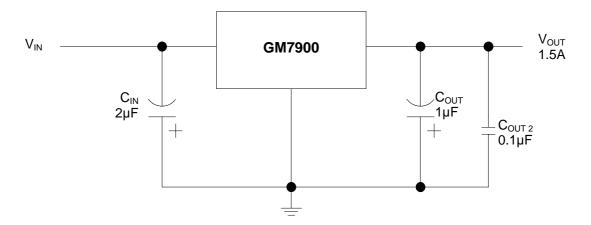


1.5A NEGATIVE VOLTAGE REGULATOR

Description

The GM7900 series of fixed-negative voltage monolithic integrated circuit voltage regulators is designed to complement Series GM7800 in a wide range of applications.

These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 1.5A of output current.


The internal limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and current and also as the power pass element in precision regulators.

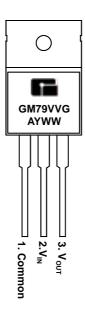
The GM7900 series are available in TO-220, TO-252, TO-263 packages.

Features

- Output current up to 1.5A
- Available Output Voltage Options from -5V to -24V
- 3- Terminal Regulators
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Protection
- TO-220, TO-252 and TO-263 Packages
- High Power Dissipation Capability

Typical Application Circuit


When using a negative regulator, bypass capacitors are a must on both input and output. Recommended values are $2\mu F$ on the input and $1\mu F$ on the output. It is considered good practice to include a $0.1\mu F$ capacitor on the output to improve the transient response. These capacitors may mylar, ceramic, or tantalum, provided that they have good high frequency characteristics


1.5A NEGATIVE VOLTAGE REGULATOR

Marking Information and Pin Configurations (Top View) – Green Products

TO 252 (D-PAK)

TO 220

TO 263 (D²-PAK)

G: Green Product

VV: Output Voltage Codes (05: -5.0V, ...-12:12V)

A: Assembly/Test Site Code

Y: Year WW: Week

Ordering Information – Green Products

Ordering Number	V _{OUT}	Package	Shipping
GM7900TA3TG	00 = -5.0V -6.0V	TO-263	50 Units/Tube
GM7900TA3RG	-8.0V -9.0V	TO-263	800 Units / Reel
GM7900TB3TG	-9.0V -10.0V -12.0V	TO-220	50 Units/Tube
GM7900TC3TG	-15.0V	TO-252	80 Units/Tube
GM7900TC3RG	-18.0V -24.0V	TO-252	2,500 Units / Reel

Absolute Maximum Ratings

PARAMETER		SYMBOL	RATINGS	UNITS	
Input Voltage	GM7905 to GM7920	Vı	-35	V	
Input Voltage	GM7924	VI	-40		
Continuous total dissipation at 2		2	W		
Continuous total dissipation at (or below) 25°C case temperature		15	W	
Operating Ambient Temperature)	T _A	0 to 150	°C	
Storage Temperature		T_{stg}	- 60 to 150	°C	
Lead Temperature 1.6mm (1/6 i	nch) from case for 10 seconds		260	°C	

Recommended Operating Conditions

PARAMETER		SYMBOL	MIN	MAX	UNITS
	GM7905		-7	-25	
	GM7906		-8	-25	
	GM7908		-10.5	-25	
	GM7909		-11.5	-25	
Input Voltage	GM7912	V_{l}	-14.5	-30	V
	GM7915		-17.5	-30	
	GM7918		-21	-33	
	GM7920		-23	-34	
	GM7924		-27	-38	
Output Current		Ιο		1.5	Α
Operating virtual junction temperature		TJ	0	125	°C

1.5A NEGATIVE VOLTAGE REGULATOR

GM7905 Electrical Characteristics ($V_I = -10V$, $I_O = 500$ mA unless otherwise noted)

Parameter	Test Condition (No	Test Condition (Note 1)		Тур	Max	Unit
		25°C	-4.8	-5.0	-5.2	
Output Voltage (note *)	$I_0 = 5 \text{mA to 1A}$ $V_1 = -7 \text{V to -} 20 \text{V, P}$ 15W	0°C to 125°C	-4.75	-5.0	-5.25	V
Input Pogulation	$V_{I} = -7V \text{ to } -25V$	25°C		12.5	50	mV
Input Regulation	$V_{I} = -8V \text{ to } -12V$	25 C		4	15	IIIV
Ripple Rejection	$V_I = -8V \text{ to } -18V, f = 120KHz$	0°C to 125°C	54	60		dB
Output Regulation	I _O = 5mA to 1.5A	- 25°C		15	100	mV
	I _O = 250mA to 750mA			5	50	
Temperature Coefficient of Output Voltage	I _O = 5mA	0°C to 125°C		-0.4		mV/°C
Output Noise Voltage	f = 10Hz to 100KHz	25°C		125		μV
Dropout Voltage	I _O = 1A	25°C		1.6		V
Bias Current		25°C		1.5	2.0	mA
Pigg Current Change	$V_{I} = -7V \text{ to } -25V$	0°C to 125°C		0.15	0.5	mA
Bias Current Change	I _O = 5mA to 1A	0 0 10 125 0		0.08	0.5	ША
Peak Output Current		25°C		2.1		Α

GM7906 Electrical Characteristics ($V_1 = -11V$, $I_0 = 500$ mA unless otherwise noted)

Parameter	Test Condition (Not	e 1)	Min	Тур	Max	Unit
		25°C	-5.75	-6.0	-6.25	
Output Voltage (note *)	$I_0 = 5mA \text{ to } 1A$ $V_1 = -8V \text{ to } -21V, P 15W$	0°C to 125°C	-5.70	-6.0	-6.30	V
Input Pogulation	$V_1 = -8V \text{ to } -25V$	- 25°C		12.5	120	mV
Input Regulation	V _I = -9V to -13V	25 0		4	60	mv
Ripple Rejection	$V_1 = -9V$ to -19V, $f = 120KHz$	0°C to 125°C	54	60		dB
Output Regulation	I _O = 5mA to 1.5mA	25%		15	120	mV
Output Regulation	I _O = 250mA to 750mA	- 25°C		5	60	mv
Temperature Coefficient of Output Voltage	I _O = 5mA	0°C to 125°C		-0.4		mV/°C
Output Noise Voltage	f = 10Hz to 100KHz	25°C		150		μV
Dropout Voltage	I _O = 1A	25°C		1.6		V
Bias Current		25°C		1.5	2	mA
Diag Current Change	$V_1 = -8V \text{ to } -25V$	0°C to 125°C		0.15	1.3	-m Λ
Bias Current Change	I _O = 5mA to 1A	0°C to 125°C		0.08	0.5	mA
Short Circuit Output Current		25°C		550		mA
Peak Output Current		25°C		2.1		Α

Note *: This specification applies only for dc power dissipation permitted by absolute maximum ratings.

GM7900 Series 1.5A NEGATIVE VOLTAGE REGULATOR

GM7908 Electrical Characteristics ($V_1 = -14V$, $I_0 = 500$ mA unless otherwise noted)

Parameter	Test Condition (Note	e 1)	Min	Тур	Max	Unit
		25°C	-7.7	-8.0	-8.3	
Output Voltage (note *)	$I_0 = 5$ mA to 1A $V_1 = -10.5$ V to -23V, P 15W	0°C to 125°C	-7.6	-8.0	-8.4	V
Input Pogulation	$V_{I} = -10.5V$ to $-25V$	- 25°C		12.5	160	mV
Input Regulation	V _I = -11V to -17V	25 C		4	80	IIIV
Ripple Rejection	$V_I = -11.5V$ to -21.5V, $f = 120KHz$	0°C to 125°C	54	60		dB
Output Regulation	I _O = 5mA to 1.5A	2500		15	160	mV
	I _O = 250mA to 750mA	- 25°C		5	80	
Temperature Coefficient of Output Voltage	I _O = 5mA	0°C to 125°C		-0.8		mV/°C
Output Noise Voltage	f = 10Hz to 100KHz	25°C		200		μV
Dropout Voltage	I _O = 1A	25°C		1.6		V
Bias Current		25°C		1.5	2	mA
Diag Current Change	V _I = -10.5V to -25V	0°C to 125°C		0.15	1	Λ
Bias Current Change	I _O = 5mA to 1A	0°C to 125°C		0.08	0.5	- mA
Peak Output Current		25°C		2.1		Α

GM7909 Electrical Characteristics ($V_1 = -15V$, $I_0 = 500$ mA unless otherwise noted)

Parameter	Test Condition (No	te 1)	Min	Тур	Max	Unit
		25°C	8.64	9.0	9.36	
Output Voltage (note *)	$I_0 = 5$ mA to 1A $V_1 = -11.5$ V to -25V, P 15W	0°C to 125°C	8.55	9.0	9.45	V
Innut Degulation	V _I = -11.5V to -25V	2590		12.5	180	\ /
Input Regulation	V _I = -14.5V to -22V	25°C		4	90	mV
Ripple Rejection	$V_1 = -12.5V$ to $-24V$, $f = 120KHz$	0°C to 125°C	54	60		dB
Outsid Desidation	I _O = 5mA to 1.5A	- 25°C		15	180	
Output Regulation	I _O = 250mA to 750mA			5	90	mV
Temperature Coefficient of Output Voltage	I _O = 5mA	0°C to 125°C		-1.0		mV/°C
Output Noise Voltage	f = 10Hz to 100KHz	25°C		225		μV
Dropout Voltage	I _O = 1A	25°C		1.6		V
Bias Current		25°C		1.5	2	mA
Diag Comment Change	$V_{I} = -11.5V \text{ to } -25V$	000 to 40500		0.15	1	A
Bias Current Change	$I_0 = 5$ mA to 1A	0°C to 125°C		0.08	0.5	mA
Peak Output Current		25°C		2.2		Α

Note *: This specification applies only for dc power dissipation permitted by absolute maximum ratings.

1.5A NEGATIVE VOLTAGE REGULATOR

GM7912 Electrical Characteristics (V_I = -19V, I_O = 500mA unless otherwise noted)

Parameter	Test Condition (Not	e 1)	Min	Тур	Max	Unit
		25°C	-11.5	-12	-12.5	
Output Voltage (note *)	$I_0 = 5$ mA to 1A $V_1 = -14.5$ V to -27V, P 15W	0°C to 125°C	-11.4	-12	-12.6	V
Input Pogulation	$V_1 = -14.5V$ to $-30V$	25°C		5	80	mV
Input Regulation	V _I = -16V to -22V	25°C		3	30	IIIV
Ripple Rejection	V _I = -15V to -25V, f = 120KHz	0°C to 125°C	54	60		dB
Output Regulation	I _O = 5mA to 1.5A	- 25°C		15	200	mV
	I _O = 250mA to 750mA			5	75	
Temperature Coefficient of Output Voltage	I _O = 5mA	0°C to 125°C		-0.8		mV/°C
Output Noise Voltage	f = 10Hz to 100KHz	25°C		300		μV
Dropout Voltage	I _O = 1A	25°C		1.5		V
Bias Current		25°C		2	3	mA
Pine Current Change	V _I = -14.5V to -30V	0°C to 125°C		0.04	0.5	mA
Bias Current Change	I _O = 5mA to 1A	0 0 125 0		0.06	0.5	MA
Peak Output Current		25°C		2.1		Α

GM7915 Electrical Characteristics ($V_1 = -23V$, $I_0 = 500$ mA unless otherwise noted)

