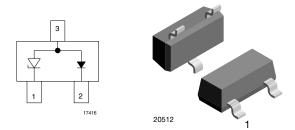
COMPLIANT

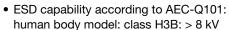

HALOGEN FREE

GREEN

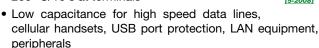
Vishay Semiconductors

Low Capacitance ESD Protection Diodes for High-Speed Data Interfaces

MARKING (example only)


Bar = cathode marking YYY = type code (see table below) XX = date code

DESIGN SUPPORT TOOLS click logo to get started


FEATURES

- IEC 61000-4-5 (lightning) see I_{PPM} below
- ESD immunity acc. IEC 61000-4-2
 ± 8 kV contact discharge
 - ± 15 kV air discharge

 High temperature soldering guaranteed: 260 °C/10 s at terminals

- e3 Sn
- AEC-Q101 qualified available
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

ORDERING INFORMATION								
	ENVIR	ONMENTAL AN	ID QUALITY C	ODE	PACKAG	ING CODE		
(-)(()	AEC-Q101 QUALIFIED	LEAD (PD)-		TIN PLATED	3K PER 7" REEL (8 mm TAPE),	10K PER 13" REEL (8 mm TAPE),	ORDERING CODE (EXAMPLE)	
		STANDARD	GREEN	PLATED	15K/BOX = MOQ	10K/BOX = MOQ		
GL05T-		E		3	-08		GL05T-E3-08	
GL05T-			G	3	-08		GL05T-G3-08	
GL05T-	Н	Е		3	-08		GL05T-HE3-08	
GL05T-	Н		G	3	-08		GL05T-HG3-08	
GL05T-		Е		3		-18	GL05T-E3-18	
GL05T-			G	3		-18	GL05T-G3-18	
GL05T-	Н	E		3		-18	GL05T-HE3-18	
GL05T-	Н		G	3		-18	GL05T-HG3-18	

PACK	PACKAGE DATA							
DEVICE NAME	PACKAGE NAME	TYPE CODE	ENVIRONMENTAL STATUS	WEIGHT	MOLDING COMPOUND FLAMMABILITY RATING	MOISTURE SENSITIVITY LEVEL	SOLDERING CONDITIONS	
GL05T	SOT-23	L05	Standard	8.8 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals	
GLOST	301-23	L06	Green	8.1 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals	
GL12T	SOT-23	L12	Standard	8.8 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals	
GLIZI	301-23	L13	Green	8.1 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals	
GL15T	SOT-23	L15	Standard	8.8 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals	
GLISI	301-23	L16	Green	8.1 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals	
GL24T	SOT-23	L24	Standard	8.8 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals	
GLZ41	301-23	L25	Green	8.1 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals	

Rev. 2.2, 03-May-17 **1** Document Number: 85809 For technical questions, contact: <u>ESDprotection@vishav.com</u>

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS GL05T							
PARAMETER	TEST	TEST CONDITIONS		VALUE	UNIT		
Peak pulse current	8/20 µs	Pin 1-2 (pin 3 n.c.)	I _{PPM}	25	Α		
Peak pulse power	8/20 µs waveform	Fill 1-2 (pill 3 ll.c.)	P _{PP}	300	W		
ESD immunity	Contact discharge	acc. IEC 61000-4-2; 10 pulses	V_{ESD}	± 8	kV		
ESD IIIIIIdility	Air discharge acc.	Air discharge acc. IEC 61000-4-2; 10 pulses		± 15	kV		
Blocking voltage	I _B = 1 μA	Pin 2-1 or pin 2-3	V _B	70	V		
Operating temperature	Junction temperatu	Junction temperature		-55 to +150	°C		
Storage temperature			T _{STG}	-55 to +150	°C		

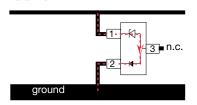
ABSOLUTE MAXIMUM RATINGS GL12T							
PARAMETER	TEST	CONDITIONS	SYMBOL	VALUE	UNIT		
Peak pulse current	8/20 μs	Pin 1-2 (pin 3 n.c.)	I _{PPM}	12	Α		
Peak pulse power	8/20 µs waveform	ΡΙΙΙ 1-2 (ΡΙΙΙ 3 Π.C.)	P_PP	300	W		
EOD in a sil	Contact discharge	acc. IEC 61000-4-2; 10 pulses	V_{ESD}	± 8	kV		
ESD immunity	Air discharge acc. I	Air discharge acc. IEC 61000-4-2; 10 pulses		± 15	kV		
Blocking voltage	$I_B = 1 \mu A$	Pin 2-1 or pin 2-3	V_{B}	70	V		
Operating temperature	Junction temperatu	ire	T_J	-55 to +150	°C		
Storage temperature			T _{STG}	-55 to +150	°C		

ABSOLUTE MAXIMUM RATINGS GL15T							
PARAMETER	TEST	TEST CONDITIONS		VALUE	UNIT		
Peak pulse current	8/20 µs	Din 1 2 (nin 2 n a)	I _{PPM}	10	Α		
Peak pulse power	8/20 µs waveform	Pin 1-2 (pin 3 n.c.)	P _{PP}	300	W		
FOR in a sit	Contact discharge	acc. IEC 61000-4-2; 10 pulses	V_{ESD}	± 8	kV		
ESD immunity	Air discharge acc. I	Air discharge acc. IEC 61000-4-2; 10 pulses		± 15	kV		
Blocking voltage	$I_B = 1 \mu A$	Pin 2-1 or pin 2-3	V _B	70	V		
Operating temperature	Junction temperatu	re	T _J	-55 to +150	°C		
Storage temperature			T _{STG}	-55 to +150	°C		

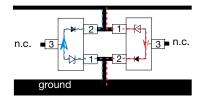
ABSOLUTE MAXIMUM RATINGS GL24T							
PARAMETER	TEST	TEST CONDITIONS		VALUE	UNIT		
Peak pulse current	8/20 µs	Pin 1-2 (pin 3 n.c.)	I _{PPM}	5	Α		
Peak pulse power	8/20 µs waveform	ΕΠ 1-2 (βΠ 3 Π.Ε.)	P _{PP}	300	W		
ESD immunity	Contact discharge	acc. IEC 61000-4-2; 10 pulses	V_{ESD}	± 8	kV		
LSD initiality	Air discharge acc. I	Air discharge acc. IEC 61000-4-2; 10 pulses		± 15	kV		
Blocking voltage	I _B = 1 μA	Pin 2-1 or pin 2-3	V _B	70	V		
Operating temperature	Junction temperatu	re	TJ	-55 to +150	°C		
Storage temperature			T _{STG}	-55 to +150	°C		

The GLxxT contains an avalanche diode (pin 3-1) and a switching diode (pin 3-2). With pin 1 connected to the signal or data line and pin 2 connected to ground both diodes are in series (pin 3 remains unconnected). The big and robust avalanche diode, driven in reverse direction, provides the working range V_{RWM} of 5 V, 12 V, 15 V or 24 V. Due to its size the capacitance of the avalanche diode is in the range of typ. 260 pF (GL05T) and 65 pF (GL24T). The small switching diode in series has a low capacitance of just 2.5 pF (typ.). As both diodes are in series (with pin 3 not connected) the total capacitance of both diodes measured between pin 1 and 2 is as low as the capacitance of the switching diode.

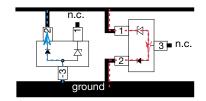
Before the GLxxT can provide this low capacitance the big capacitance of the avalanche diode has to be charged up with the first signal or data pulses. This is usually no problem for digital signals like USB or other data ports.


With the GLxxT a signal or data line can be protected against positive transients only. For negative transients another GLxxT can be used to provide a back path for the negative transients as well.

www.vishay.com


Vishay Semiconductors

Data line


Uni Unidirectional clamping performance for positive transients only.

Data line

BiSy
Bidirectional and Symmetrical
clamping performance for positive
and negative transients.

Data line

BiAs
Bidirectional and Asymmetrical
clamping performance for positive
and negative transients.

ELECTRICAL CHARACTERISTICS GL05T (T _{amb} = 25 °C unless otherwise specified) pin 1 to pin 2; pin 3 not connected								
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	1	-	1	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	5	V		
Reverse voltage	at I _R = 20 μA	V _R	5	-	-	V		
Reverse current	at V _R = 5 V	I _R	-	-	20	μΑ		
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	6.9	7.5	8.0	V		
Deverse elemning veltage	at I _{PP} = 1 A	V	-	-	9.8	V		
Reverse clamping voltage	at I _{PP} = 5 A	V _C	-	-	11	V		
Capacitance	at $V_B = 0 \text{ V}$; $f = 1 \text{ MHz}$	C _D	-	2.5	5	pF		

ELECTRICAL CHARACTERISTICS GL12T (T _{amb} = 25 °C unless otherwise specified) pin 1 to pin 2; pin 3 not connected								
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	12	V		
Reverse voltage	at I _R = 1 μA	V_R	12	-	-	V		
Reverse current	at V _R = 12 V	I _R	-	-	1	μA		
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	13.3	14.3	17.2	V		
Poverse elemping veltage	at I _{PP} = 1 A		-	-	19	V		
Reverse clamping voltage	at I _{PP} = 5 A	V _C	-	-	24	V		
Capacitance	at V _R = 0 V; f = 1 MHz	C _D	-	2.5	5	pF		

pin 1 to pin 2; pin 3 not	ACTERISTICS GL15T (T _{amb} = 25 °C connected	unless othe	erwise spe	ecified)		
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	15	V
Reverse voltage	at I _R = 1 μA	V _R	15	-	-	V
Reverse current	at V _R = 15 V	I _R	-	-	1	μA
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	16.7	17.7	22	V
Boyeres elemping voltage	at I _{PP} = 1 A	V	-	-	24	V
Reverse clamping voltage	at I _{PP} = 5 A	V _C	-	-	33	V
Capacitance	at $V_R = 0 V$; $f = 1 MHz$	C _D	ı	2.5	5	pF

Vishay Semiconductors

pin 1 to pin 2; pin 3 not	ACTERISTICS GL24T ($T_{amb} = 25 ^{\circ}\text{C}$ connected	unless othe	erwise spe	ecified)		
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	24	V
Reverse voltage	at I _R = 1 μA	V _R	24	-	-	V
Reverse current	at V _R = 24 V	I _R	-	-	1	μΑ
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	26.7	28.2	33	V
Reverse clamping voltage	at I _{PP} = 1 A		-	-	43	V
neverse ciamping voitage	at I _{PP} = 5 A	V _C	-	-	55	V
Capacitance	at V _R = 0 V; f = 1 MHz	C _D	-	2.5	5	pF

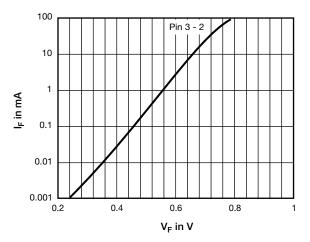


Fig. 1 - Typical Forward Current I_F vs. Forward Voltage V_F

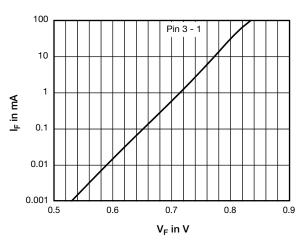


Fig. 2 - Typical Forward Current I_F vs. Forward Voltage V_F

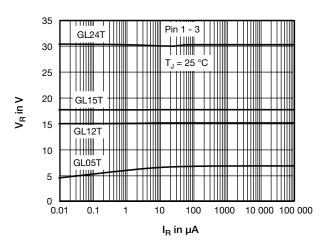
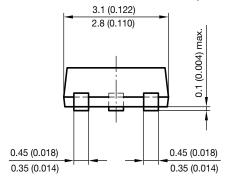
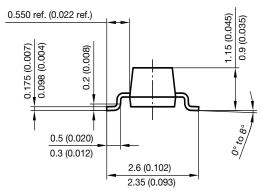
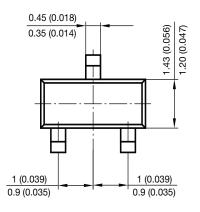
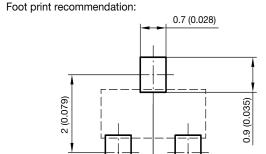


Fig. 3 - Typical Reverse Voltage V_{R} vs. Reverse Current I_{R}

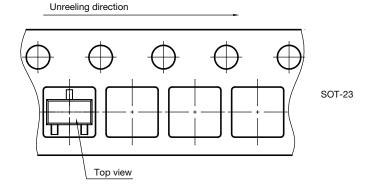



www.vishay.com


Vishay Semiconductors


0.95 (0.037)

PACKAGE DIMENSIONS in millimeters (inches): SOT-23



0.95 (0.037)

Document no.: 6.541-5014.01-4 Rev. 8 - Date: 23.Sept.2009

17418

Orientation in carrier tape SOT-23 S8-V-3929.01-006 (4) 04.02.2010 22607

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.