件		极限值	
44 注	刊与	$-40^{\circ}\text{C} \leqslant T_{\text{A}} \!\!\leqslant\! 85^{\circ}\text{C}$, $V_{\text{CC}} \!\!=\! 3.3 \text{V}$		最小	最大	单位
输入高电平电压	V_{IH}			2.0	VCC	V
输入低电平电压	V_{IL}			GND	0.8	V
输入钳位电压	$V_{\scriptscriptstyle{ ext{CL}}}$	I_{c}	_{CL} =-18mA	_	-1.5	V
输入电流	т	$V_{\text{IN}} = 0.4$	V, 2.5V或Vcc	_	15	μА
和八电机	$I_{\scriptscriptstyle \mathrm{IN}}$	$V_{\scriptscriptstyle m IN}\!\!=\!\!{ m GND}$		-10	_	μА
差分输出电压幅度	$V_{ ext{od}}$	R =100 Ω		250	450	mV
互补态差分输出电压变化	$\triangle V_{ ext{OD}}$			_	35	mV
共模输出电压幅度	$V_{\rm os}$			1. 125	1. 375	V
互补态共模输出电压变化	$\triangle V_{os}$			_	35	mV
输出短路电流	$I_{ m os}$	V ₀ =0V, R _L =100 Ω		_	-5	mA
输出高阻态电流	$I_{\scriptscriptstyle ext{OZ}}$	PWR DWN =OV, V=OV或Vcc		_	±10	μА
关断模式电源电流	I_{ccz}	PWR DWN =0V,输出为三态		_	90	μА
最坏情况模式	${ m I}_{ m ccw}$	$R_{\!\scriptscriptstyle L}\!\!=\!\!100\Omega$,	f=10MHz	_	30	mA
电源电流	T CCW	C _L ≤10pF	f=90MHz	_	90	ША

5. 4 动态参数

动态参数如表5所示。


表 5 动态特性参数


		条件		极限值	
特性	符号	$-40^{\circ}\text{C} \leqslant T_{\text{A}} \leqslant 85^{\circ}\text{C}$, $V_{\text{CC}} = 3.3\text{V}$	最小	最大	单位
LVDS 差分输出上升时间 (20%~80%)	t_{r}	$R_{\rm l}$ =100 Ω , $C_{\rm l}$ \lesssim 10pF	_	1.5	ns
LVDS 差分输出下降时间 (80% ² 0%)	$t_{\scriptscriptstyle\mathrm{f}}$	N _L -100 s ₂ , C _L ≪10pr	_	1.5	115
数据 BIT0 输出相对时钟 输出延迟时间	$t_{ m d0}$	$f=85 \mathrm{MHz}$, $R=100 \Omega$, $C_{L} \leq 10 \mathrm{pF}$	-0.2	0.2	ns
数据 BIT1 输出与时钟输 出的相对时间	$t_{ m d1}$		1. 48	1.88	
数据 BIT2 输出与时钟输 出的相对时间	$t_{ m d2}$		3. 16	3. 56	
数据 BIT3 输出与时钟输 出的相对时间	$t_{ m d3}$		4. 48	5. 24	
数据 BIT4 输出与时钟输 出的相对时间	$t_{ m d4}$		6. 52	6. 92	
数据 BIT5 输出与时钟输 出的相对时间	$t_{ m d5}$		8. 20	8. 60	

GM8283C

数据 BIT6 输出与时钟输 出的相对时间	$t_{ m d6}$		9. 88	10. 28	
时钟延迟时间	$t_{ ext{ iny CDD}}$	$T_{A}=25$ °C , $V_{CC}=3.3$ V	3.8	6. 3	ns
锁相环建立时间	t _{PLLS}	$R_L=100 \Omega$, $C_L \leqslant 10 \mathrm{pF}$	_	1	ms
关断延迟时间	t _{PDD}	$R_{\rm L}$ =100 Ω , $C_{\rm L}$ \lesssim 10pF	_	100	ns
输入时钟抖动	$t_{\mathtt{JIT}}$	$R_L=100 \Omega$, $C_L \leqslant 10 \mathrm{pF}$	_	2	ns

6 机械尺寸

尺寸符号	数值				
JC 1/11/5	最 小	公 称	最 大	(°)	
A_1	0.05	_	0. 15		
A	_	_	1.20		
b	0. 17	_	0. 27		
С	0.09	_	0.20	_	
D	13. 90	_	14. 10		
е	_	0.50	_		
E_1	6.00	_	6. 20		
Е	8.00	8. 10	8. 20		

图 2 外壳外形

7 产品应用信息

GM8283C

7.1 典型应用图

下图 3 为 GM8283C 与"4: 28 接收器"联用时的典型应用图。

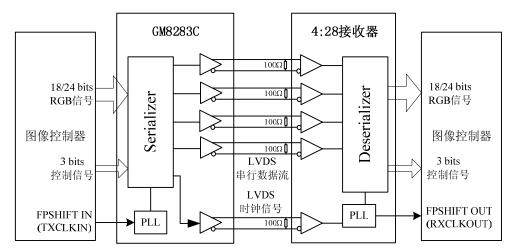
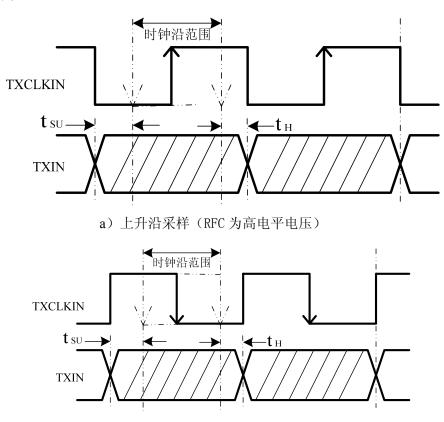



图 3 GM8283C 与 "4: 28 接收器" 联用典型应用图

7.2 应用说明

1) 输入的 28 bits 数据与参考时钟为同步关系,可选择用上升沿采样或下降沿采样,如下图 4 所示:

b)下降沿采样(RFC为低电平电压)

图 4 输入并行数据与输入参考时钟关系图

GM8283C

对于输入时钟与数据的关系,要求如下:

建立时间: t_{SU}≥2.5ns, 保持时间: t_H≥0ns。

2)输出的4路串行数据流与同步时钟对应时序关系如下图5所示:

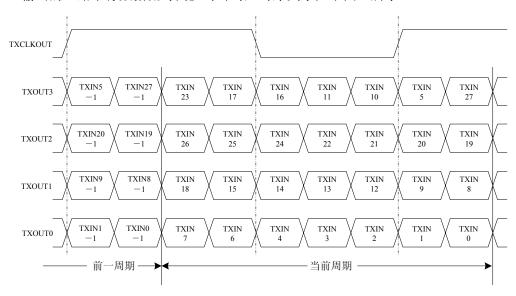


图 5 输出串行数据流与同步时钟关系图

3) VCC/GND、LVDSVCC/LVDSGND 与 PLLVCC/PLLGND 三组电源间应采用磁珠隔离; 所有电源均应根据实际情况加滤波电容,连接方式可参考下图 6 所示。

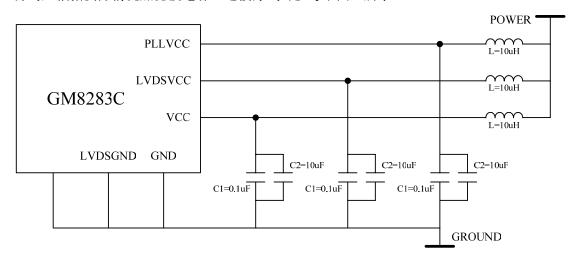


图 6 电源系统典型连接方式

4)器件应用时,不用的输入引脚保证固定连接到 VCC 或者 GND。