Parameter	Test Condition (No	te 1)	Min	Тур	Max	Unit	
		25°C	-14.4	-15	-15.6		
Output Voltage (note *)	$I_0 = 5mA$ to 1A $V_1 = -17.5V$ to -30V, P 15W	0°C to 125°C	-14.25	-15	-15.75	V	
Innut Degulation	$V_1 = -17.5V \text{ to } -30V$	25%		5	100	m\/	
Input Regulation	V _I = -20V to -26V	25°C		3	50	mV	
Ripple Rejection	V _I = 15V to 25V, f = 120KHz	0°C to 125°C	54	60		dB	
Outset Description	$I_O = 5$ mA to 1.5A	25°C		15	200		
Output Regulation	I _O = 250mA to 750mA			5	75	mV	
Temperature Coefficient of Output Voltage	$I_O = 5mA$	0°C to 125°C		-1.0		mV/°C	
Output Noise Voltage	f = 10Hz to 100KHz	25°C		375		μV	
Dropout Voltage	I _O = 1A	25°C		1.5		V	
Bias Current		25°C		2	3	mA	
Diag Comment Change	$V_I = -17.5V \text{ to } -30V$	000 to 40500		0.04	0.5	A	
Bias Current Change	$I_0 = 5$ mA to 1A	0°C to 125°C		0.06	0.5	mA	
Peak Output Current		25°C		2.1		Α	

Note *: This specification applies only for dc power dissipation permitted by absolute maximum ratings.

Note 1: Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

GM7900 Series 1.5A NEGATIVE VOLTAGE REGULATOR

GM7918 Electrical Characteristics ($V_1 = -27V$, $I_0 = 500$ mA unless otherwise noted)

Parameter	Test Condition		Min	Тур	Max	Unit
		25°C	-17.3	18	-18.7	
Output Voltage (note *)	$I_0 = 5 \text{mA to 1A}$ $V_1 = -21 \text{V to -33V, P}$ 15W	0°C to 125°C	17.1	-18	-18.9	V
Input Pogulation	$V_1 = -21V \text{ to } -33V$	- 25°C		5	360	mV
Input Regulation	$V_1 = -24V \text{ to } = 30V$	25 0		3	180	IIIV
Ripple Rejection	V _I = -22V to -32V, f = 120KHz	0°C to 125°C	54	60		dB
Output Regulation	I _O = 5mA to 1.5A	- 25°C		30	360	mV
	I _O = 250mA to 750mA			10	180	
Temperature Coefficient of Output Voltage	I _O = 5mA	0°C to 125°C		-1.0		mV/°C
Output Noise Voltage	f = 10Hz to 100KHz	25°C		450		μV
Dropout Voltage	I _O = 1A	25°C		1.5		V
Bias Current		25°C		2	3	mA
Diag Current Change	V _I = -21V to -33V	0°C to 125°C		0.04	1	A
Bias Current Change	I _O = 5mA to 1A	0 0 125 0		0.06	0.5	mA
Peak Output Current		25°C		2.1		Α

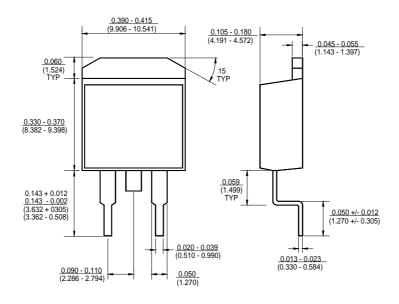
GM7920 Electrical Characteristics ($V_1 = -31V$, $I_0 = 500$ mA unless otherwise noted)

Parameter	Test Condition (No	te 1)	Min	Тур	Max	Unit	
		25°C	-19.2	20	-20.8		
Output Voltage (note *)	$I_0 = 5$ mA to 1A $V_1 = -23$ V to -34V, P 15W	0°C to 125°C	-19	-20	-21	V	
Input Regulation	$V_1 = -23V \text{ to } -34V$	25°C		5	400	m)/	
input Regulation	$V_1 = -26V \text{ to } -31V$	- 25°C		3	200	mV	
Ripple Rejection	$V_1 = -24V$ to -33V, $f = 120KHz$	0°C to 125°C	54	60		dB	
	I _O = 5mA to 1.5A	25°C		50	400	>/	
Output Regulation	I _O = 250mA to 750mA			15	120	mV	
Temperature Coefficient of Output Voltage	I _O = 5mA	0°C to 125°C		-1.0		mV/°C	
Output Noise Voltage	f = 10Hz to 100KHz	25°C		500		μV	
Dropout Voltage	I _O = 1A	25°C		1.6		V	
Bias Current		25°C		2	3	mA	
Diag Comment Observe	$V_1 = -23V \text{ to } -34V$	000 1- 40500		0.04	1	A	
Bias Current Change	$I_0 = 5$ mA to 1A	- 0°C to 125°C		0.06	0.5	mA	
Peak Output Current		25°C		2.1		А	

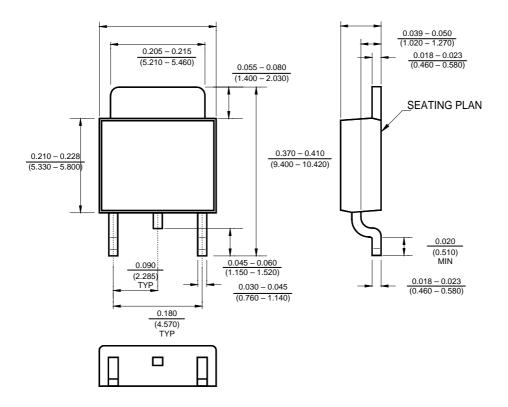
Note *: This specification applies only for dc power dissipation permitted by absolute maximum ratings.

1.5A NEGATIVE VOLTAGE REGULATOR

GM7924 Electrical Characteristics ($V_I = -33V$, $I_O = 500$ mA unless otherwise noted)


Parameter	Test Condition (No	Test Condition (Note 1)		Тур	Max	Unit
		25°C	-23	-24	-25	
Output Voltage (note *)	$I_0 = 5 \text{mA to 1A}$ $V_1 = -27 \text{V to -38V, P}$ 15W	0°C to 125°C	-22.8	-24	-25.2	V
Input Regulation	V _I = -27V to -38V	25°C		5	480	mV
	$V_1 = -30V \text{ to } -36V$	_ 25°C		3	240	IIIV
Ripple Rejection	$V_1 = -28V$ to $-38V$, $f = 120KHz$	25°C	54	60		dB
Output Regulation	I _O = 5mA to 1.5A	25°C		85	480	mV
	I _O = 250mA to 750mA			25	240	
Temperature Coefficient of Output Voltage	I _O = 5mA	0°C to 125°C		-1		mV/°C
Output Noise Voltage	f = 10Hz to 100KHz	25°C		600		μV
Dropout Voltage	I _O = 1A	25°C		1.6		V
Bias Current		25°C		2	3	mA
Bias Current Change	$V_{I} = -27V \text{ to } -38V$	000 to 40500		0.04	1	A
	I _O = 5mA to 1A	0°C to 125°C		0.06	0.5	mA
Peak Output Current		25°C		2.1		А

Note *: This specification applies only for dc power dissipation permitted by absolute maximum ratings.



1.5A NEGATIVE VOLTAGE REGULATOR

Package Outline Dimensions - TO263

Package Outline Dimensions - TO252

GM7900 Series 1.5A NEGATIVE VOLTAGE REGULATOR

Ordering Number

<u>GM</u>	<u>78</u>	<u>05</u>	<u>TA3</u>	<u>T</u>	<u>G</u>
APM Gamma Micro	Circuit Type	Output Voltage	Package Type	Shipping Type	Blank:Pb-free G:Green
		05: 5.0V 06: 6.0V 08: 8.0V 09: 9.0V 10: 10V 12: 12V 15: 15V 18: 18V 24: 24V	TA3: TO263 TB3: TO220 TC3: TO252	R: Taping & Reel T: Tube	

Note:

Pb-free products:

- RoHS compliant and compatible with the current require-ments of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes with 100% matte tin (Sn) plating.

Green products:

- ♦ Lead-free (RoHS compliant)
- ♦ Halogen free(Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight)