

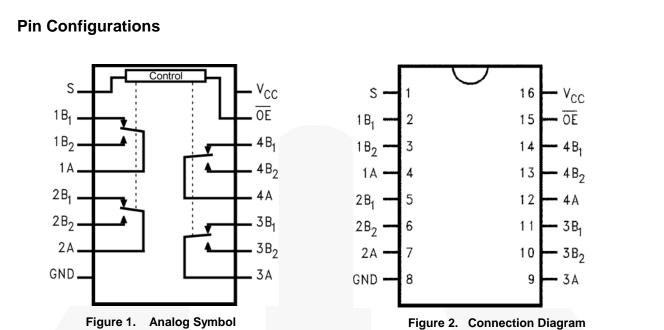
FSAL200 — Wide Bandwidth Quad 2:1 Analog Multiplexer / De-multiplexer Switch

Features

FAIRCHILD

- Typical 6Ω Switch Connection Between Two Ports
- Minimal Propagation Delay Through the Switch
- Low I_{CC}
- Zero Bounce in Flow-Through Mode
- Control Inputs Compatible with TTL Level
- Rail-to-Rail Signal Handling
- Route Communications Signals Include:
 - 10/100 Ethernet
 - 100VG—AnyLAN
 - ATM25
 - SONET OCI 51.8Mbps
 - USB1.1
 - T1/E1
 - Token Ring 4/16Mbps

Description


The Fairchild Switch FSAL200 is a rail-to-rail quad 2:1 high-speed CMOS TTL-compatible analog multiplexer / de-multiplexer switch. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

When OE is low, the select pin connects the A Port to the selected B Port output. When OE is high, the switch is open and a high-impedance state exists between the two ports.

Ordering Information

Part Number	Package Description	
FSAL200MTC	16-Lead Thin Shrink Small Outline Package(TSSOP), JEDEC MO-153, 4.4mm Wide	Rails
FSAL200MTCX	16-Lead Thin Shrink Small Outline Package(TSSOP), JEDEC MO-153, 4.4mm Wide	Tape and Reel
FSAL200QSC	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide	Rails
FSAL200QSCX	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide	Tape and Reel

^{//} All packages are Pb-free per JEDEC standard J-SDD-020B.

Control Input(s)	ŌĒ	Function
X	High	Disconnected
Low	Low	A=B1
High	Low	A=B2

Pin Descriptions

Pin Names	Function
OE	Switch Enable
S	Select Input
A, B1, B2	Data Ports

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	7.0	V
V _{SW}	DC Switch Voltage ⁽¹⁾	-0.5	0.5	V
V _{IN}	DC Input Voltage ⁽¹⁾	-0.5	7.0	V
I _{IK}	DC Input Diode Current at $(I_{IK}) V_{IN} < 0V$		-50	mA
I _{OUT}	DC Output Current		120	mA
I _{CC} /I _{GND}	DC V _{CC} or Ground Current		±100	mA
PD	Power Dissipation at 85°C		0.5	W
T _{STG}	Storage Temperature Range	-65	+150	°C
TA	Ambient Temperature with Power Applied	-40	+85	°C

Note:

1. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Supply Voltage	Supply Voltage		5.5	V
V _{IN}	Control Input Voltage ⁽²⁾		0	V _{CC}	V
V _{SW}	Switch Input Voltage	Switch Input Voltage		Vcc	V
V _{OUT}	Output Voltage	Output Voltage		V _{CC}	V
T _A	Operating Temperature	Operating Temperature		+85	°C
+ +.	Input Pice and Fall Time	Control Input V _{CC} =2.3V -3.6V	0	10	ns/V
t _r ,t _f	Input Rise and Fall Time	Control Input V _{CC} =4.5V -5.5V	0	5	115/ V
θ_{JA}	Thermal Resistance in St	Thermal Resistance in Still Sir			°C/W

Note:

2. Control input must be held HIGH or LOW and it must not float.

Typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	V _{cc} (V) T _A =-40°C to +85°		85°C	Units	
				Min.	Тур.	Max.		
VIH			4.5 to 5.5	2.0			V	
VIH	Input Voltage High		3.0 to 3.6	2.0			v	
Vii	Input Voltage Low		4.5 to 5.5	-0.5		0.8	V	
VIL			3.0 to 3.6	-0.5		0.8	v	
loz	Off State Leakage Current	$0 \le V_{IN} \le 5.5 V$	0 to 5.5			100	μA	
Р	R _{ON} Switch On Resistance ⁽³⁾	I _{ON} =10 -30mA	4.5 to 5.5		6	12	Ω	
RON		I _{ON} =10 -30mA	3.0 to 3.6		15	22		
1		V _{IN} =V _{CC} or GND	5.5			±1		
l _{iN}	Control Input Leakage	V _{IN} =V _{CC} or GND	3.6			±1	μA	
lcc	Quiescent Supply Current, All Channels Off	V _{IN} =V _{CC} or GND, I _{OUT} =0	5.5			1	μA	
	Analog Signal Range		V _{cc}	0		V _{CC}	V	
	On Resistance Matching	I _A =-30 mA, V _{BN} =3.15	4.5 to 5.5		0.4	2.0		
ΔR_{ON}	Between Channels ⁽³⁾⁽⁴⁾	I _A =-10 mA, V _{BN} =2.1	3.0 to 3.6		1.0	3.0	Ω	
	Io Output Current		4.5 to 5.5	100				
10		Output Current B _n , B _n , S-0V to 5V	$D_n, D_n, 3-00 1030$	3.0 to 3.6	80			mA
D	On Resistance Flatness ⁽³⁾⁽⁵⁾	A ₁ , B ₁ , B ₂ =0V to 5V	4.5 to 5.5		3		0	
R _{FLAT(ON)}	On Resistance Flatness	A ₁ , B ₁ , B ₂ =0V to 5V	3.0 to 3.6		7		Ω	

Notes:

Measured by the voltage drop between the A and B pins at the indicated current through the switch. On 3. resistance is determined by the lower of the voltages on the two (A or B ports).

4.

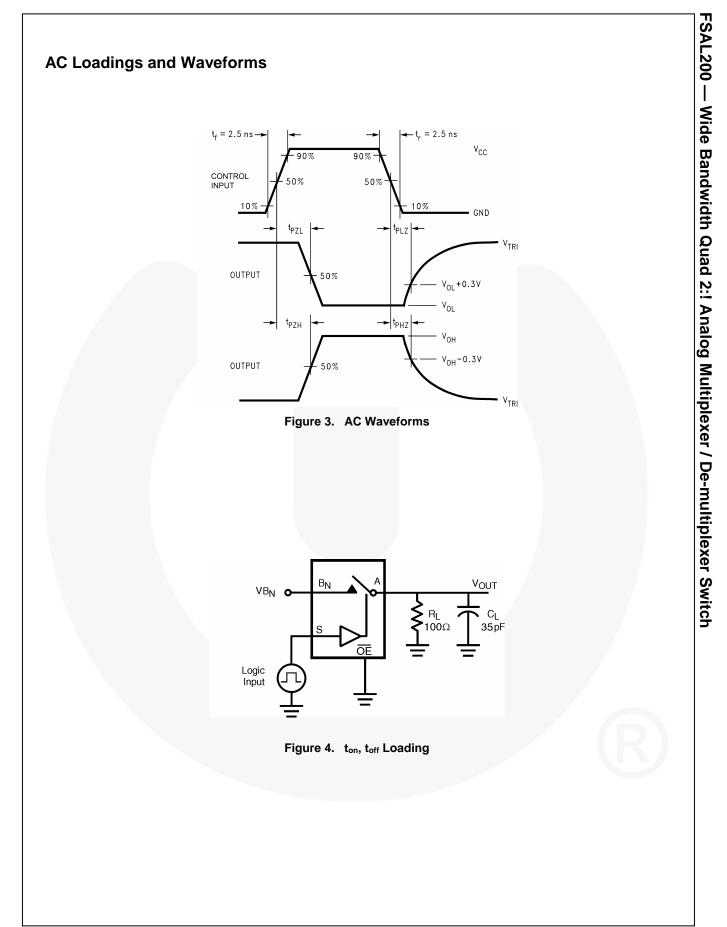
 $\Delta R_{ON} = R_{ON}$ maximum – R_{ON} minimum measured at identical V_{CC}, temperature, and voltage levels. Flatness is defined as the difference between the maximum and minimum value of on resistance over the 5. specified range of conditions.

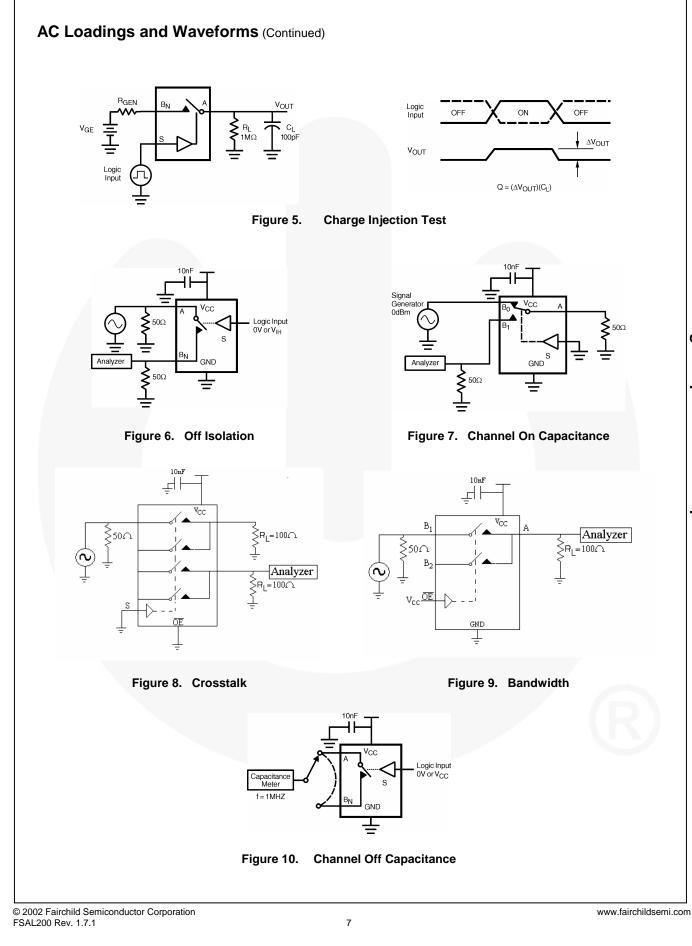
AC Electrical Characteristics

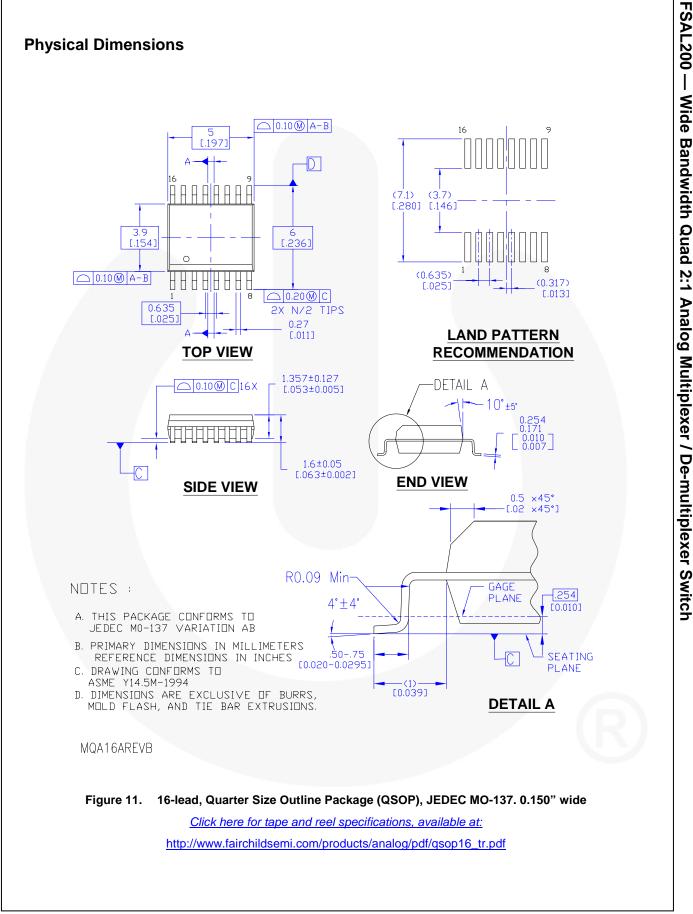
Typical values are at 25°C unless otherwise specified.

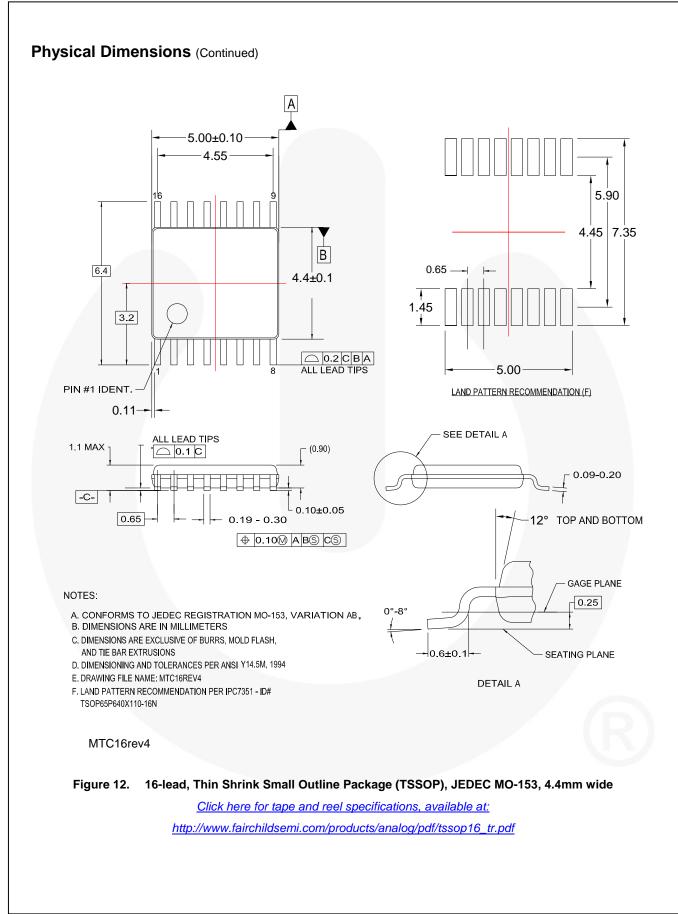
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units	Figure
+	Turn-On Time	VBn=3V	4.5 to 5.5		10	20	20	Figure 3
t _{ON}	Tum-On Time	VB _n =1.5V	3.0 to 3.6		28	40	ns	Figure 4
t	Turn-Off Time	VB _n -3V	4.5 to 5.5		5	10	ns	Figure 3
t _{OFF}		VBn=1.5V	3.0 to 3.6		4	20	115	Figure 4
Q	Charge	C _L =0.1nF,V _{GEN} =0	5.0		7			
Q	Injection	R _{GEN} =0Ω	3.3		3		рС	Figure 5
	OIRR Off Isolation	R _L =100Ω ,f=30MHz	4.5 to 5.5		-55		- dB	
UIKK		R _L =50Ω, f=1MHz	3.0 to 3.6		-75			Figure 6
Vtalk	Xtalk Crosstalk	R _L =100Ω ,f=30MHz	4.5 to 5.5		-70		٩D	Figure 7
Alaik		R _L =50Ω, f=1MHz	3.0 to 3.6		-75		dB	Figure 7
DW	-3db	R _L =100Ω	4.5 to 5.5		137		N 41 1-	Figure 0
BW Bandwidth	R _L =50Ω	3.0 to 3.6		110		— MHz	Figure 9	
D		B 1000	4.5 to 5.5		2		%	Figure 0
U	$\Delta R_{ON/RL}$	R _L =100Ω	3.0 to 3.6		3		-70	Figure 9

Notes:


6. Guaranteed by design.


7. Off Isolation =20 $\log_{10} [V_A / V_{Bn}]$.


Capacitance


T_A=+25°C, f=1MHz. Capacitance is characterized, but not tested in production.

Symbol	Parameter	Conditions	Тур.	Units	Figure
C _{IN}	Control Pin Input Capacitance	V _{CC} =0V	2.3	pF	
Creat	B Port Off Capacitance	$V_{CC}\text{=}5.0V$ and 3.0V	8	۶E	Figure 10
C _{IO-B}	A Port Off Capacitance	$V_{CC}\text{=}5.0V$ and 3.0V	13	pF	Figure 10
Con	Channel On Capacitance	$V_{CC}\text{=}5.0V$ and 3.0V	15	pF	Figure 7

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACFx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ **EcoSPARK**[®] F Fairchild® Fairchild Semiconductor® FACT Quiet Series[™] **FACT**[®] FAST® FastvCore™ FPS™ FRFET® Global Power Resource[™] Green FPS™ Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ **OPTOLOGIC[®] OPTOPLANAR[®]** PDP-SPM™ Power220®

Power247[®] POWEREDGE® Power-SPM™ PowerTrench® Programmable Active Droop™ QFET QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6

SuperSOT[™]-8 SyncFET[™] The Power Franchise[®]

the ranchise franchise TinyBoost™ TinyBuck™ TinyDogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® UniFET™

VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

SAL200 — Wide Bandwidth Quad 2:1 Analog Multiplexer / De-multiplexer Switch

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC