

1.0625~1.25Gbps GBIC Transceiver

(For 550m transmission)

Members Of Flexon[™] Family

Features

- 1.0625~1.25Gbps multi-rate
- 850nm VCSEL transmitter
- ◆ 550m with 50/125 µm MMF
- 270m with 62.5/125 μm MMF
- Class I laser product
- Low EMI and excellent ESD protection
- Duplex SC optical interface
- ◆ Extended power supply +3.3/5.0V compatibility
- Standard serial ID information compatible with SFF-8053
- Operating case temperature: 0 to +70°C

Applications

- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

Standard

- Compatible with GBIC specification (SFF-8053), Rev 5.5
- Compatible with ANSI specification for Fibre Channel
- Compatible with IEEE 802.3
- Compatible with FCC 47 CFR Part 15, Class B
- ◆ Compatible with FDA 21 CF R 1040.10 and 1040.11, Class I
- RoHS compliant

Description

Fiberxon FTM-8012S-GG GBIC transceivers are high performance, cost effective modules. They are designed for Gigabit Ethernet and 1x Fibre Channel at a distance of 270 meters with 62.5/125µm and 550 meters with 50/125µm multimode fiber respectively.

This transceiver incorporates a highly reliable 850nm VCSEL in its transmitter section. And the receiver section consists of a PIN photodiode mounted together with a trans-impedance preamplifier (TIA). All modules satisfy Class I Laser Safety requirements.

The standard serial ID information compatible GBIC MSA describes the transceiver's capabilities, standard interfaces, manufacturer and other information. The host equipment can access this information via the 2-wire serial CMOS EEPROM protocol. For further information, please refer to SFF-8053.

Fiberxon FTM-8012S-GG GBIC transceivers are compliant with RoHS.

Regulatory Compliance

The transceivers have been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to FlexonTM regulatory specification and safety guidelines, or contact with Fiberxon, Inc. America sales office listed at the end of the documentation.

Table 1 - Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883E	Class 1(>500 V)
(ESD) to the Electrical Pins	Method 3015.7	Class I(>300 V)
Electrostatic Discharge (ESD)	IEC 61000-4-2	Compatible with standards
to the Duplex LC Receptacle	GR-1089-CORE	Compatible with standards
Floatramagnatia	FCC Part 15 Class B	
Electromagnetic Interference (EMI)	EN55022 Class B (CISPR 22B)	Compatible with standards
interierence (EMI)	VCCI Class B	
Immunity	IEC 61000-4-3	Compatible with standards
Logar Eva Cafaty	FDA 21CFR 1040.10 and 1040.11	Compatible with Class I laser
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	product.
Component Recognition	UL and CSA	Compatible with standards
RoHS	2002/95/EC 4.1&4.2	Compliant with standards

Absolute Maximum Ratings

Absolute Maximum Ratings are those values beyond which damage to the devices may occur.

Table 2 – Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{CC}	-0.5	6	V
Operating Humidity	-	5	95	%

Recommended Operating Conditions

Table 3 - Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature	T _C	0		+70	°C
Power Supply Voltage	V _{CC}	3.1		5.5	V
Power Supply Current	I _{cc}			300	mA
Data Rate			1.0625/1.25		Gbps

FTM-8012S-GG

Table 4 - Optical and Electrical Characteristics

Parameter		Symbol	Min.	Typical	Max.	Unit	Notes
		Т	ransmitter	•			
Centre Waveler	igth	λ_{C}	830	850	860	nm	
Average Output	Power	P _{0ut}	-9.5		-4	dBm	1
P _{0ut} @TX Disabl	e Asserted	P _{0ut}			-30	dBm	1
Spectral Width (RMS)	σ			0.85	nm	
Extinction Ratio		EX	9			dB	
Rise/Fall Time (20%~80%)	t _r /t _f			0.26	ns	2
Total litter	1.25G	_			0.431		2
Total Jitter	1.0625G	TJ			0.43	UI	3
Deterministic	1.25G	-			0.2		2
Jitter	1.0625G	D_J			0.21	UI	3
Output Optical E	Eye .	IEEE 802.3	and ANSI Fit	ore Channel	Compatible		4
Data Input Swin	g Differential	V _{IN}	200	7/1	1660	mV	5
Input Differential Impedance		Z _{IN}	140	150	160	Ω	
TV Disable	Disable	151	2.0		Vcc+0.3	V	
TX Disable	Enable	5	0		0.8	V	
TV Foult	Fault		Vcc-0.5		Vcc+0.3	V	
TX Fault	Normal		0		0.5	V	
		125	Receiver				
Centre Waveler	ngth	λ _C	770		860	nm	
Receiver Sensit	ivity				-17	dBm	6
Receiver Overlo	oad		0			dBm	6
Return Loss			12			dB	
LOS De-Assert		LOS _D			-18	dBm	
LOS Assert		LOS _A	-30			dBm	
LOS Hysteresis			1		4	dB	
Total Jitter	1.25G	т			0.749	UI	3
	1.0625G	⊤J			0.61		
Deterministic	1.25G				0.462	1 11	_
Jitter	1.0625G	D_J			0.36	UI	3
Data Output Swing Differential		V _{OUT}	370		2000	mV	5
1.00	High		Vcc-0.5		Vcc+0.3	V	
LOS	Low		0		0.5	V	

Notes:

- 1. The optical power is launched into MMF.
- 2. Unfiltered, measured with a PRBS 2⁷-1 test pattern @1.25Gbps
- 3. Meet the specified maximum output jitter requirements if the specified maximum input jitter is present.
- 4. Measured with a PRBS 2⁷-1 test pattern @1.25Gbps/1.0625Gbps.
- 5. PECL logic, internally AC coupled.
- 6. Measured with a PRBS 2^7 -1 test pattern @1.25Gbps, worst-case extinction ratio, BER $\leq 1 \times 10^{-12}$.

EEPROM Information

The SFF-8053 defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X (A0h). The memory contents refer to Table 5

Table 5 - EEPROM Serial ID Memory Contents (A0h)

	Field Size (Bytes)		Hex	Description
0	1	Identifier	01	GBIC
1	1	Ext. Identifier	04	MOD4
2	1	Connector	01	SC
3—10	8	Transceiver	00 00 00 01 20 40 0C 01	Transmitter Code
11	1	Encoding	01	8B10B
12	1	BR, nominal	0D	1.25Gbps
13	1	Reserved	00	1 1
14	1	Length (9um)-km	00	
15	1	Length (9um)	00	TOUR
16	1	Length (50um)	37	550m
17	1	Length (62.5um)	1B 7 1	270m
18	1	Length (copper)	00	
19	1	Reserved	00	
20—35	16	Vendor name	46 49 42 45 52 58 4F 4E	"FIBERXON INC. "(ASC II)
20—33	10	vendor name	20 49 4E 43 2E 20 20 20	TIBERMON INC. (ASCIT)
36	1	Reserved	00	
37—39	3	Vendor OUI	00 00 00	
40—55	16	Vendor PN	46 54 4D 2D 38 30 31 32	"FTM-8012S-GG " (ASC Ⅱ)
40 00	10	Veridor i iv	53 2D 47 47 20 20 20 20	1 1W 00120 00 (700 H)
56—59	4	Vendor rev	xx xx xx xx	ASC II ("31 30 20 20" means 1.0 revision)
60-61	2	Reserved	00 00	
62	1	Reserved	00	
63	1	CC BASE	xx	Check sum of bytes 0 - 62
64—65	2	Options	00 1A	LOS, TX_FAULT and TX_DISABLE
66	1	BR, max	00	
67	1	BR, min	00	
68—83	16	Vendor SN	xx xx xx xx xx xx xx xx	ASC II
00 00	10	Veridor Orv	xx xx xx xx xx xx xx xx	Adon
84—91	8	Vendor date code	xx xx xx xx xx xx 20 20	Year (2 bytes), Month (2 bytes), Day (2 bytes)
92—94	1	Reserved	00	
95	1	CC_EXT	xx	Check sum of bytes 64 - 94
96—255	160	Vendor specific		

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of SFF-8053 Rev 5.5.

Recommended Interface Circuit

Figure 1 shows the recommended interface circuit.

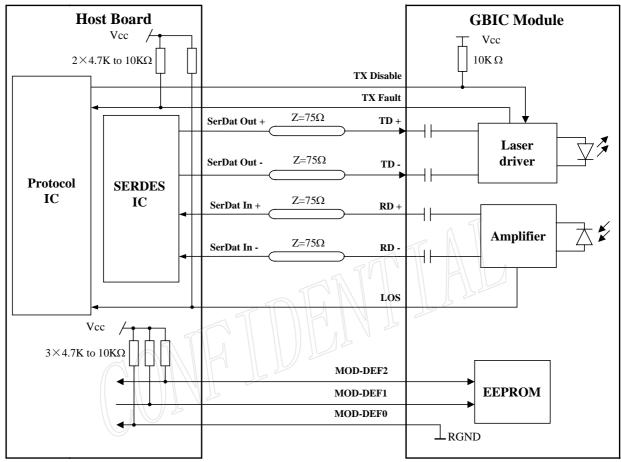


Figure 1, Recommended Interface Circuit

Pin Definitions

Figure 2 below shows the pin numbering of GBIC electrical interface. The pin functions are described in Table 6.

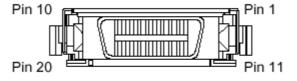


Figure 2, Pin View

Table 6 - Pin Function Definitions

Pin Name	Pin #	Name/Function	Signal Specification					
RECEIVER SIGNALS								
RGND 2, 3, 11, Receiver Ground (may be connected with TGND in		Receiver Ground (may be connected with TGND in GBIC)	Ground, to GBIC					
V _{DD} R	15	Receiver +3.3/5 volt (may be connected with V _{DD} T in GBIC)	Power, to GBIC					
-RX_DAT	12	Receive Data, Differential PECL	High speed serial, from GBIC					
+RX_DAT	13	Receive Data, Differential PECL	High speed serial, from GBIC					
RX_LOS	Receiver Loss of Signal, logic high, open collector compatible, 4.7k to $10k\Omega$ pull up to $V_{DD}T$ on host		Low speed, from GBIC					
	TRANSMITTER SIGNALS							
TGND	8, 9, 17, 20	Transmitter Ground (may be connected with RGND internally)	Ground, to GBIC					
V _{DD} T	Transmitter +3.3/5 volt (may be connected with V _{DD} R in GBIC)		Power, to GBIC					
+TX_DAT	18	Transmit Data, Differential PECL	High speed serial, to GBIC					
-TX_DAT	19	Transmit Data, Differential PECL	High speed serial, to GBIC					
TX_DISABLE	Transmitter Disable, logic high, open collector compatible, 4.7k to $10k\Omega pull$ up to $V_{DD}T$ on GBIC		Low speed, to GBIC					
TX_FAULT	TX_FAULT 10 Transmitter Fault, logic high, open collector compatible, 4.7k to 10kΩpull up to V _{DD} T on host		Low speed, from GBIC					
	CONTROL SIGNALS							
MOD_DEF(0)	4	TTL low, output	Please reference					
MOD_DEF(1)	5	SCL serial clock signal, input	SFF-8053, Annex D:					
MOD_DEF(2)	MOD_DEF(2) 6 SDA serial data signal, input/output		Module definition "4"					

Mechanical Design Diagram

The mechanical design diagram is shown in Figure 3.

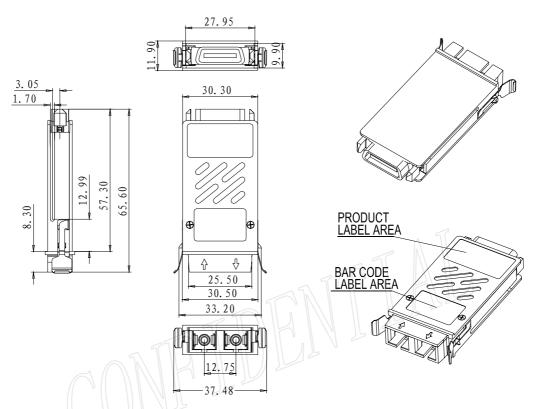
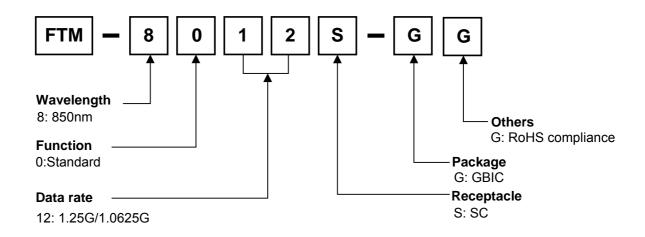



Figure 3, Mechanical Design Diagram of GBIC

Ordering information

Part No.	Product Description		
FTM-8012S-GG	850nm, 1.0625~1.25Gbps, 550m, GBIC, RoHS compliant, 0°C~+70°C		

April. 26, 2006

Related Documents

For further information, please refer to the following documents:

- ◆ Flexon[™] GBIC Installation Guide
- ◆ Flexon[™] GBIC Application Notes
- ◆ SFF-8053, Proposed Specification for GBIC (Gigabit Interface Converter), Rev 5.5

Obtaining Document

You can visit our website:

http://www.fiberxon.comT

Or contact with Fiberxon, Inc. America Sales Office listed at the end of documentation to get the latest documents.

Revision History

Revision	Initiate	Review	Approve	Subject	Release Date
Rev. 1a	Univer.Yang	Simon.Jiang	Walker.Wei	Initial datasheet	Oct 24, 2005
Rev. 1b	Univer.Yang Simon.Jiang \		Walker.Wei	Recension for formal datasheet	April. 26, 2006

© Copyright Fiberxon Inc. 2006

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Fiberxon's product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Fiberxon or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Fiberxon be liable for damages arising directly from any use of the information contained in this document.

Contact

U.S.A. Headquarter:

5201 Great America Parkway, Suite 340

Santa Clara, CA 95054

U. S. A.

Tel: 408-562-6288 Fax: 408-562-6289

Or visit our website: http://www.fiberxon.com