

FSA660—2:1 MIPI C-PHY (5.7 Gbps) 1-Data Lane Switch

Features

- Switch Type: SPDT(3x)
- Signal Types:
 MIPI, C-PHY
- V_{CC}: 1.5 to 5.0 V
- Input Signals: 0 to 2.1 V
- R_{ON}: 5.4 Ω Typical
- ΔR_{ON}: 0.1 Ω Typical
- R_{ON_FLAT}: 0.9 Ω Typical
- Iccz:1 µA Maximum
- Icc: 12 µA Typical
- OIRR: -28 dB Typical
- Bandwidth: 5G Hz Typical
- I_L: -1.0 dB Typical
- Xtalk: -44 dB Typical
- Con: 0.8 pF Typical

Description

The FSA660 is a one-data-lane MIPI, C-PHY switch. This Single-Pole, Double-Throw (SPDT) switch is optimized for switching between two high-speed or lowpower MIPI sources. The FSA660 is designed for the MIPI specification and allows connection to a CSI or DSI module.

Applications

- Smart phones
- Tablets
- Laptops
- Displays

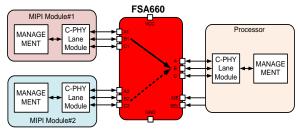
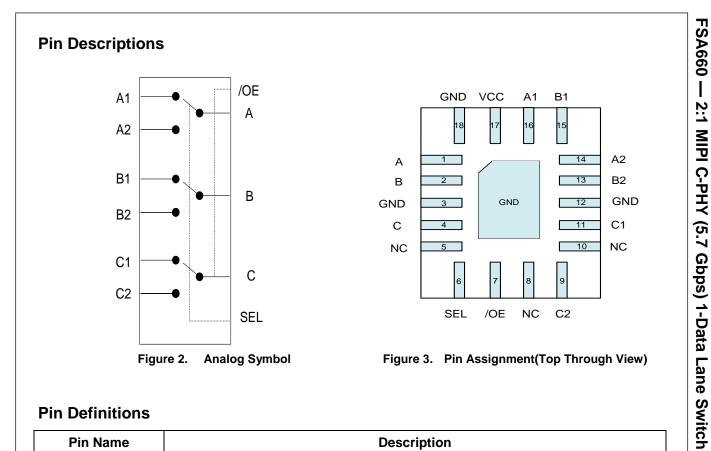



Figure 1. Typical Application

Ordering Information

Part Number	Operating Temperature Range	Package	1 18	
FSA660TMX	-40 to +85°C	18-Lead, Quad, Ultra-ultrathin Molded Leadless Package (TMLP), 2.0 mm x 2.8 mm x 0.375 mm	LS	

Pin Definitions

Pin Name	Description					
A1	1-Side Data Path A					
B1		1-Side Data Path B				
C1		1-Side	Data Path C			
A2		2-Side	Data Path A			
B2		2-Side	Data Path B			
C2		2-Side Data Path C				
А		Common Data Path A				
В		Common Data Path B				
С		Commor	n Data Path C			
/OE		Outp	ut Enable			
SEL	Control Pin	SEL=0	A=A1,B=B1,C=C1			
JEL	Control Fill	SEL=1	A=A2,B=B2,C=C2			
VCC	Power					
GND	Ground					
NC	No Connect					

Truth Table

SEL	/OE	Function
HIGH	LOW	A=A2,B=B2,C=C2
LOW	LOW	A=A1,B=B1,C=C1
Х	HIGH	A,B,C Data Ports High Impedance

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
Vcc	Supply Voltage		-0.5	6.0	V
V _{CNTRL}	DC Input Voltage (SEL, /OE) ⁽¹⁾		-0.5	V _{cc}	V
Vsw	DC Switch I/O Voltage ^(1,2)		-0.3	2.1	V
I _{IK}	DC Input Diode Current		-50		mA
I _{sw}	DC Switch Current			25	mA
T _{STG}	Storage Temperature		-65	+150	°C
MSL	Moisture Sensitivity Level (JEDEC J-STD-020A)			1	
	Human Body Model, JEDEC: JESD22-A114	All Pins	2		
ESD	IEC 61000 2.4 Lovel 4. for Switch Dine	Contact	8		kV
E2D	IEC 61000-2-4, Level 4, for Switch Pins	Air	15		κV
	Charged Device Model, JESD22-C101		1		

Notes:

- 1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.
- 2. V_{SW} refers to analog data switch paths.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Supply Voltage		1.5	5.0	V
V _{CNTRL}	Control Input Voltage (SEL, /OE) ⁽³⁾		0	5.0	V
N/	Switch I/O Voltage HS Mode LP Mode		0	0.54	V
Vsw			0	1.3	v
T _A	Operating Temperature		-40	+85	°C

Note:

3. The control inputs must be held HIGH or LOW; they must not float.

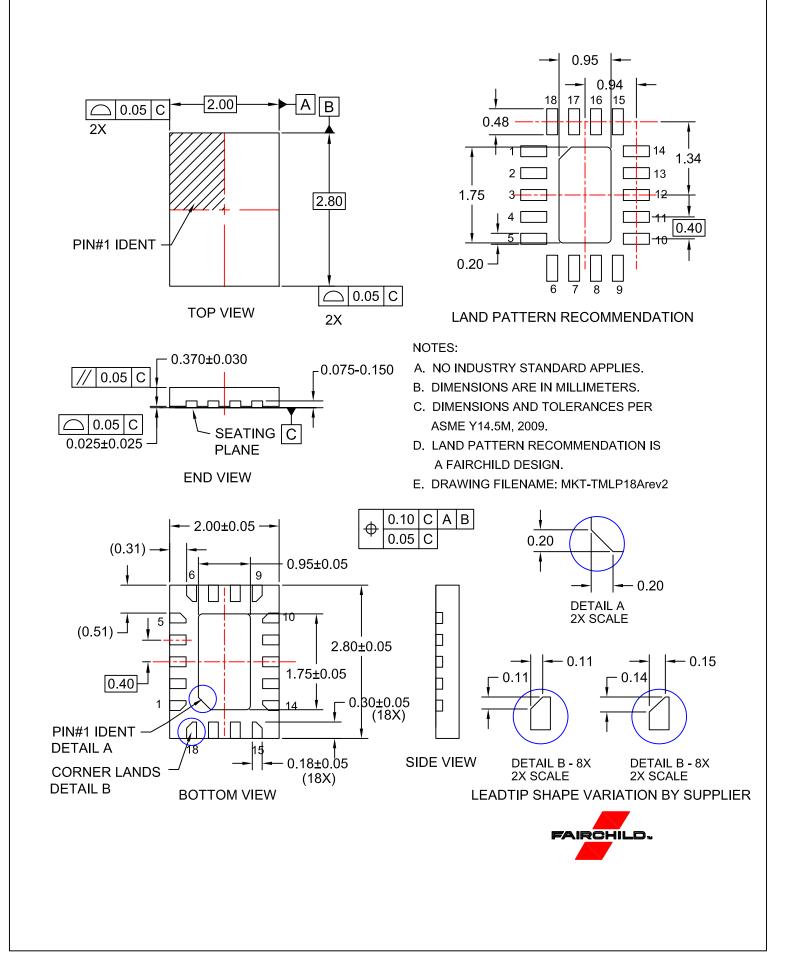
DC and Transient Characteristics

All typical values are at $T_A=25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Condition	V _{cc} (V)	T _A = -40°C to +85°C			
				Min.	Тур.	Max.	Unit
VIK	Clamp Diode Voltage SEL, /OE	I _{IN} =-18 mA	1.5	-1.2		-0.6	V
Ік	Clamp Diode Current (Switch Pins)	VIN=-0.3 V	0			18	μΑ
		SEL, /OE	1.5	1.3			V
VIH	Control Input Voltage High	SEL, /OE	3.6	1.4			V
		SEL, /OE	5.0	1.5			V
		SEL, /OE	1.5			0.4	V
VIL	Control Input Voltage Low	SEL, /OE	3.6			0.4	V
		SEL, /OE	5.0			0.4	V
I _{IN}	Control Input Leakage	V_{SW} = 0 to 2.0 V V_{CNTRL} =0 to V_{CC}	5.0	-500		500	nA
I _{OZ}	Off-State Leakage for Open Data Paths	$V_{SW}\text{=}~0.0 \leq \text{DATA} \leq 2.0~\text{V}$	5.0	-500		500	nA
I _{CL}	On-State Leakage for Closed Data Paths ⁽⁴⁾	$V_{SW}\text{=}~0.0 \leq \text{DATA} \leq 2.0~\text{V}$	5.0	-500		500	nA
I _{OFF}	Power-Off Leakage Current (All I/O Ports)	V _{SW} = 0.0 V to 2.0 V	0	-500		500	nA
R _{ON}	Switch On Resistance	V _{SW} = 0 V, I _{ON} =-8 mA	1.5		5.4	8.0	Ω
ΔR_{ON}	Difference in R _{ON} Between Positive-Negative	V_{SW} = 0 V, I _{ON} =-8 mA,	1.5		0.1		Ω
$R_{\text{ONF}_{\text{FLAT}}}$	Flatness for R _{ON}	$\label{eq:V_SW} \begin{array}{l} V_{SW} \!\!\!\!= 0 \leq \! DATA \leq \! 2.0 \ V, \\ I_{ON} \!\!\!\!= \!$	1.5		0.9		Ω
Icc	Quiescent Supply Current	$V_{OE}=0, V_{SEL}=0 \text{ or } V_{CC}, I_{OUT}=0$	5.0		12	30	μΑ
I _{CCZ}	Quiescent Supply Current (High Impedance)	$V_{SEL}=X, V_{/OE}=V_{CC}, I_{OUT}=0$	5.0			1	μA
I _{CCT}	Increase in Quiescent Supply Current	V _{SEL} =X, V _{/OE} =1.5 V	5.0		5	15	μΑ

Note:

4. For this test, the data switch is closed with the respective switch pin floating.


AC Electrical Characteristics

All typical value are for V_{CC} =3.6 V and $T_A {=} 25^\circ C$ unless otherwise specified.

Symbol	Parameter	Condition	V _{cc} (V)	T _A = -40°C to +85°C			Unit
				Min.	Тур.	Max.	Unit
t _{ON}	Turn-On Time, SEL to Output		1.5 to 5.0 V		350	600	ns
t _{OFF}	Turn-Off Time, SEL to Output		1.5 to 5.0 V		125	300	ns
t _{PD}	Propagation Delay ⁽⁵⁾	$C_L=$, $C_L=0$ pF, $R_L=50$ Ω ,	1.5 to 5.0 V		0.25		ns
t _{BBM}	Break-Before-Make ⁽⁵⁾		1.5 to 5.0 V	100		350	ns
t _{PEN}	Enable Time, /OE to Output	R _L =50 Ω, C _L =0 pF, V _{SW} =0.6 V	1.5 to 5.0 V		60	150	μs
t PDISEN	Disable Time, /OE to Output	R _L =50 Ω, C _L =0 pF, V _{SW} =0.6 V	1.5 to 5.0 V		35	240	ns
O _{IRR}	Off Isolation ⁽⁵⁾	V _S =0 dBm, R=50 Ω, f=2.5 GHz	3.6 V		-28		dB
Xtalk	Channel Crosstalk ⁽⁵⁾	V _S =0 dBm, R=50 Ω, f=2.5 GHz	3.6 V		-44		dB
IL	Insertion Loss ⁽⁵⁾	V_S =0 dBm, f=2.5 GHz, R _L =50 Ω , C _L =0 pF	3.6V		-1.0		dB
BW	-3 db Bandwidth ⁽⁵⁾	$V_{IN}=1 V_{pk-pk}, R_L=50 \Omega, C_L=0 pF (All Data Paths)$	3.6 V		5		GHz
t _{SK(P)}	Skew of Transitions of the Output ⁽⁵⁾	$\ensuremath{R_{PU}}\xspace=50\ \Omega$ to $V_{CC},\ensuremath{\text{f}}\xspace=2.5\ \text{GHz},\ensuremath{CL}\xspace=0\ \text{pF}$	3.6 V		6		ps
C _{IN}	Control Pin Input Capacitance ⁽⁵⁾	V _{CC} =0 V, f=1 MHz			2.7		pF
CON	On Capacitance ⁽⁵⁾	V _{CC} =3.3 V, f=2.5 GHz			0.8		pF
C_{OFF}	Off Capacitance ⁽⁵⁾	V _{CC} =3.3 V, f=2.5 GHz			0.6		pF

Note:

5. Guaranteed by characterization and design. Not production tested.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC