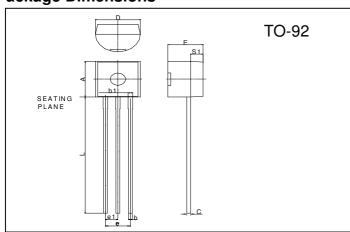
GTM

CORPORATION

ISSUED DATE :2006/02/17 REVISED DATE :

GCLM317L

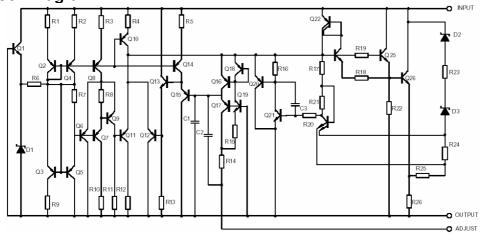
100mA ADJUSTABLE VOLTAGE REGULATOR

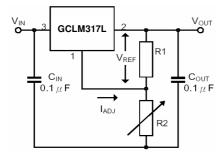

Description

The GCLM317L is a monolithic integral circuit, designed for use as positive adjustable voltage regulator. It is designed to supply unit 100mA of load current with an output voltage adjustable over a 1.25V to 37V range.

Features

- Output voltage adjustable from 1.25V to 37V
- Output current in excess of 100mA
- Thermal overload protection
- · Short circuit protection
- Output transistor save area compensation
- Floating operation for high voltage applications


Package Dimensions



REF.	Millimeter		REF.	Millimeter		
	Min.	Max.	NEF.	Min.	Max.	
Α	4.45	4.7	D	4.44	4.7	
S1	1.02	-	E	3.30	3.81	
b	0.36	0.51	L	12.70	-	
b1	0.36	0.76	e1	1.150	1.390	
С	0.36	0.51	е	2.42	2.66	

Block Diagram

Test Circuit

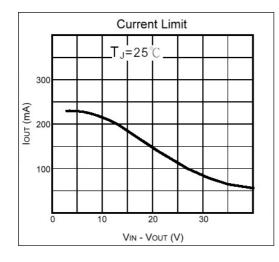
GCLM317L Page: 1/3

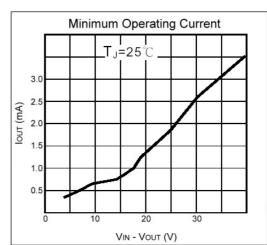
Absolute Maximum Ratings at Ta = 25℃

Parameter	Symbol	Ratings	Unit	
Input-Output Voltage Difference	Vin - Vout	40	V	
Power Dissipation	PD	625	mW	
Junction Temperature	TJ	+125	$^{\circ}$ C	
Operating Junction Temperature	Topr	0 ~ +70	°C	
Storage Temperature Range	Tstr	-40 ~ +150	$^{\circ}$	

Note 1. Absolute maximum ratings are those values beyond witch the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. The device is guaranteed to meet performance specification within 0° C ~ 70° C operating temperature range and assured by design from -20°C ~ 85° C.

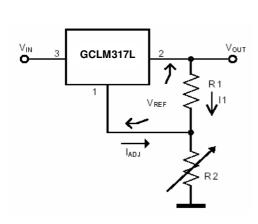

Electrical Characteristics


(VIN - Vout=5V, 0°C ≤ TJ ≤ 125°C , Io=40mA, unless otherwise specified)

Parameter	Symbol	Test Conditions		Min	TYP	Max	Unit
Line Regulation	REGLINE	VIN -VOUT=3~40V IO<20mA	TJ=25°C	-	0.01	0.04	%/V
Line Regulation	REGLINE		0°C≤TJ≤125°C	-	0.02	0.07	%/V
		Io=5~100mA Vouт≤5V	TJ=25°C	-	5	25	mV
Lood Deculation	DECLARA		0°C≤TJ≤125°C	-	20	70	
Load Regulation	REGLOAD	Io=5~100mA Vou⊤≥ 5V	TJ=25°C	-	0.1	0.5	%/Vout
			0°C≤TJ≤125°C	-	0.3	1.5	
Adjustable Pin Current	ladj			-	50	100	μA
Adjustable Pin Current Change	∆ladj	VIN -VOUT=3~40V IO=5~100mA, PD < 625mW		-	0.2	5	μA
Reference Voltage	VREF	Vin -Vout=3~40V Io=5~100mA, Pd < 625mW		1.2	1.25	1.3	٧
Output Voltage Temperature Stability	ΔVουτ/Vουτ			-	0.7	-	%
Minimum Load Current	ILOAD(Min)	VIN -VOUT=40V		-	3.5	5	mA
Mariana Outrat Outrat	1	VIN -VOUT=3~13V		100	200	-	mA
Maximum Output Current	IOUT(Max)	VIN -VOUT=40V		25	50		
Output Noise Voltage (% of Vout)	eN	f=10Hz ∼ 10KHz, TJ=25℃		-	0.003	-	%/ V оит
Pipple Paigation	RR	T. 05°C f 100U-	CADJ=0	-	65	-	dB
Ripple Rejection		TJ=25℃ , f=120Hz	CADJ=10uF	66	80	-	ub

Note: CADJ is connected between Adjust pin and Ground.

Characteristics Curve


GCLM317L Page: 2/3

Application Information and Circuits

The GCLM317L provides an internal reference voltage of 1.25V between the output and adjustments terminals. This is used to set a constant current flow across an external resistor driver, giving an output voltage VouT of:

VOUT = VREF * (1 + R2 / R1) + IADJ * R2

The device is designed to minimize the term IADJ (100uA max) and to maintain it very constant with line and load charges. Usually, the error term IADJ*R2 can be neglected. To obtain the previous requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum load current condition. If the load is insufficient, the output voltage will rise. The GCLM317L is a floating regulator, input-output differential voltage, supplies of very high voltage with respect to ground can be regulated as long as the maximum input-output differential is not exceeded. Furthermore, programmable regulators are easily obtainable and, by connecting a fixed resistor between the adjustment and output, the device can be used as a precision current regulator.

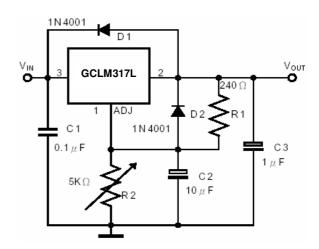


Fig 1. Basic Adjustable Regulator

Fig 2. Voltage Regulator with **Protection Diodes**

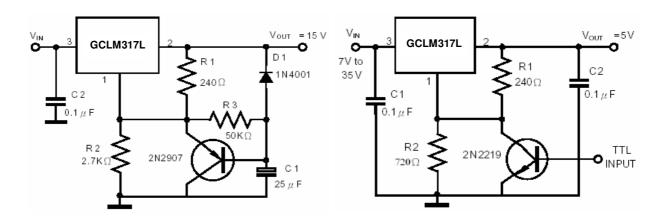


Fig 3. Slow Turn-On 15V Regulator

Fig 4. 5V Electronic Shut-Down Regulator

Important Notice:

- All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM. GTM reserves the right to make changes to its products without notice.
- - GTM semiconductor products are not warranted to be suitable for use in life-support Applications, or systems
 - GTM assumes no liability for any consequence of customer product design, infringement of patents, or application assistance
- Office And Factory:
 Taiwan: No. 17-1 Tatung Rd. Fu Kou Hsin-Chu Industrial Park, Hsin-Chu, Taiwan, R. O. C
- TEL: 886-3-597-7061 FAX: 886-3-597-9220, 597-0785

 China: (201203) No.255, Jang-Jiang Tsai-Lueng RD., Pu-Dung-Hsin District, Shang-Hai City, China

86-21-5895-7671 ~ 4 FAX: 86-21-38950165

GCLM317L Page: 3/3