

GL2595L v1.0

2A STEP-DOWN VOLTAGE SWITCHING REGULATORS

Description

The GL2595L series are monolithic IC designed for a stepdown DC/DC converter, and own the ability of driving a 2A load without additional transistor. It saves board space. The external shutdown function can be controlled by logic level and then come into standby mode. The internal compensation makes feedback control have good line and load regulation without external design. Regarding protected function, thermal shutdown is to prevent over temperature operating from damage, and current limit is to prevent over current operating of the output switch. If current limit function occurred and Vfb is down to 0.5V below, the switching frequency will be reduced. The GL2595L series operate at a switching frequency of 150 KHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Other features include a guaranteed ±4% tolerance on output voltage under specified input voltage and output load conditions, and ±15% on the oscillator frequency. The output version included fixed 3.3V, 5V, 12V, and an adjustable type. The chips are available in a standard 8-lead SOP8F package.

Application

Pre-regulator for linear regulators High-efficiency step-down buck regulator

Features

- 3.3V, 5V, 12V, Adjustable output versions
- Adjustable output version output voltage range 1.23V to 18V ±4% max over line and load conditions
- 2A output current
- operating voltage can be up to 22V
- Requires only 4 external components
- High efficiency
- TTL shutdown capability, low power standby mode
- Thermal shutdown, current limit protection
- SOP8F Package
- 150 kHz ± 15% fixed frequency internal oscillator

On-card/ board switching regulators Positive to negative converter (buck-boost)

TYPICAL APPLICATIONS

2A STEP-DOWN VOLTAGE SWITCHING REGULATORS

MARKING INFORMATION & PIN CONFIGURATIONS (Top View)

V V, VVV = Output Voltage (33 = 3.3V, 120= 12V, A = A dj) A Y = Assembly Location =Year WW =Weekly

ORDERING INFORMATION (Green Package Products are available now!)

Ordering Number	Output Voltage	Package	Shipping
GL2595L-ASF8R	A d j	SOP-8F	2,500 Units/ Tape & Reel
GL2595L-3.3SF8R	3.3	SOP-8F	2,500 Units/ Tape & Reel
GL2595L-5.0SF8R	5.0	SOP-8F	2,500 Units/ Tape & Reel
GL2595L-12SF8R	12	SOP-8F	2,500 Units/ Tape & Reel

For detail Ordering Number identification, please see last page.

ABSOLUTE MAXIMUM RATINGS

Rating	Value	Unit
Maximum Supply Voltage	24	V
SD Pin Input Voltage	-0.3 to 18	V
Feedback Pin Voltage	-0.3 to 18	V
Operating Voltage	4.5 to 22	V
Output Voltage to Ground (Steady State)	-1.0	V
Power Dissipation	Internally Limited	-
Storage Temperature Range	-65 to + 150	°C
Maximum Junction Temperature	+150	С
Minimum ESD Rating (C=100pF, R=1.5kΩ)	2	kV
Lead Temperature (Soldering, 10 seconds)	+260	С

« GL2595I

2A STEP-DOWN VOLTAGE SWITCHING REGULATORS

OPERATING RATINGS

Rating	Value	Unit
Operating Temperature Range	$-40 \le T_J \le 125$	°C
Supply Voltage	24	V

BLOCK DIAGRAM

2A STEP-DOWN VOLTAGE SWITCHING REGULATORS

ELECTRICAL CHARACTERISTICS: GL2595L-3.3

(Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full Operating Temperature Range)

Parameter	Conditions	Symbol	Min	Тур	Мах	Unit
Output Voltage - GL2595L	$4.75V \leq V_{\text{IN}} \leq 22V, 0.2A \leq I_{\text{LOAD}} \leq 2.0A$	V _{OUT}	3.168/ 3.135	3.3	3.432/ 3.465	V
Efficiency	V _{IN} = 12V, I _{LOAD} = 2.0A	η	-	78	-	%

ELECTRICAL CHARACTERISTICS: GL2595L-5.0

 $(Specifications with standard type face are for T_{J} = 25^{\circ}C, and those with boldface type apply over full Operating Temperature Range)$

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Output Voltage - GL2595L	$7V \le V_{IN} \le 22V, 0.2A \le I_{LOAD} \le 2.0A$	V _{OUT}	4.800/ 4.750	5.0	5.200/ 5.250	V
Efficiency	V _{IN} = 12V, I _{LOAD} = 2.0A	η	-	83	-	%

ELECTRICAL CHARACTERISTICS: GL2595L-12

(Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full Operating Temperature Range)

Parameter	Conditions	Symbol	Min	Тур	Мах	Unit
Output Voltage - GL2595L	$15V \le V_{\text{IN}} \le 22V, 0.2A \le I_{\text{LOAD}} \le 2.0A$	V _{OUT}	11.52/ 11.40	12.0	12.48/ 12.60	V
Efficiency	V _{IN} = 15V, I _{LOAD} = 2.0A	η	-	90	-	%

ELECTRICAL CHARACTERISTICS:GL2595L-ADJ

(Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full Operating Temperature Range.)

Parameter	Conditions	Symbol	Min	Тур	Мах	Unit
Feedback Voltage - GL2595L	$4.5 \text{V}{\leq}\text{V}_{\text{IN}}{\leq}22 \text{V}$, $0.2 \text{A}{\leq}\text{I}_{\text{LOAD}}{\leq}2.0 \text{A}$ $\text{V}_{\text{OUT}}\text{=}3 \text{V}$	V _{out}	1.193/ 1.180	1.230	1.267/ 1.280	V
Efficiency	V_{IN} = 12V, I_{LOAD} =2.0A, V_{OUT} =3V	η	-	76	-	%

2A STEP-DOWN VOLTAGE SWITCHING REGULATORS

ELECTRICAL CHARACTERISTICS: All Output Voltage Versions

(Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those with **boldface type** apply over full Operating Temperature Range. Unless otherwise specified, V_{IN} = 12V for the 3.3V, 5.0V and ADJ version, V_{IN} = 18V for 12V version. I_{LOAD} = 500 mA)

Paramet	ter	Conditions	Symbol	Min	Тур	Мах	Unit
Feedback	Bias Current	V _{FB} = 1.3V (Adjustable Version Only)	I _{fb}	-	-10	-50 / -100	nA
Oscillator	Frequency		f _o	127 / 110	150	173 / 173	kHz
Oscillator short circ	Frequency of uit protect	When current limit occurred and V _{FB} <0.5V, Ta=25°C	F _{SCP}	10	30	50	kHz
Saturatior	n Voltage	I _{OUT} = 2A no output circuit V _{FB} =0V force driver on	V _{SAT}	-	1.25	1.4 / 1.5	V
Max Duty	Cycle (ON)	V _{FB} =0V force driver on	DC		100	-	%
Max Duty	Cycle (OFF)	V _{FB} =12V force driver off	DC		0	-	%
Current L	imit	Peakcurrent No ouside circuit V _{FB} =0V force driver on	I _{CL}	3			A
Output	Output = 0 V	No output circuit, $V_{\text{FB}}\text{=}12\text{V}$ force driver off	۱L			-200	uA
Current	Output = -1V	V _{IN} =22V	۱L		-5		mA
Quiescen	t Current	V _{FB} =12V force driver off	۱ _Q	-	5	10	mA
Standby Qu	iescent Current	$\overline{\text{SD}}$ Pin = 5V (OFF), V _{IN} =22V	I _{STBY}	-	70	150/ 200	μΑ
SD Pin		V _{OUT} =0V	V _{IH}	2.0	1.3	-	V
Logic Inp	ut Level	V _{OUT} = Nominal Output Voltage	V _{IL}	-	1.3	0.6	V
	it Current	$\overline{\text{SD}}$ Pin = 2.5V (OFF)	I _{IH}	-		-0.01	μA
SD PIN INPL	u current	$\overline{\text{SD}}$ Pin = 0.5V (ON)	I _{IL}	-	-0.1	-1	μA

2A STEP-DOWN VOLTAGE SWITCHING REGULATORS

TEST CIRCUIT AND LAYOUT GUIDELINES

Careful layout is important with any switching regulator. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. To minimize inductance and ground loops, the lengths of the leads indicated by heavy lines in Figure 1 below should be kept as short as possible. Singlepoint grounding (as indicated in Figure 1) or ground plane construction should be used for best results. When using the Adjustable version, place the programming resistors as close as possible to GL2575, to keep the sensitive feedback wiring short.

(1) Fixed Type Circuit

(2) Adjustable Type Circuit

(3) Delay Start Circuit

Power Management

GL2595L

2A STEP-DOWN VOLTAGE SWITCHING REGULATORS

Typical Performance Characteristics

Saturation Voltage v.s. Temperature (Vcc=12V,Vfb=0V,VSD=0)

Efficiency v.s. Temperature (Vin=12V,Vout=3.3V,Io=2A)

Switch Current Limit v.s. Temperature (Vcc=12V,Vfb=0V)

Supply Current v.s. Temperature (Vcc=12V, No Load, Von/off =0V(Switch ON), Von/off =5V(Switch OFF))

2A STEP-DOWN VOLTAGE SWITCHING REGULATORS

Threshold Voltage v.s. Temperature (Vcc=12V, Io=100mA)

Output Voltage v.s. Temperature (Vin=12V, lo=2A)

ON/OFF Current v.s. ON/OFF Voltage (Vin=12V)

Feedback Current v.s. Temperature (Vcc=12V, Vout=5V, Vfb=1.3V)

4

GL2595L 2A STEP-DOWN VOLTAGE SWITCHING REGULATORS

FUNCTION DESCRIPTION

Pin Functions

+V_{IN}

This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

Ground

Circuit ground.

Output

Internal switch. The voltage at this pin switches between $(+V_{IN} - V_{SAT})$ and approximately – 0.5V, with a duty cycle of approximately V_{OUT} / V_{IN} . To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be minimized.

Feedback

Senses the regulated output voltage to complete the feedback loop.

SD

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 150uA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of 18V) shuts the regulator down. If this shutdown feature is not needed, the SD pin can be wired to the ground pin.

Thermal Considerations

The SOP-8 package needs a heat sink under most conditions. The size of the heatsink depends on the input voltage, the output voltage, the load current and the ambient temperature. The **GL2595L** junction temperature rises above ambient temperature for a 2A load and different input and output voltages. The data for these curves was taken with the AP1509K (SOP-8 package) operating as a buck-switching regulator in an ambient temperature of 25°C (still air). These temperature increments are all approximate and are affected by many factors. Higher ambient temperatures requires more heat sinker.

For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (One exception is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

Package thermal resistance and junction temperature increments are all approximate. The increments are affected by a lot of factors. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper thickness, single or double-sided, multi-layer board and the amount of solder on the board.

The effectiveness of the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.

2A STEP-DOWN VOLTAGE SWITCHING REGULATORS

♦ SOP-8F PACKAGE OUTLINE DIMENSIONS

ORDERING NUMBER

