

Low Standby Power High Performance PWM Controller

General Description

The FS6808DG represents a major leap towards achieving low standby power in medium—to—high power Switched—Mode Power Supplies such as notebook adapters, off—line battery chargers and consumer electronics equipment. the FS6808DG contains all needed control functionality to build a rugged and efficient power supply. The FS6808DG is a current mode controller with internal ramp compensation. Among the unique features offered by the FS6808DG is an event management scheme that can disable the front—end PFC circuit during standby, thus reducing the no load power consumption. The FS6808DG itself goes into cycle skipping at light loads while limiting peak current so that no acoustic noise is generated. The FS6808DG has a high—voltage (500V) startup circuit that eliminates external components and reduces power consumption. The FS6808DG also features an internal latching function that can be used for OVP protection. True overload protection, internal 2.5 ms soft—start, internal leading edge blanking, internal frequency dithering for low EMI are some of the other important features offered by the FS6808DG. offered in SOP-8 package.

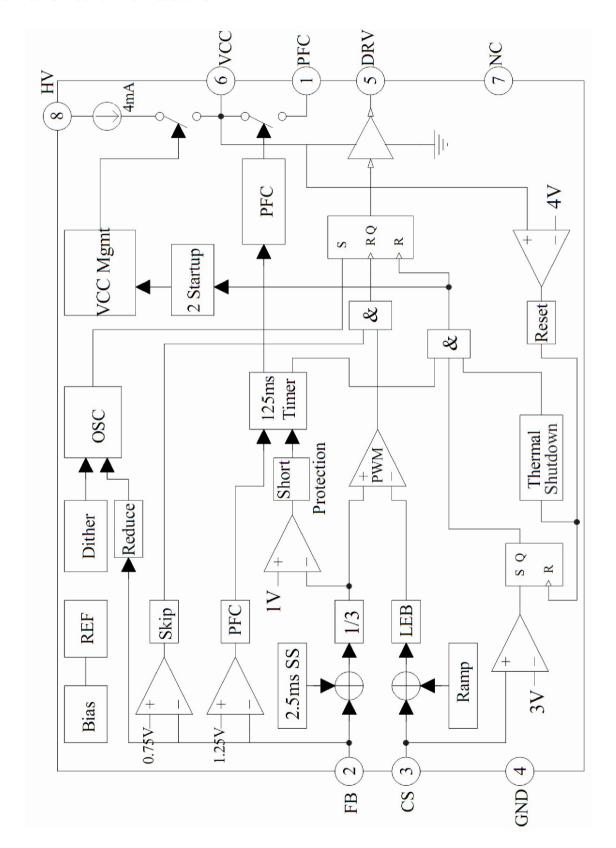
Features

- Internal High–Voltage(500V) Startup Current Source for Loss–Less Startup
- MAX 18V Power Supply Voltage
- Current–Mode Operation with Internal Ramp Compensation
- Extremely Low No-Load Standby Power
- Direct Connection to PFC Controller for Improved No–Load Standby Power
- Internal Leading Edge Blanking
- Latched Primary Overcurrent and Overvoltage Protection
- Short–Circuit Protection Independent of Auxiliary Level
- +500 mA/–800 mA Peak Current Drive Capability

Typical Applications

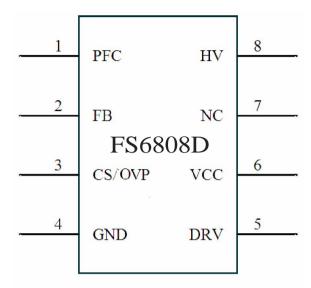
- High Power AC–DC Adapters for Notebooks, etc.
- Offline Battery Chargers
- Set-Top Boxes Power Supplies, TV, Monitors, etc.

Maximum Ratings


Rating	Rating	Value	Unit
Pin8 (HV) Maximum Voltage	V_{HV}	-0.3 to 500	V
Pin6 (Vcc) Power Supply Voltage	Vcc	-0.3 to 20	V
Pin5 (DRV) Drive Output Voltage	Vo	-0.3 to 20	V
Pin2 (FB) Voltage Feedback	V_{FB}	-0.3 to 14	V
Pin 3 (CS) Voltage Current Sense,	Vcs	-0.3 to 14	V
Pin1 (PFC) Voltage,	V_{PFC}	-0.3 to 20	V
Thermal Resistance	RJ	178	°C/W
Maximum Power Dissipation@ 25°C SOP	Pmax	0.7	W
Maximum Junction Temperature	TJ	150	$^{\circ}\mathbb{C}$
Storage Temperature Range	Tstg	-60 to 150	$^{\circ}\mathbb{C}$

Recommanded Condition

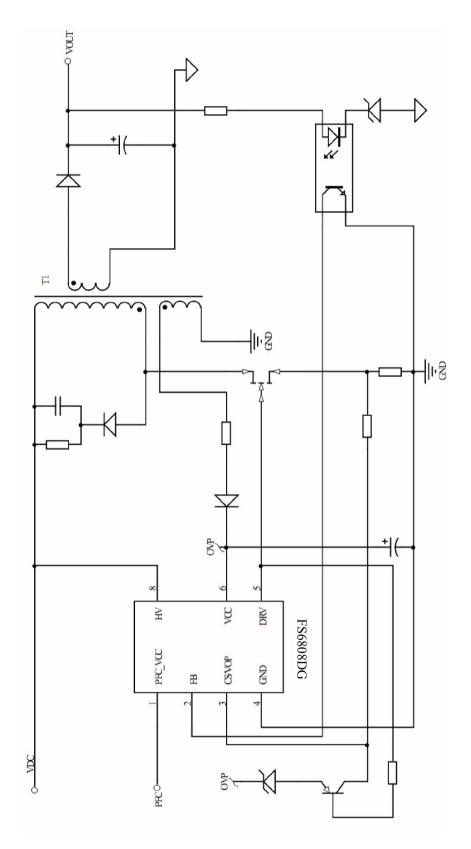
Rating	Rating	Value	Unit
Pin6 (Vcc) Power Supply Voltage	Vcc	9~ 18	V



Internal Circuit Architecture

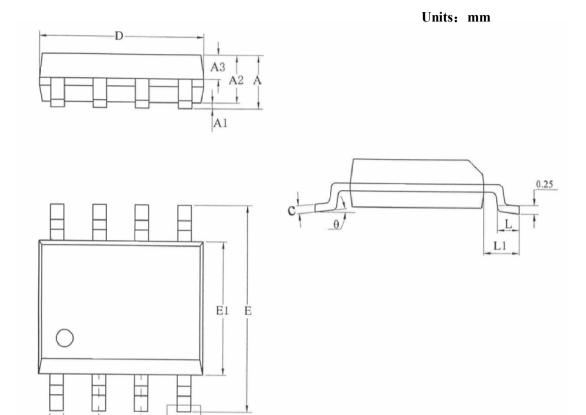
Pin Connections

Pin No.	Pin Name	Pin Description			
1	PFC Vcc	This pin is a direct connection to the VCC pin (Pin 6) via a low impedance switch. In standby and during the startup sequence, the switch is open and the PFC VCC is shut down. As soon as the aux. winding is stabilized, Pin 1 connects to the VCC pin and provides bias to the PFC controller. It goes down in standby and fault conditions.			
2	FB	An optocoupler collector pulls this pin low to regulate. When the current setpoint reaches 25% of the maximum peak, the controller skips cycles.			
3	CS/OVP	This pin incorporates three different functions: the current sense function, an internal ramp compensation signal and a 3.0 V latch—off level which latches the output off until VCC is recycled.			
4	GND	IC Ground			
5	DRV	With a drive capability of +500 mA / -800 mA, the FS6808DG can drive large Qg MOSFETs.			
6	Vcc	The controller accepts voltages up to 18 V and features a UVLO turn-off threshold of 7.7 V typical.			
7	NC				
8	HV	This pin connects to the bulk voltage and offers a lossless startup sequence. The charging current is high enough to support the bias needs of a PWM controller through Pin 1.			



Electrical Characteristics (Ta=25 $^{\circ}$ C, VCC=13V, VPIN8 = 30V,)

Characteristic	Symbol	Pin	Condition	Min	Tye	Max	Unit
Turn-On Threshold	V_{CCOFF}	6	V_{FB} =2.0V V_{CC} Going Up	11.6	12.6	13.6	V
Minimum Operating Voltage after Turn-On	V _{CCMIN}	6		7.0	7.7	8.4	V
VCC Decreasing Level at which the Latch-Off Phase Ends	V _{CCLATCH}	6	V _{FB} =3.5V	5.0	5.6	6.2	V
VCC Level at which the Internal Logic gets Reset	V _{CCRESET}	6		-	4.0	-	V
Internal IC Consumption, No Output Load on Pin 6	I_{CC1}	6	$V_{FB}=2.5V$	0.6	1.1	1.8	mA
Internal IC Consumption, 1.0 nF Output Load on Pin 6	I_{CC2}	6	PIN5 $C_L = 1.0 \text{ nF}$ $V_{FB}=2.5 \text{V}$	1.3	2.2	3	mA
Internal IC Consumption, Latch—Off Phase	I_{CC3}	6	VCC=7V	400	680	1000	uA
High-Voltage Current Source, 1.0 nF Load	I_{C1}	8	V_{CCOFF} -0.2V PIN5 C_{L} = 1.0 nF	1.8	3.2	4.2	mA
High-Voltage Current Source	I_{C2}	8	V _{CC} =0V	1.8	4.4	5.6	mA
Minimum Startup Voltage	V _{HVMIN}	8	$I_{C1} = 0.5 \text{ mA}, \\ V_{CCOFF} - 0.2 \text{ V}, \\ V_{FB} = 2.5 \text{ V}$	_	20	23	V
Startup Leakage	I _{LEAKAGE}	8	V _{HV} =500V	10	30	80	uA
Output Voltage Rise-Time	T_R	5	PIN5 $C_L = 1.0 \text{ nF},$ 10-90%	-	40	-	nS
Output Voltage Fall-Time	T_{F}	5	PIN5 $C_L = 1.0 \text{ nF},$ 10-90%	-	15	-	nS
Source Resistance	R _{OH}	5	$R_L=300\Omega$, $V_{FB}=2.5 \text{ V}$	6.0	12.3	25	Ω
Sink Resistance	R _{Ol}	5	$V_{PIN5}=1 \text{ V}, V_{FB}=3.5 \text{ V}$	3.0	7.5	18	Ω
Output Impedance	R_{PFC}	1	R_L (PIN1) =680 Ω	6.0	11.7	23	Ω
Input Bias Current	I_{IB}	3		_	0.02	_	uA
Maximum Internal Current Setpoint		3		1.010	1.063	1.116	V
Over voltage protection	Vlatch	3		2.7	3.0	3.3	V
Leading Edge Blanking Duration	T_{LEB}			100	200	350	nS
Default Internal Setpoint for Skip Cycle Operation and Standby Detection Default Internal Setpoint to Leave	Vskip	2	V _{FB} Increase	600	750	900	mV
Standby	Vstby-out		V _{FB} Decrease	1.0	1.25	1.5	V
Opto Current Source	Isop	2		200	235	270	uA
Soft start	Ss	-			2.5		mS
Temperature Shutdown				150	165	150	$^{\circ}\!\mathbb{C}$
Temperature Shutdown Hysteresis					25		$^{\circ}$
Oscillation Frequency	Fosc			90	100	110	KHz
Internal Modulation Swing					±6.4		%
Maximum Duty-Cycle	Dmax			75	80	85	%
Internal Resistor	Rup			9.0	18	36	ΚΩ
Ramp Compensation Sawtooth Amplitude					2.3		V


Typical Application

b

Package Dimentions

Symbol	Characteristic					
Symbol	min	Тур	Max			
A			1.77			
A1	0.08	0.18	0.28			
A2	1.20	1.40	1.60			
A3	0.55	0.65	0.75			
D	4.70	4.90	5.10			
Е	5.80	6.00	6.20			
E1	3.70	3.90	4.10			
e	1.27BSC					
L	0.50	0.65	0.80			
L1	1.05BSC					
θ	0		8°			