

FSC-BT616

4.1 Single Mode Bluetooth Module Data Sheet

4.1 Single Mo	de Bluetooth Module Data She
-nent	Reast Con
Document Type:	FSC-BT616
Document Version:	V1.0 91
Release Date:	Nov. 20, 2016

Shenzhen Feasycom Technology Co.,Ltd.

Telephone: 86-755-27924639

www.feasycom.com

Shenzhen Feasycom Technology Co.,Ltd.

Release Record

Version Number	Release Date	Comments
Revision 1.0	2016-12-20	First Release

Chel	2h			
	Ch A			
	Pihen feas	COM		
	S,	Ch	201	
			91	$\mathcal{C}_{\mathcal{O}}$
				· < 12
			Y	

1. INTRODUCTION

FSC-BT616 is a fully integrated Bluetooth module that complies with Bluetooth 4.1 single mode protocols(BLE). It supports GAP, ATT/GATT, SMP, L2CAP profiles. It integrates Baseband controller in a small package (Integrated chip antenna), so the designers can have better flexibilities for the product shapes.

FSC-BT616 can be communicated by UART port. With Feasycom's Bluetooth stack, Customers can easily transplant to their software. Please refer to Feasycom stack design guide.

Block Diagram 1.1

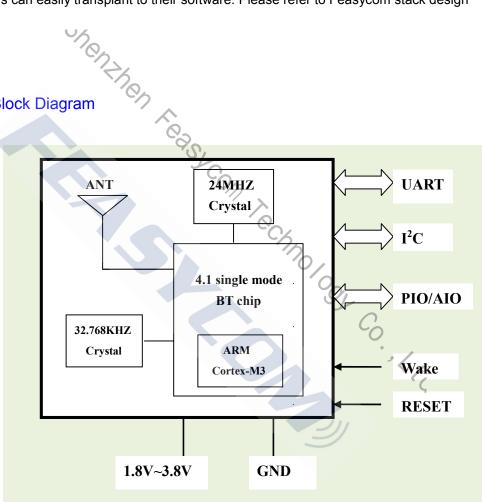


Figure 1

- Support the Bluetooth 4.1 core specification
- Integrate MCU to execute Bluetooth protocol stack.
- Postage stamp sized form factor,
- Low power
- Class 1.5 support(high output power)
- The default UART Baud rate is 115.2Kbps and can support from 1200bps up to 921Kbps,.
- UART, I²C,SPI,12-bit ADC(200ks/S)data connection interfaces.
- Support the OTA upgrade.
- Bluetooth stack profiles support: LE HID, and all BLE protocols.
- PWM
- Support eight capacitance sensor button
- Integrated temperature sensor ٠

1.3 Application

- Skon technology Co. I.R. Smart Watch and Bluetooth Bracelet
- Health & Medical devices
- TV Remote Controller
- LE HID, Beacon,
- Home Automation
- Key fob, wristband, wearable device

2. GENERAL SPECIFICATION

General Specifica	tion				
ChipSet		TI CC2640			
Product ID		FSC-BT61	6		
Dimension		13mm x 26	6.9mm x 2.4mm		
Bluetooth Specifica	ation	Bluetooth	V4.1 (Single Mode	e)	
Power Supply		1.8V~3.8 \	/olt DC		
Output Power 🧡	5	5 dBm			
Sensitivity	onzhon ~	-96dBm@0	0.1%BER		
Frequency Band	-70p	2.402GHz	-2.480GHz ISM b	and	
Modulation		GFSK			
Baseband Crystal OSC		24MHz			
Hopping & channels		1600hops/sec, 2MHz channel space, 40 Channels			
RF Input Impedance	ce	50 ohms			
Antenna		Integrated chip antenna (Optional: External antenna interface)			
Interface		Data: UART, I ² C			
Profile		GATT(BLE Standard) MFI, Airsync, ANCS, iBeacon, OTA			
Temperature		-40°C to +85 °C			
Humidity		10%~95%	Non-Condensing		
Environmental		RoHS Con	npliant		
Electrostatic	Human body model(HBM ANSI/ESDA/JEDEC JS00		All pins	±2500V	
discharge(ESD)	Charged device model(C	Charged device model(CDM),per			
performance	JESD22-C101		Non-RF pins	±750V	

Table 1

3. PHYSICAL CHARACTERISTIC

- Dimension: 13mm(W) x 26.9mm(L) x 2.4mm(H) Tolerance: ±0.1mm
- Module size: 13mm X 26.9mm Tolerance: ±0.2mm
- Pad size: 1mmX0.8mm Tolerance: ±0.2mm
- Pad pitch: 1.5mm Tolerance: \pm 0.1mm

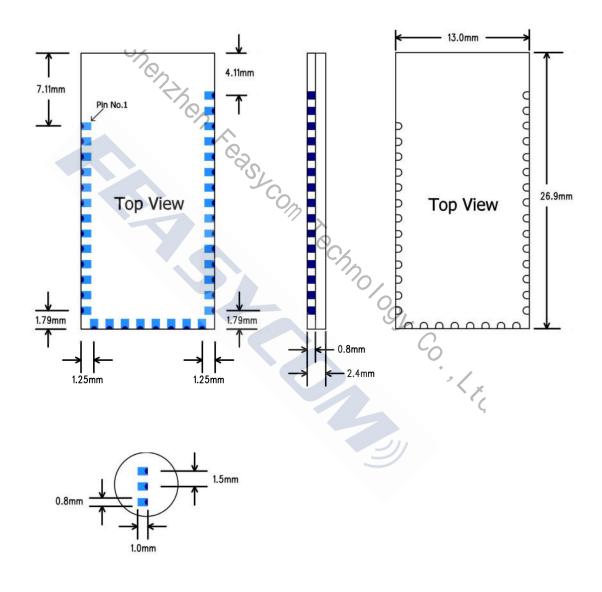


Figure 2 Package Dimensions (TOP VIEW)

-**FEASYCOM**》

4. PIN DEFINITION DESCRIPTIONS

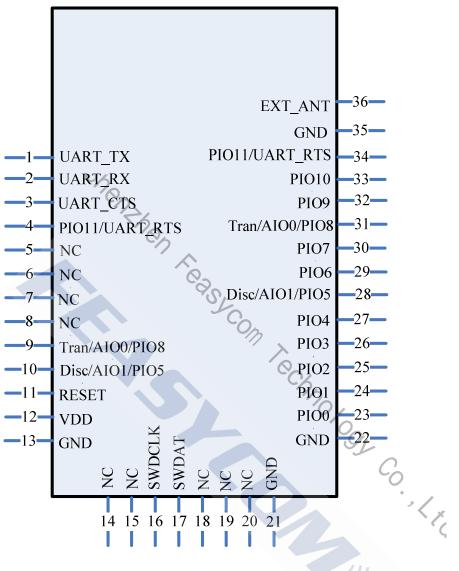


Figure3: FSC-BT616 PIN Diagram

Pin	Pin Name	Pad Type	d Type Description		
1	UART-TX	CMOS output	UART data output		
2	UART-RX CMOS input		UART-RX CMOS input UART data input		
3	UART-CTS	I/O	UART clear to send active low Alternative Function: Programmable input/output line		
4	PIO11/UART-R TS	I/O	UART request to send active low Wake Pin (Default) (H= Sleep; L= Wake up) Alternative Function: Programmable input/output line		

Shenzhen Feasycom Technology Co.,Ltd.

-**FEASYCOM**»-

5	NC	NC	NC
6	NC	NC	NC
7	NC	NC	NC
8	NC	NC	NC
9	PIO8/Disc/AIO 0	I/O	Host MCU disconnect bluetooth. (Default) One low pulse with 80ms duration low signal to trigger bluetooth disconnection.Otherwise it will be set as high always. 1),Alternative Function: Analogue programmable I/O line. 2),Alternative Function: Programmable input/output line
10	PIO5/Tran/AIO 1	hent voen	Host MCU change UART transmission mode. (Default) If current UART transmission mode is command mode, one low pulse with 80ms duration low signal will change UART transmission mode to throughput mode, and another low pulse could change UART transmission mode back to command mode. Otherwise it will be set as high always. 1),Alternative Function: Analogue programmable I/O line. 2),Alternative Function: Programmable input/output line
11	RESET	CMOS input	Reset if low. Input debounced so must be low for >5ms to cause a reset.
12	VDD	VDD	Power supply voltage 1.8V ~ 3.8V
13	GND	VSS	Power Ground
14	NC	NC	NC
15	NC	NC	LNC
16	SWDCLK	I/O	Update Interface(SWDCLK)
17	SWDAT	I/O	Update Interface(SWDAT)
18	NC	NC	NC
19	NC	NC	NC
20	NC	NC	NC
21	GND	VSS	Power Ground
22	GND	VSS	Power Ground
23	PIO0	I/O	Programmable input/output line
24	PIO1	I/O	Programmable input/output line
25	PIO2	I/O	Programmable input/output line
26	PIO3	I/O	Programmable input/output line
27	PIO4	I/O	Programmable input/output line
28	PIO5/Tran/AIO 1	I/O	Host MCU change UART transmission mode. (Default) If current UART transmission mode is command mode, one low

Shenzhen Feasycom Technology Co.,Ltd.

FEASYCOM

			pulse with 80ms duration low signal will change UART				
			transmission mode to throughput mode, and another low pulse				
			could change UART transmission mode back to command mode.				
			Otherwise it will be set as high always.				
			1),Alternative Function: Analogue programmable I/O line.				
			2),Alternative Function: Programmable input/output line				
	DIO		Programmable input/output line				
29	PIO6	Bi-directional	Alternative Function: I2C Serial Clock input/output				
		.	Programmable input/output line				
30	PIO7	Bi-directional	Alternative Function:I2C Serial Data input/output				
			Host MCU disconnect bluetooth. (Default)				
	PIO8/Disc/AIO	UZ.	One low pulse with 80ms duration low signal to trigger bluetooth				
31	FIO0/DISC/AIO		disconnection.Otherwise it will be set as high always.				
	0		1),Alternative Function: Analogue programmable I/O line.				
		ne vo	2), Alternative Function: Programmable input/output line				
	D IO0		Programmable input/output line				
32	PIO9	I/O	Alternative Function: LED(Default)				
			Programmable input/output line				
33	PIO10	I/O	Alternative Function: BT Status(Default)				
			UART request to send active low				
34	PIO11/UART-R	I/O	Wake Pin (Default) (H= Sleep; L= Wake up)				
	TS		Alternative Function: Programmable input/output line				
35	GND	VSS	Power Ground				
			By default, this PIN is an empty feet. This PIN can connect to an				
			external antenna to improve the Bluetooth signal coverage.				
36	EXT_ANT	RF signal output	If you need to use an external antenna, by modifying the module				
	_		on the 0R resistance to block out the on-board antenna; Or				
			contact Feasycom for modification.				

Table 2

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

The module should not continuously run under extreme conditions. The absolute maximum ratings are summarized in Table below. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability and cause permanent damage to the device.

Temperature/Voltage	Min	Max	Unit
Storage temperature	-40	150	°C
Operating temperature	-40	85	°C
Supply voltage	-0.3	3.8	V

Shenzhen Feasycom Technology Co.,Ltd.

C

Terminal voltages		- 0.3	Vdd + 0.3	V	
Voltage on ADC input (Vin)	Voltage scaling enabled	- 0.3	VDD		
	Voltage scaling disabled, internal	- 0.3	1.49	V	
	reference				
	Voltage scaling disabled, VDD as reference	- 0.3	VDD / 2.9		
Input RF level		-	5	dBm	

Table 3

5.2 Recommended Operating Conditions

The recommended operating conditions are summarized in Table below.

Temperature/Voltage	Min	Тур	Max	Unit
Operating temperature	-40	25	85	°C
Supply voltage	1.8	3.3	3.8	V
Terminal voltages	0		Vdd	V

Table 4

5.3 Terminal Characteristics

		r	-	5			
(Characteristics O	Min	Тур	Max	Unit		
TA = 25°C, VDD = 1.8 V	TA = 25°C, VDD = 1.8 V						
GPIO VOH at 8-mA	IOCUER = 2 kick drive CRIOs ank	1.00	1 5 4		V		
load	IOCURR = 2, high-drive GPIOs only	1.32	1.54	-	V		
GPIO VOL at 8-mA	IOCURR = 2, high-drive GPIOs only	•	0.26	0.32	V		
load	IOCORR – 2, high-drive GFIOS only	-	0.20	0.52	v		
GPIO VOH at 4-mA	IOCURR = 1	1.32	ς 1.58	_	V		
load		1.52	1.50		v		
GPIO VOL at 4-mA	IOCURR = 1	ν_{\perp}	0.21	0.32	V		
load			0.21	0.02	v		
GPIO pullup current	Input mode, pullup enabled, Vpad = 0	_	71.7	_	uA		
	V		1 1.1		u/ (
GPIO pulldown current	Input mode, pulldown enabled, Vpad	_	21.1	_	uA		
	= VDD				ur (
GPIO high/low input	IH = 0, transition between reading 0	_	0.88	_	V		
transition, no hysteresis	and reading 1	-	0.00		v		
GPIO low-to-high input	IH = 1, transition voltage for input						
transition,with	read as $0 \rightarrow 1$	-	1.07	-	V		
hysteresis							
GPIO high-to-low input	IH = 1, transition voltage for input		0.74		V		
transition,with	read as $1 \rightarrow 0$	-	0.74	-	v		

FSC-BT616's terminal characteristics are summarized Table below.

Shenzhen Feasycom Technology Co.,Ltd.

-FEASYCOM

		1			
hysteresis					
GPIO input hysteresis	IH = 1, difference between $0 \rightarrow 1$ and $1 \rightarrow 0$ points	-	0.33	-	V
TA = 25°C, VDD = 3.0 V	1				
GPIO VOH at 8-mA load	IOCURR = 2, high-drive GPIOs only	-	2.68	-	V
GPIO VOL at 8-mA load	IOCURR = 2, high-drive GPIOs only	-	0.33	-	V
GPIO VOH at 4-mA load	IOCURR = 1	-	2.72	-	V
GPIO VOL at 4-mA load	IOCURR = 1	-	0.28	-	V
TA = 25°C, VDD = 3.8 V					
GPIO pullup current	Input mode, pullup enabled, Vpad = 0 \vee	-	277	-	uA
GPIO pulldown current	Input mode, pulldown enabled, Vpad = VDD	-	113	-	uA
GPIO high/low input transition,no hysteresis	IH = 0, transition between reading 0 and reading 1	-	1.67	-	V
GPIO low-to-high input transition,with hysteresis	IH = 1, transition voltage for input read as $0 \rightarrow 1$	-	1.94	-	V
GPIO high-to-low input transition,with hysteresis	IH = 1, transition voltage for input read as $1 \rightarrow 0$	22	1.54	-	V
GPIO input hysteresis	IH = 1, difference between $0 \rightarrow 1$ and $1 \rightarrow 0$ points	<u> </u>	0.4	-	V
TA = 25°C			1		
VIH	Lowest GPIO input voltage reliably interpreted as a «High»	-	-	0.8	VDD
VIL	Highest GPIO input voltage reliably interpreted as a «Low»	0.2	-	_	VDD
NRST pin characteristics					
VTH,res threshold voltage			1.8	VDD	V
RIRES input resistance			100	-	kΩ
CIRES input capacitance	9	-	100	-	nF

Table 5

5.4 Current Consumption

FSC-BT616's current consumption is summarized in Table below.

Connection Type	Average	Unit
24MHz Off		
32.768KHz On	40	uA
Advert interval 500mS	42	uA
Uart Off		
24MHz On		
32.768KHz On	1 1 0	mA
Advert interval 500mS	1.10	ША
Uart On		
Connection Interval 18mS		
24MHz Off	40	uA
32.768KHz On	49	uA
Uart Off		
Connection Interval 18mS		
24MHz On	1 47	m (
32.768KHz On	1.47	mA
Uart On		
	24MHz Off 32.768KHz On Advert interval 500mS Uart Off 24MHz On 32.768KHz On Advert interval 500mS Uart On Connection Interval 18mS 24MHz Off 32.768KHz On Uart Off Connection Interval 18mS 24MHz On 32.768KHz On	24MHz Off32.768KHz OnAdvert interval 500mSUart Off24MHz On32.768KHz OnAdvert interval 500mSUart OnAdvert interval 500mSUart OnConnection Interval 18mS24MHz Off32.768KHz OnUart OffConnection Interval 18mS24MHz Off4932.768KHz OnUart OffConnection Interval 18mS24MHz Off1.47

Table 6

5.5 Radio Characteristics

5.5.1 Transmitter Radio Characteristics

TX output is guaranteed to be unconditionally stable over the guaranteed temperature · < ₁, range. Refer to Table below.

70/09/

Measurement conditions: T = 25°C, Vdd = 3.0V, FRF = 2440 MHz.

	Item	Typical Value	Unit	
Maximum output power1	,2			
(Differential mode, delive	5	dBm		
through a balun)				
Output power, lowest setting		-21	dBm	
(Delivered to a single-en	ded 50- Ω load through a balun)	-21	UDIII	
Spurious emission	f < 1 GHz, outside restricted bands	-43	dBm	
conducted	f < 1 GHz, restricted bands ETSI	-65	dBm	
measurement(1)	f < 1 GHz, restricted bands FCC	-76	dBm	
	f > 1 GHz, including harmonics	-46	dBm	
(1) Suitable for systems	targeting compliance with worldwide radio-f	requency regulation	ons ETSI	
EN 300 328 and EN 300	440 Class 2(Europe), FCC CFR47 Part 15	(US), and ARIB S	STD-T66	
(Japan).				

5.5.2 Receiver Radio Characteristics

RX input is guaranteed to be unconditionally stable over the guaranteed temperature range. Refer to Table below.

Measurement conditions: T = 25° C, Vdd = 3.0V, F_{RF} = 2440 MHz.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Receiver sensitivity	Differential mode. BER = 10–3	-	-96	-	dBm
Frequency error	Difference between the incoming	-350	-	350	KHz
tolerance	carrier frequency and the internally				
	generated carrier frequency				
Data rate error	Difference between incoming data rate	-750	-	750	ppm
tolerance	and the internally generated data rate				
Co-channel rejection	Wanted signal at –67 dBm, modulated	-	-6	-	dB
(1)	interferer in channel, BER = 10^{-3}				
Selectivity, ±1 MHz ⁽¹⁾	Wanted signal at +67 dBm, modulated	-	7 / 3 ⁽²⁾	-	dB
	interferer at ± 1 MHz, BER = 10^{-3}				
Selectivity, ±2 MHz ⁽¹⁾	Wanted signal at -67 dBm, modulated	-	34 / 25 ⁽²⁾	-	dB
	interferer at ±2 MHz, BER = 10^{-3}				
Selectivity, ±3 MHz ⁽¹⁾	Wanted signal at –67 dBm, modulated	-	38 / 26 ⁽²⁾	-	dB
	interferer at ± 3 MHz, BER = 10^{-3}				
Selectivity, ±4 MHz ⁽¹⁾	Wanted signal at -67 dBm, modulated	-	42 / 29 ⁽²⁾	-	dB
	interferer at ± 4 MHz, BER = 10^{-3}	0			
Selectivity, ±5 MHz	Wanted signal at -67 dBm, modulated	S/	32	-	dB
or more ⁽¹⁾	interferer at $\geq \pm 5$ MHz, BER = 10^{-3}		$C_{\rm o}$		
Selectivity, Image	Wanted signal at -67 dBm, modulated	-	25	-	dB
frequency ⁽¹⁾	interferer at image frequency, BER =				
	10 ⁻³		Č,		
Selectivity, Image	Wanted signal at –67 dBm, modulated		3 / 26 ⁽²⁾	-	dB
frequency ±1 MHz ⁽¹⁾	interferer at ±1 MHz from image	<u>ال</u>			
	frequency, BER = 10^{-3}				
Out-of-band blocking	30 MHz to 2000 MHz	-	-20	-	dBm
Out-of-band blocking	2003 MHz to 2399 MHz	-	-5	-	dBm
Out-of-band blocking	2484 MHz to 2997 MHz	-	-8	-	dBm
Out-of-band blocking	3000 MHz to 12.75 GHz	-	-8	-	dBm
Intermodulation	Wanted signal at 2402 MHz, –64 dBm.	-	-34	-	dBm
	Two interferers at 2405 and 2408 MHz				
	respectively, at the given power level				
Spurious emissions,	Conducted measurement in a 50- Ω	-	-71	-	dBm
30 to 1000 MHz	single-ended load. Suitable for systems				
	targeting compliance with EN 300 328,				

FEASYCOM

	EN 300 440 class 2, FCC CFR47, Part				
	15 and ARIB STD-T-66				
Spurious emissions,1	Conducted measurement in a 50 Ω	-	-62	-	dBm
to 12.75 GHz	single-ended load. Suitable for systems				
	targeting compliance with EN 300 328,				
	EN 300 440 class 2, FCC CFR47, Part				
	15 and ARIB STD-T-66				
RSSI dynamic range	-	-	70	-	dB
RSSI accuracy	-	-	±4	-	dB
(1) Numbers given as I	/C dB.				

(2) X / Y, where X is +N MHz and Y is –N MHz.

(3) Excluding one exception at Fwanted / 2, per Bluetooth Specification.

Table 8

6. Interface Characteristics

6.1 UART Interface

Four signals are used to implement the UART function. When FSC-BT616 is connected to another digital device, UART_RX and UART_TX transfer data between the two devices. The

remaining two signals, UART_CTS and UART_RTS, can be used to implement RS232

hardware flow control where both are active low indicators.

The interface consists of four-line connection as described in below.

Signal name	Driving source	Description G
UART-TX	FSC-BT616 module	Data from FSC-BT616 module
UART-RX	Host	Data from Host
UART-RTS	FSC-BT616 module	Request to send output of FSC-BT616 module
UART-CTS	Host	Clear to send input of FSC-BT616 module

Table 9

Default Data Format	
Property	Possible Values
Baudrate	115. 2 Kbps
Flow Control	None
Data bit length	8bit
Parity	None
Number of Stop Bits	1

Shenzhen Feasycom Technology Co.,Ltd.

Table 10

6.2 I²C Interface

- Up to two I²C bus interfaces can support both master and slave mode with a frequency up to 400KHZ.
- Provide arbitration function, optional PEC(packet error checking) generation and checking.
- Supports 7 –bit and 10 –bit addressing mode and general call addressing mode.

The I²C interface is an internal circuit allowing communication with an external I²C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I²C module provides two data transfer rates: 100 kHz of standard mode or 400kHz of the fast mode. The I²C module also has an arbitration detect function to prevent thesituation where more than one master attempts to transmit data to the I²C bus at the same time. A CRC-8 calculator is also provided in I²C interface to perform packet error checking for I²C data.

6.3 Analog to digital converter (ADC)

PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
Input voltage range		00		VDD	V
Resolution		00	12		Bits
Sample rate			C	200	Ksps
Offset	Internal 4.3-V equivalent reference ⁽²⁾		2 •		LSB
Gain error	Internal 4.3-V equivalent reference ⁽²⁾		2.4	5	LSB
DNL ⁽³⁾ Differential nonlinearity			>–1	J.	LSB
INL ⁽⁴⁾ Integral nonlinearity			±3		LSB
ENOB	Internal 4.3-V equivalent reference(2), 200 ksps, 9.6-kHz input tone		9.8		
	VDDS as reference, 200 ksps, 9.6-kHz input tone		10		Bits
Effective number of bits	Internal 1.44-V reference, voltage scaling disabled, 32 samples average, 200 ksps, 300-Hz input tone		11.1		
THD	Internal 4.3-V equivalent reference(2), 200 ksps, 9.6-kHz input tone		-65		dB
	VDDS as reference, 200 ksps, 9.6-kHz		-69		

Tc = 25°C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.⁽¹⁾

-**FEASYCOM**» —

Total harmonic	input tone				
distortion	Internal 1.44-V reference, voltage scaling disabled, 32 samples average, 200 ksps, 300-Hz input tone		-71		
	Internal 4.3-V equivalent reference ⁽²⁾ , 200 ksps, 9.6-kHz input tone		60		
SINAD, SNDR	VDDS as reference, 200 ksps, 9.6-kHz input tone		63		dB
Signal-to-noise and Distortion ratio	Internal 1.44-V reference, voltage scaling disabled, 32 samples average, 200 ksps, 300-Hz input tone		69		
	Internal 4.3-V equivalent reference ⁽²⁾ , 200 ksps, 9.6-kHz input tone		67		
SFDR Spurious-free	VDDS as reference, 200 ksps, 9.6-kHz input tone		72		dB
dynamic range	Internal 1.44-V reference, voltage scaling disabled, 32 samples average, 200 ksps, 300-Hz input tone		73		
Conversion time	Serial conversion, time-to-output, 24-MHz clock		50		Clock-cycles
Current consumption	Internal 4.3-V equivalent reference ⁽²⁾	0	0.66		mA
Current consumption	VDD as reference	60	0.75		mA
Reference voltage	Equivalent fixed internal reference (input voltage scaling enabled)		4.3 ⁽²⁾ (5)		V
Reference voltage	Fixed internal reference (input voltage scaling disabled)		1.44 ±1%	< K	V
Reference voltage	VDDS as reference (Also known as RELATIVE) (input voltage scaling enabled)		VDD		V
Reference voltage	VDDS as reference (Also known as RELATIVE) (input voltage scaling disabled)		VDD / 2.82 ⁽⁵⁾		V
	200 ksps, voltage scaling enabled.				

(3) No missing codes. Positive DNL typically varies from +0.3 to +3.5, depending on device (see Figure 4).

(4) For a typical example, see Figure 5

(5) Applied voltage must be within absolute maximum ratings (Absolute Maximum Ratings) at all times.

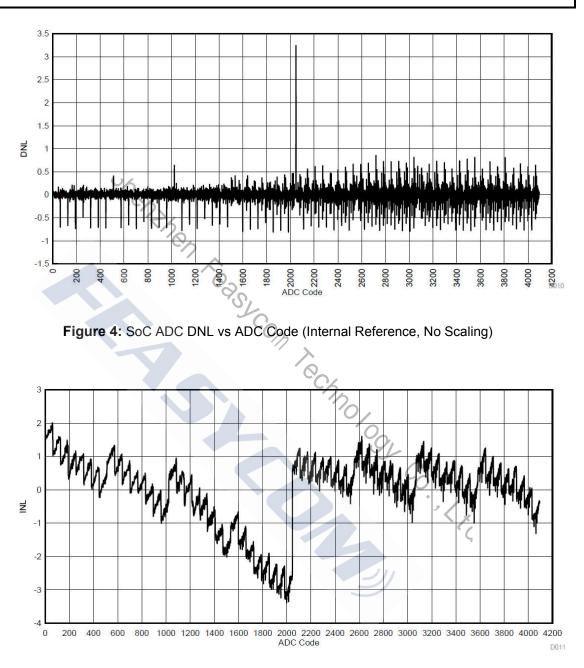


Figure 5: SoC ADC INL vs ADC Code (Internal Reference, No Scaling)

6.4 Wake

Measured on the FSC-BT616 reference design with Tc = 25° C, VDDS = 3.0 V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
Idle \rightarrow Active			14		μs

Shenzhen Feasycom Technology Co.,Ltd.

FEASYCOM

Standby → Active		151	μs
Shutdown → Active		1015	μs

6.5 Temperature Sensor

Measured on the FSC-BT616 reference design with Tc = 25° C, VDDS = 3.0 V, unless otherwise noted

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Resolution			4		°C
Range	~	-40		85	°C
Accuracy	Ch		±5		°C
Supply voltage coefficient ⁽¹⁾	Then a		3.2		°C/V
(1) Automatically compensated when using supplied driver libraries.					

6.6 Battery Monitor

Measured on the FSC-BT616 reference design with $Tc = 25^{\circ}C$, VDDS = 3.0 V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	МАХ	UNIT
Resolution		9	50		mV
Range		1.8	C	3.8	V
Accuracy			13		mV


7. RECOMMENDED TEMPERATURE REFLOW PROFILE

The re-flow profiles are illustrated in Figure 11 and Figure 12 below.

- Follow: IPC/JEDEC J-STD-020 C
- Condition:
 - Average ramp-up rate(217°C to peak):1~2°C/sec max.
 - Preheat:150~200C,60~180 seconds
 - Temperature maintained above 217°C:60~150 seconds
 - Time within 5°C of actual peak temperature:20~40 sec.
 - Peak temperature:250+0/-5°C or 260+0/-5°C
 - Ramp-down rate:3°C/sec.max.
 - Time 25°C to peak temperature:8 minutes max

Shenzhen Feasycom Technology Co.,Ltd.

Figure 7: Typical Lead-free Re-flow

The soldering profile depends on various parameters according to the use of different solder and material. The data here is given only for guidance on solder re-flow.

FSC-BT616 will withstand up to two re-flows to a maximum temperature of 245°C.

Reliability and Environmental Specification 8.

8.1 Temperature test

Put the module in demo board which uses exit power supply, power on the module and connect to mobile. Then put the demo in the -20° C space for 1 hour and then move to +70 $^{\circ}$ C space within 1 minute, after 1 hour move back to - 20°C space within 1 minute. This is 1 cycle. The cycles are 32 times and the units have to pass the testing.

Vibration Test 8.2

The module is being tested without package. The displacement requests 1.5mm and sample is vibrated in three directions(X,Y,Z). Vibration frequency set as 0.5G, a sweep rate of 0.1 octave/min from 5Hz to 100Hz last for 90 minutes each direction. Vibration frequency set as 1.5G, a sweep rate of 0.25 octave/min from 100Hz to 500Hz last for 20 minutes each echno, direction.

8.3 **Desquamation test**

Use clamp to fix the module, measure the pull of the component in the module, make sure the module's soldering is good.

 $\overline{}$

8.4 Drop test

Free fall the module (condition built in a wrapper which can defend ESD) from 150cm height to cement ground, each side twice, total twelve times. The appearance will not be damaged and all functions OK.

7.5 Packaging information

After unpacking, the module should be stored in environment as follows:

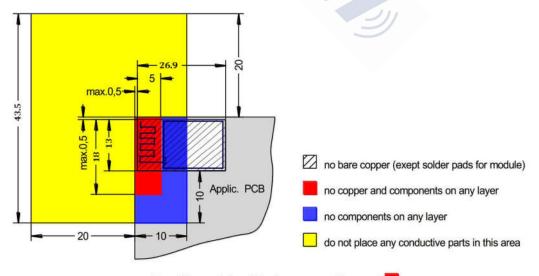
- Temperature: 25°C ± 2°C
- Humidity: <60%
- No acidity, sulfur or chlorine environment

The module must be used in four days after unpacking.

Shenzhen Feasycom Technology Co.,Ltd.

9. Layout and Soldering Considerations

9.1 Soldering Recommendations


FSC-BT616 is compatible with industrial standard reflow profile for Pb-free solders. The reflow profile used is dependent on the thermal mass of the entire populated PCB, heat transfer efficiency of the oven and particular type of solder paste used. Consult the datasheet of particular solder paste for profile configurations.

Feasycom will give following recommendations for soldering the module to ensure reliable solder joint and operation of the module after soldering. Since the profile used is process and layout dependent, the optimum profile should be studied case by case. Thus following recommendation should be taken as a starting point guide.

8.2 Layout Guidelines

It is strongly recommended to use good layout practices to ensure proper operation of the module. Placing copper or any metal near antenna deteriorates its operation by having effect on the matching properties. Metal shield around the antenna will prevent the radiation and thus metal case should not be used with the module. Use grounding vias separated max 3 mm apart at the edge of grounding areas to prevent RF penetrating inside the PCB and causing an unintentional resonator. Use GND vias all around the PCB edges.

The mother board should have no bare conductors or vias in this restricted area, because it is not covered by stop mask print. Also no copper (planes, traces or vias) are allowed in this area, because of mismatching the on-board antenna.

provide solid ground plane(s) as large as possible around area

Shenzhen Feasycom Technology Co.,Ltd.

Figure 8: FSC-BT616 Restricted Area

Following recommendations helps to avoid EMC problems arising in the design. Note that each design is unique and the following list do not consider all basic design rules such as avoiding capacitive coupling between signal lines. Following list is aimed to avoid EMC problems caused by RF part of the module. Use good consideration to avoid problems arising from digital signals in the design.

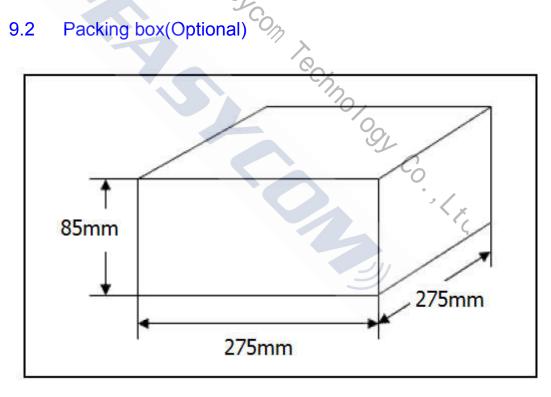
Ensure that signal lines have return paths as short as possible. For example if a signal goes to an inner layer through a via, always use ground vias around it. Locate them tightly and symmetrically around the signal vias. Routing of any sensitive signals should be done in the inner layers of the PCB. Sensitive traces should have a ground area above and under the line. If this is not possible, make sure that the return path is short by other means (for example using a ground line next to the signal line).

10. Product Packaging Information

10.1 Packing

- a, Tray vacuum
- b, Tray Dimension: 180mm * 195mm

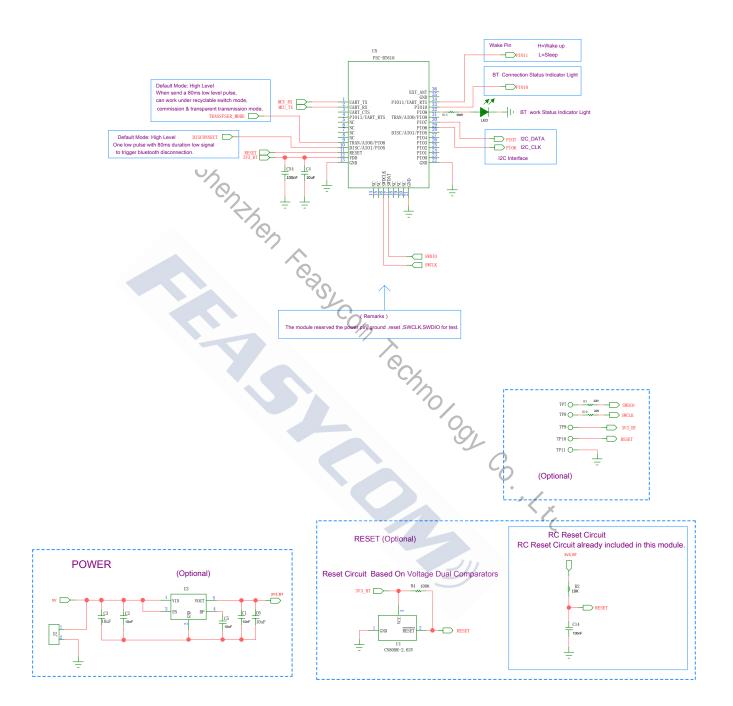
-**FEASYCOM**



- FEASYCOM

Figure 9,10,11: Product Packaging Information (Tray)

Packing box(Optional) 9.2



* If require any other packing, must be confirmed with customer

Figure 12: Packing Box

11. Application Schematic

