FSEZ1317 Primary-Side-Regulation PWM with POWER MOSFET Integrated

Features

- Low Standby Power Under 30mW
- High-Voltage Startup
- Fewest External Component Counts
- Constant-Voltage (CV) and Constant-Current (CC) Control without Secondary-Feedback Circuitry
- Green-Mode: Linearly Decreasing PWM Frequency
- Fixed PWM Frequency at 50kHz with Frequency Hopping to Solve EMI Problem
- Cable Compensation in CV Mode
- Peak-Current-Mode Control in CV Mode
- Cycle-by-Cycle Current Limiting
- V_{DD} Over-Voltage Protection with Auto Restart
- V_{DD} Under-Voltage Lockout (UVLO)
- Gate Output Maximum Voltage Clamped at 15V
- Fixed Over-Temperature Protection with Auto Restart
- Available in the 7-Lead SOP and DIP Packages

Applications

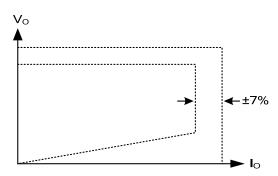
- Battery chargers for cellular phones, cordless phones, PDA, digital cameras, power tools, etc.
- Replaces linear transformers and RCC SMPS

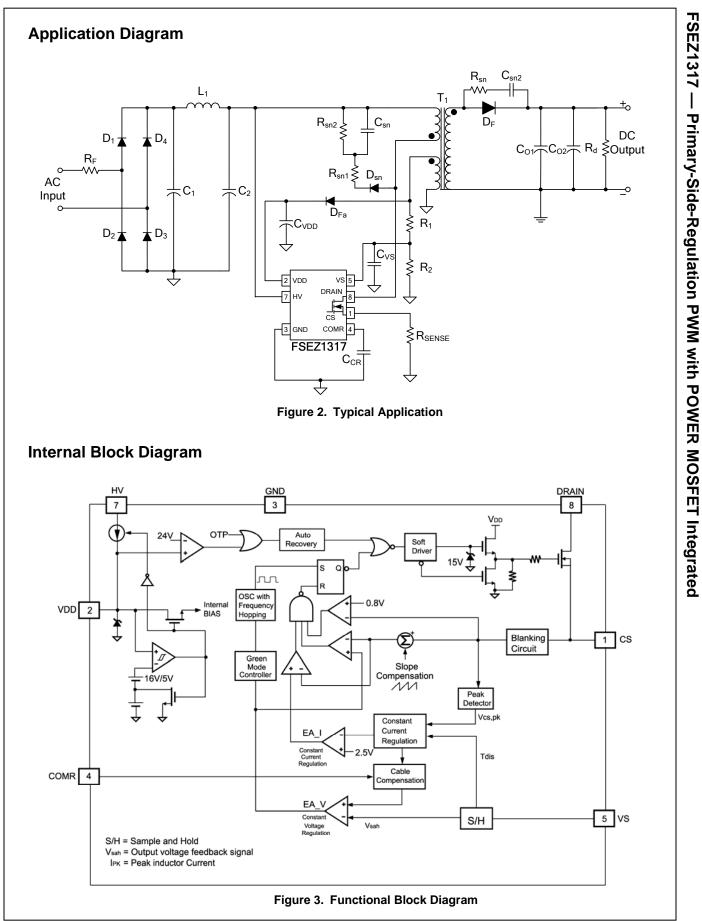
Description

This third-generation Primary-Side-Regulation (PSR) and highly integrated PWM controller provides several features to enhance the performance of low-power flyback converters. The proprietary topology, TRUECURRENT™, of FSEZ1317 enables precise CC regulation and simplified circuit design for battery-charger applications. A low-cost, smaller, and lighter charger results, as compared to a conventional design or a linear transformer.

To minimize standby power consumption, the proprietary green mode provides off-time modulation to linearly decrease PWM frequency under light-load conditions. Green mode assists the power supply in meeting power conservation requirements.

By using the FSEZ1317, a charger can be implemented with few external components and minimized cost. A typical output CV/CC characteristic envelope is shown in Figure 1.




Figure 1. Typical Output V-I Characteristic

Part Number	Operating Temperature Range	Package	Packing Method
FSEZ1317MY	-40°C to +105°C	7-Lead, Small Outline Package (SOP-7)	Tape & Reel
FSEZ1317NY	-40°C to +105°C	7-Lead, Dual Inline Package (DIP-7)	Tube

Ordering Information

SEMICONDUCTOR

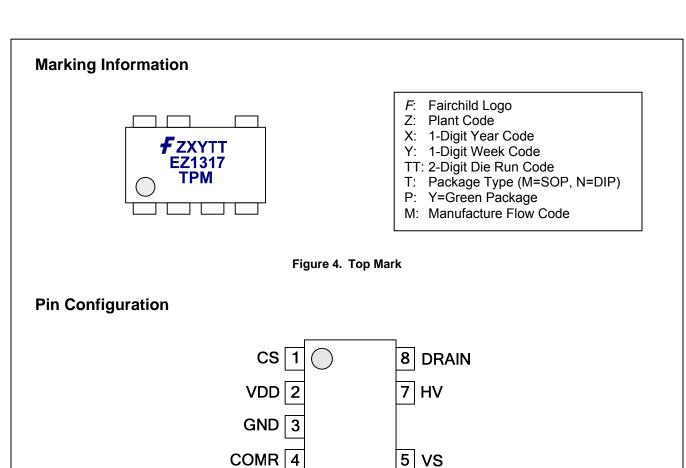


Figure 5. Pin Configuration

Pin Definitions

Pin #	Name	Description
1	CS	Current Sense . This pin connects a current-sense resistor, to detect the MOSFET current for peak-current-mode control in CV mode, and provides the output-current regulation in CC mode.
2	VDD	Power Supply . IC operating current and MOSFET driving current are supplied using this pin. This pin is connected to an external V_{DD} capacitor of typically 10μ F. The threshold voltages for startup and turn-off are 16V and 5V, respectively. The operating current is lower than 5mA.
3	GND	Ground
4	COMR	Cable Compensation . This pin connects a 1μ F capacitor between the COMR and GND pins for compensation voltage drop due to output cable loss in CV mode.
5	VS	Voltage Sense. This pin detects the output voltage information and discharge time based on voltage of auxiliary winding.
7	HV	High Voltage. This pin connects to bulk capacitor for high-voltage startup.
8	DRAIN	Driver Output. Power MOSFET drain. This pin is the high-voltage power MOSFET drain.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameter		Min.	Max.	Units
V_{HV}	HV Pin Input Voltage		500	V		
V _{VDD}	DC Supply Voltage ^(1,2)				30	V
V _{VS}	VS Pin Input Voltage			-0.3	7.0	V
V _{cs}	CS Pin Input Voltage			-0.3	7.0	V
V _{COMV}	Voltage Error Amplifier Out	out Voltage		-0.3	7.0	V
V _{COMI}	Current Error Amplifier Outp	out Voltage		-0.3	7.0	V
V _{DS}	Drain-Source Voltage				700	V
I	Continuous Drain Current	T _A =25°C			1	А
I _D	Continuous Drain Current	T _A =100°C			0.6	А
I _{DM}	Pulsed Drain Current				4	А
E _{AS}	Single Pulse Avalanche Ene	ergy			50	mJ
I _{AR}	Avalanche Current				1	А
PD	Power Dissipation (T _A <50°	C)			660	mW
0			SOP		150	°C/W
θ_{JA}	Thermal Resistance (Juncti	on-to-Air)	DIP		95	°C/W
			SOP		39	°C/W
Ψ_{JT}	Thermal Resistance (Juncti	on-to-Case)	DIP		25	°C/W
TJ	Operating Junction Temper	ature	I	-40	+150	°C
T _{STG}	Storage Temperature Rang	e		-55	+150	°C
ΤL	Lead Temperature (Reflow,	3 Cycles)			+260	°C
505	Electrostatic Discharge	Human Body Mo JEDEC-JESD22 (All Pins Except	_A114		5000	.,
ESD	Capability	Charged Device JEDEC-JESD22 (All Pins Except	_C101		2000	V

Notes:

1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.

2. All voltage values, except differential voltages, are given with respect to the GND pin.

3. ESD ratings including HV pin: HBM=1000V, CDM=1000V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Units
T _A	Operating Ambient Temperature	-40	+105	°C

Unless otherwise specified, $V_{\text{DD}}\text{=}15V$ and $T_{\text{A}}\text{=}25^\circ\!\text{C}.$

Symbol		Conditions	Min.	Тур.	Max.	Units	
V _{DD} Section	1		I	1	1	I	1
V _{OP}	Continuously Operation	ating Voltage				23	V
V _{DD-ON}	Turn-On Threshold	Voltage		15	16	17	V
$V_{\text{DD-OFF}}$	Turn-Off Threshold	Voltage		4.5	5.0	5.5	V
I _{DD-OP}	Operating Current			2.5	5.0	mA	
I _{DD-GREEN}	Green-Mode Opera			0.95	1.20	mA	
V _{DD-OVP}	V _{DD} Over-Voltage-F		23	24	25	V	
V _{DD-OVP-HYS}	Hysteresis Voltage	for V _{DD} OVP		1.5	2.0	2.5	V
t _{D-VDDOVP}	V _{DD} Over-Voltage-I	Protection Debounce Time		50	200	300	μs
HV Startup	Current Source Sec	tion					
$V_{\text{HV-MIN}}$	Minimum Startup V	oltage on HV Pin				50	V
I _{HV}	Supply Current Dra	wn from HV Pin	V _{DC} =100V		1.5	3.0	mA
I _{HV-LC}	Leakage Current after Startup		HV=500V, V _{DD} = V _{DD-} _{OFF} +1V		0.96	3.00	μΑ
Oscillator S	ection				1		
4	Freeswarew	Center Frequency		47	50	53	
f _{osc}	Frequency	Frequency Hopping Range		±1.5	±2.0	±2.5	kHz
f _{OSC-N-MIN}	Minimum Frequence	:y at No-Load			370		Hz
f _{OSC-CM-MIN}	Minimum Frequence	cy at CCM			13		kHz
f_{DV}	Frequency Variatio	n vs. V _{DD} Deviation	V _{DD} =10~25V,		1	2	%
\mathbf{f}_{DT}	Frequency Variatio	n vs. Temperature Deviation	T _A =-40°C to 105°C			15	%
Voltage-Sen	se Section				_		
I _{tc}	IC Bias Current				10		μA
$V_{\text{BIAS-COMV}}$	Adaptive Bias Volta	age Dominated by V_{COMV}	R_{VS} =20k Ω		1.4		V
Current-Sen	se Section						
t _{PD}	Propagation Delay	to GATE Output			90	200	ns
t _{MIN-N}	Minimum On Time	at No-Load		700	850	1050	ns
V_{TH}	Threshold Voltage	for Current Limit			0.8		V
Voltage-Erro	or-Amplifier Section	1				•	T
V _{VR}	Reference Voltage			2.475	2.500	2.525	V
V _N	-	ng Voltage on EA_V	f _{osc} -2kHz		2.5		V
V_{G}		g Voltage on EA_V	f _{OSC} =1kHz		0.4		V
Current-Erro	or-Amplifier Section			1	1	1	1
V _{IR}	Reference Voltage			2.475	2.500	2.525	V
Cable Comp	ensation Section			1	1	1	1
VCOMR	COMR Pin for Cab	le Compensation			0.75		V

Continued on the following page...

Electrical Characteristics (Continued)

Unless otherwise specified, V_{DD} =15V and T_A =25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Internal MOS	SFET Section ⁽⁴⁾					
DCY _{MAX}	Maximum Duty Cycle		70	75	80	%
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μΑ, V _{GS} =0V	700			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D =250µA, Referenced to T _A =25°C		0.53		V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	I _D =0.5A, V _{GS} =10V		13	16	Ω
Is	Maximum Continuous Drain-Source Diode Forward Current				1	А
	Desire Osumo Laskana Osumot	V _{DS} =700V, T _A =25°C			10	μA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =560V, T _A =100°C			100	μA
t _{D-ON}	Turn-On Delay Time	V _{DS} =350V, I _D =1A,		10	30	ns
t _{D-OFF}	Turn-Off Delay Time	$R_G=25\Omega^{(5)}$		20	50	ns
C _{ISS}	Input Capacitance	V _{GS} =0V, V _{DS} =25V, f _S =1MHz		175	200	pF
C _{OSS}	Output Capacitance			23	25	pF
Over-Tempe	rature-Protection Section		·	·		·
T _{OTP}	Threshold Temperature for OTP ⁽⁶⁾		+130	+140	+150	°C

Notes:

4. These parameters, although guaranteed, are not 100% tested in production.

5. Pulse test: pulsewidth \leq 300µs, duty cycle \leq 2%.

6. When the Over-temperature protection is activated, the power system enter auto restart mode and output is disabled.

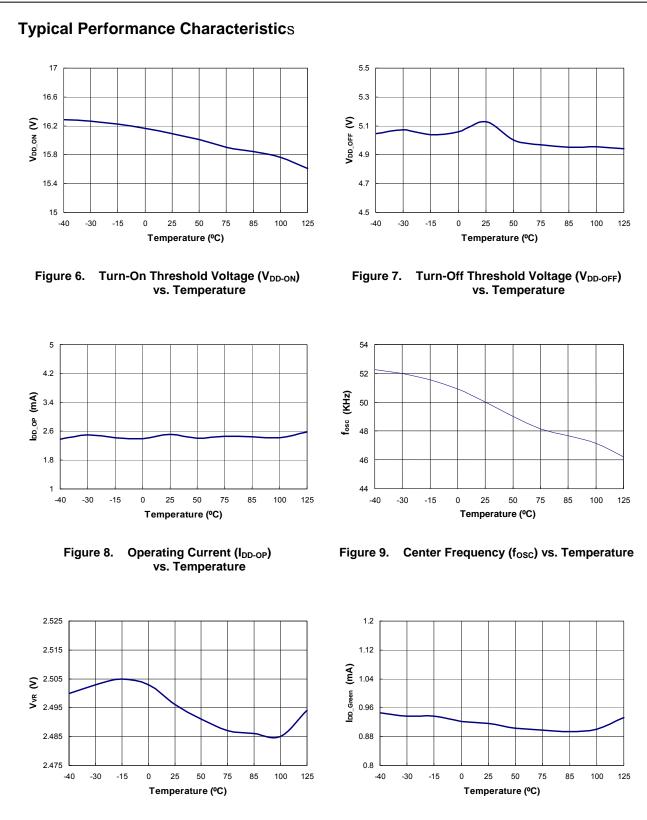
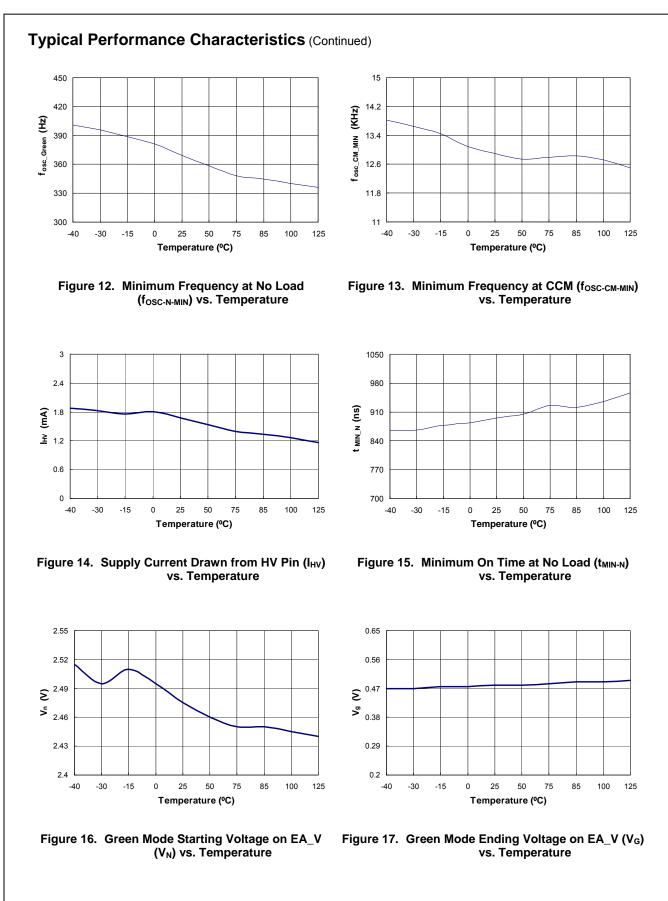



Figure 11. Green Mode Operating Supply Current (I_{DD-GREEN}) vs. Temperature

Figure 10. Reference Voltage (V_{VR}) vs. Temperature

FSEZ1317 — Primary-Side-Regulation PWM with POWER MOSFET Integrated

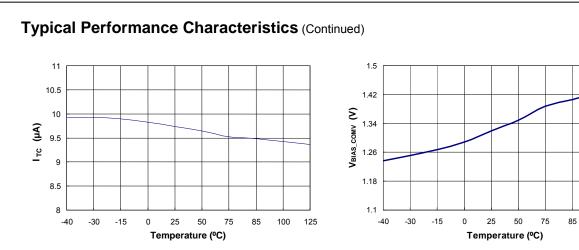


Figure 18. IC Bias Current (Itc) vs. Temperature

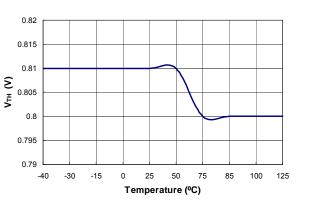


Figure 20. Threshold Voltage for Current Limit (V_{TH}) vs. Temperature

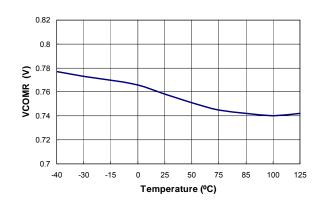


Figure 22. Variation Test Voltage on COMR Pin for Cable Compensation (V_{COMR}) vs. Temperature

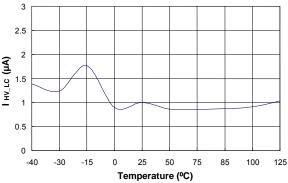
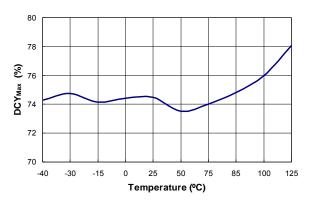



Figure 21. Leakage Current after Startup (I_{HV-LC}) vs. Temperature

100 125

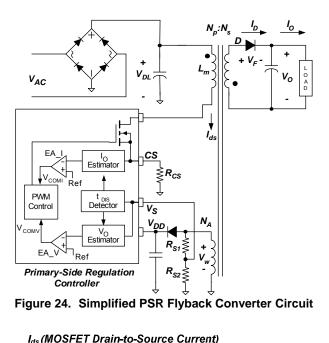
Functional Description

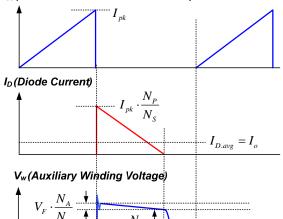
Figure 24 shows the basic circuit diagram of primaryside regulated flyback converter, with typical waveforms shown in Figure 25. Generally, discontinuous conduction mode (DCM) operation is preferred for primary-side regulation because it allows better output regulation. The operation principles of DCM flyback converter are as follows:

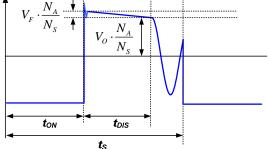
During the MOSFET on time (t_{ON}), input voltage (V_{DL}) is applied across the primary-side inductor (L_m). Then MOSFET current (I_{ds}) increases linearly from zero to the peak value (I_{pk}). During this time, the energy is drawn from the input and stored in the inductor.

When the MOSFET is turned off, the energy stored in the inductor forces the rectifier diode (D) to be turned on. While the diode is conducting, the output voltage (V_o), together with diode forward-voltage drop (V_F), is applied across the secondary-side inductor ($L_m \times N_s^2 / N_p^2$) and the diode current (I_D) decreases linearly from the peak value (I_{pk}×N_p/N_s) to zero. At the end of inductor current discharge time (t_{DIS}), all the energy stored in the inductor has been delivered to the output.

When the diode current reaches zero, the transformer auxiliary winding voltage (V_w) begins to oscillate by the resonance between the primary-side inductor (L_m) and the effective capacitor loaded across the MOSFET.


During the inductor current discharge time, the sum of output voltage and diode forward-voltage drop is reflected to the auxiliary winding side as $(V_o+V_F) \times N_a/N_s$. Since the diode forward-voltage drop decreases as current decreases, the auxiliary winding voltage reflects the output voltage best at the end of diode conduction time where the diode current diminishes to zero. Thus, by sampling the winding voltage at the end of the diode conduction time, the output voltage information can be obtained. The internal error amplifier for output voltage regulation (EA_V) compares the sampled voltage with internal precise reference to generate error voltage (V_{COMV}), which determines the duty cycle of the MOSFET in CV mode.


Meanwhile, the output current can be estimated using the peak drain current and inductor current discharge time because output current is same as the average of the diode current in steady state.


The output current estimator picks up the peak value of the drain current with a peak detection circuit and calculates the output current using the inductor discharge time (t_{DIS}) and switching period (t_s). This output information is compared with internal precise reference to generate error voltage (V_{COMI}), which determines the duty cycle of the MOSFET in CC mode. With Fairchild's innovative technique TRUECURRENTTM, constant current (CC) output can be precisely controlled.

Among the two error voltages, $V_{\rm COMV}$ and $V_{\rm COMI}$, the smaller one determines the duty cycle. Therefore, during constant voltage regulation mode, $V_{\rm COMV}$ determines the duty cycle while $V_{\rm COMI}$ is saturated to HIGH. During

constant current regulation mode, V_{COMI} determines the duty cycle while V_{COMV} is saturated to HIGH.

Cable Voltage Drop Compensation

In cellular phone charger applications, the battery is located at the end of cable, which typically causes several percentage of voltage drop on the battery voltage. FSEZ1317 has a built-in cable voltage drop compensation that provides a constant output voltage at the end of the cable over the entire load range in CV mode. As load increases, the voltage drop across the cable is compensated by increasing the reference voltage of the voltage regulation error amplifier.

Operating Current

The FSEZ1317 operating current is as small as 2.5mA, which results in higher efficiency and reduces the V_{DD} hold-up capacitance requirement. Once FSEZ1317 enters "deep" green mode, the operating current is reduced to 0.95mA, assisting the power supply in meeting power conservation requirements.

Green-Mode Operation

The FSEZ1317 uses voltage regulation error amplifier output (V_{COMV}) as an indicator of the output load and modulates the PWM frequency as shown in Figure 26. The switching frequency decreases as the load decreases. In heavy load conditions, the switching frequency is fixed at 50kHz. Once V_{COMV} decreases below 2.5V, the PWM frequency linearly decreases from 50kHz. When FSEZ1317 enters deep green mode, the PWM frequency is reduced to a minimum frequency of 370Hz, thus gaining power saving to meet international power conservation requirements.

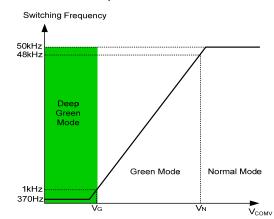
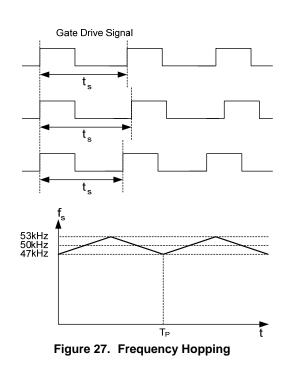
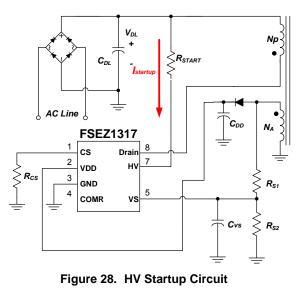



Figure 26. Switching Frequency in Green Mode


Frequency Hopping

EMI reduction is accomplished by frequency hopping, which spreads the energy over a wider frequency range than the bandwidth measured by the EMI test equipment. FSEZ1317 has an internal frequency hopping circuit that changes the switching frequency between 47kHz and 53kHz over the period shown in Figure 27.

High-Voltage Startup

Figure 28 shows the HV-startup circuit for FSEZ1317 applications. The HV pin is connected to the line input or bulk capacitor through a resistor, R_{START} (100k Ω recommended). During startup status, the internal startup circuit is enabled. Meanwhile, line input supplies the current, I_{STARTUP} , to charge the hold-up capacitor, C_{DD} , through R_{START} . When the V_{DD} voltage reaches $V_{\text{DD-ON}}$, the internal startup circuit is disabled, blocking I_{STARTUP} from flowing into the HV pin. Once the IC turns on, C_{DD} is the only energy source to supply the IC consumption current before the PWM starts to switch. Thus, C_{DD} must be large enough to prevent V_{DD} from dropping down to $V_{\text{DD-OFF}}$ before the power can be delivered from the auxiliary winding.

Under-Voltage Lockout (UVLO)

The turn-on and turn-off thresholds are fixed internally at 16V and 5V, respectively. During startup, the hold-up capacitor must be charged to 16V through the startup resistor to enable the FSEZ1317. The hold-up capacitor continues to supply V_{DD} until power can be delivered from the auxiliary winding of the main transformer. V_{DD} is not allowed to drop below 5V during this startup process. This UVLO hysteresis window ensures that hold-up capacitor properly supplies V_{DD} during startup.

Protections

The FSEZ1317 has several self-protection functions, such as Over-Voltage Protection (OVP), Over-Temperature Protection (OTP), and pulse-by-pulse current limit. All the protections are implemented as auto-restart mode. Once the abnormal condition occurs, the switching is terminated and the MOSFET remains off, causing V_{DD} to drop. When V_{DD} drops to the V_{DD} turn-off voltage of 5V, internal startup circuit is enabled again and the supply current drawn from the HV pin charges the hold-up capacitor. When V_{DD} reaches the turn-on voltage of 16V, normal operation resumes. In this manner, the auto-restart alternately enables and disables the switching of the MOSFET until the abnormal condition is eliminated (see Figure 29).

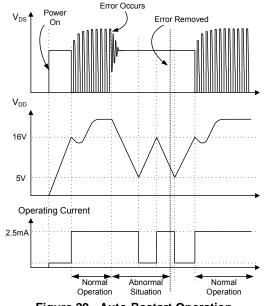


Figure 29. Auto-Restart Operation

V_{DD} Over-Voltage Protection (OVP)

 V_{DD} over-voltage protection prevents damage from overvoltage conditions. If the V_{DD} voltage exceeds 24V at open-loop feedback condition, OVP is triggered and the PWM switching is disabled. The OVP has a debounce time (typically 200µs) to prevent false triggering due to switching noises.

Over-Temperature Protection (OTP)

The built-in temperature-sensing circuit shuts down PWM output if the junction temperature exceeds 140°C.

Pulse-by-pulse Current Limit

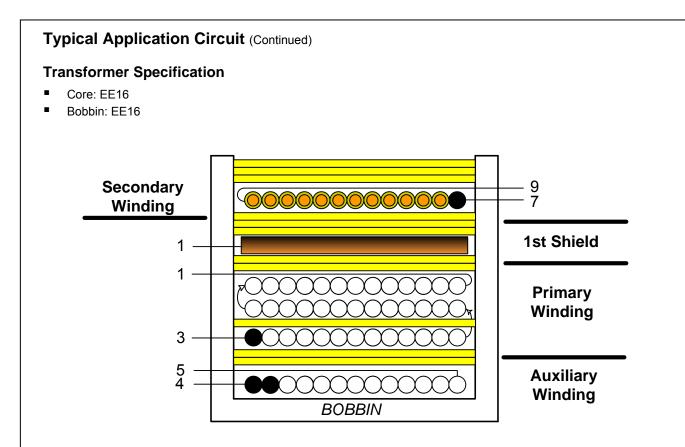
When the sensing voltage across the current-sense resistor exceeds the internal threshold of 0.8V, the MOSFET is turned off for the remainder of switching cycle. In normal operation, the pulse-by-pulse current limit is not triggered since the peak current is limited by the control loop.

Leading-Edge Blanking (LEB)

Each time the power MOSFET switches on, a turn-on spike occurs at the sense resistor. To avoid premature termination of the switching pulse, a leading-edge blanking time is built in. During this blanking period, the current-limit comparator is disabled and cannot switch off the gate driver. As a result conventional RC filtering can be omitted.

Gate Output

The FSEZ1317 output stage is a fast totem-pole gate driver. Cross conduction has been avoided to minimize heat dissipation, increase efficiency, and enhance reliability. The output driver is clamped by an internal 15V Zener diode to protect the power MOSFET transistors against undesired over-voltage gate signals.


Built-In Slope Compensation

The sensed voltage across the current-sense resistor is used for current mode control and pulse-by-pulse current limiting. Built-in slope compensation improves stability and prevents sub-harmonic oscillations due to peak-current mode control. The FSEZ1317 has a synchronized, positive-slope ramp built-in at each switching cycle.

Noise Immunity

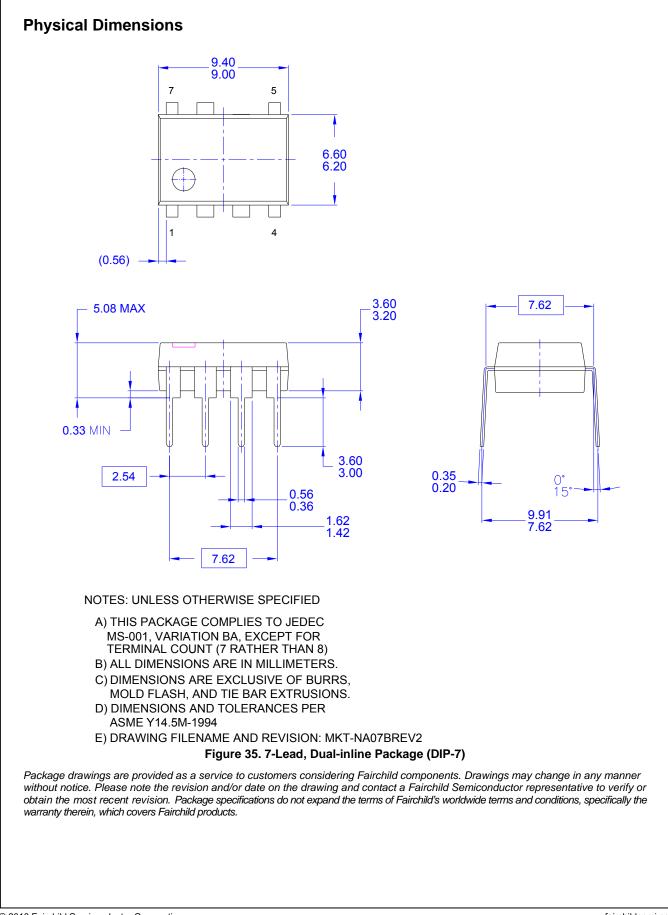
Noise from the current sense or the control signal can cause significant pulsewidth jitter, particularly in continuous-conduction mode. While slope compensation helps alleviate these problems, further precautions should still be taken. Good placement and layout practices should be followed. Avoiding long PCB traces and component leads, locating compensation and filter components near the FSEZ1317, and increasing the power MOS gate resistance are advised.

	Fairchild Devices	Input Vol	Itage Range	Output	Output DC cab	
Cell Phone Charger	FSEZ1317 (SOP-7)	90~:	90~265V _{AC} 5V/0.7A (3.5W)		() AWG26, 1.8 Mete	
	65.5% at full load) meeti <30mW at no-load cond 115V _{AC} 60Hz(71.61%	ition)	regulation with	enough margin		
72%			40			
70%	230V _{AC} 50Hz(70.01% avg	a)				
68%			100 (mM)			
66%	****	¥	ut pov		•	
64%	% : Energy Star V (2009)		6 20	·····		
62%			10			
	61.27% : CEC (2008)		10			
60%						
58% 25%	50% 75% Load (%) . Measured Efficiency	100%	0 90	120 150 180 Input voltag Figure 31. Stand		
58% 25%	Load (%) Measured Efficiency $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$R_{SNT} C_S$ $100k\Omega 1 T$ R_{DAMF} 270Ω	90	Input voltag Figure 31. Stand $1nF 75\Omega$ $C_{SN2} R_{SN2}$ D_R D_R SB240	e (V)	

Notes:

- 7. When W4R's winding is reversed winding, it must wind one layer.
- 8. When W2 is winding, it must wind three layers and put one layer of tape after winding the first layer.

Na	Terr	ninal	\M/:=-	4	Insulation	Barrie	er Tape
No.	S	F	Wire	t _s	t _s	Primary	Seconds
W1	4	5	2UEW 0.23*2	15	2		
				41	1		
W2	3	1	2UEW 0.17*1	39	0		
				37	2		
W3	1	-	COPPER SHIELD	1.2	3		
W4	7	9	TEX-E 0.55*1	9	3		
			CORE ROUNDING TAPE		3		


	Pin	Specification	Remark
Primary-Side Inductance	1-3	2.25mH ± 7%	100kHz, 1V
Primary-Side Effective Leakage	1-3	80μH ± 5%	Short One of the Secondary Windings

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

FSEZ1317 — Primary-Side-Regulation PWM with POWER MOSFET Integrated

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative