

High Performance Flow Sensor Module

Description

The FS2012 mass flow sensor module measures the flow across a sensing surface using the thermo-transfer (calorimetric) principle. The FS2012 is capable of measuring gas or liquid medium.

The FS2012 offers key advantages over other flow solutions. The sensor utilizes series of MEMS thermocouples, which provide excellent signal-to-noise ratio. The solid thermal isolation along with the silicon-carbide film coating offers excellent abrasive wear resistance and long-term reliability.

The high temperature material used in the flow channel housing and base allows for a wide operating temperature.

Wetted materials consist of a glass fiber-reinforced PA66 resin, epoxy, and silicon carbide.

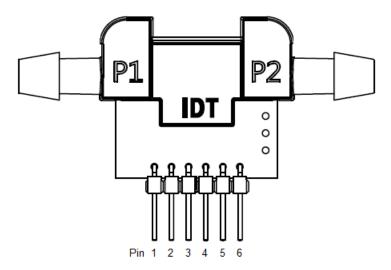
Typical Applications

- Process controls and monitoring
- Oil and gas leak detection
- HVAC and air control systems
- CPAP and respiratory devices
- Liquid dispensing systems

Features

- Gas or liquid mediums
- Robust solid isolation technology
- Resistant to surface contamination
- No cavity to cause clogging
- Resistant to vibration and pressure shock
- Low-power application
- High-temperature flow housing
- Analog output: 0V to 5V
- Digital output: I2C
- Supply voltage: 5V
- Module operating temperature range: 0°C to +85°C
- 52.8 x 24.0 mm module with 6-pin header

FS2012 Flow Sensor Module


Contents

1.	Pin /	Assignments	3
2.	Pin I	Descriptions	3
3.	Abso	olute Maximum Ratings4	1
4.	Оре	erating Conditions4	1
5.	Elec	ctrical Characteristics	5
6.	Fund	ctional Description6	3
7.	I2C	Sensor Interface	3
	7.1	Sensor Slave Address	3
	7.2	Data Read	3
8.	Calc	culating Flow Sensor Output	3
9.	Anal	log Output	7
10.	Pacl	kage Drawings and Land Pattern	3
11.	Orde	ering Information	3
12.	Revi	rision HistoryS	9
Figur	e 1.	Of Figures Pin Assignments for Module – Top View	
Table	1.	of Tables Pin Descriptions	
Table		Absolute Maximum Ratings	
Table	3.	Operating Conditions	1
Table	4.	Electrical Characteristics	ō

1. Pin Assignments

Figure 1. Pin Assignments for Module – Top View

2. Pin Descriptions

Table 1. Pin Descriptions

Pin Number	Pad Name	Туре	Description
1	V _{IN}	Input	Supply voltage
2	SDA	Input/Output	Serial data
3	SCL	Input	Serial clock
4	GND	Ground	Ground
5	MOSI		Do not connect
6	Vouт	Output	Analog output

3. Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the FS2012 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 2. Absolute Maximum Ratings

	Symbol	Parameter	Conditions	Minimum	Maximum	Units
ſ	VIN	Supply Voltage		-0.3	5.5	V
ſ	T _{STOR}	Storage Temperature		-50	130	°C
	P _{BURST}	Burst Pressure			10	bar

4. Operating Conditions

Table 3. Operating Conditions

Symbol	Parameter	Minimum	Typical	Maximum	Units
V_{IN}	Supply Voltage	4.75	5.0	5.25	V
T _{AMB}	Ambient Operating Temperature	0	_	85	°C

5. Electrical Characteristics

Table 4. Electrical Characteristics

Note: See important notes at the end of the table.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
I _{VIN}	Current Consumption			30		mA
Gas Flow [a], [c], [d], [d]					
F	Gas Flow Range	FS2012-1020-NG	0.015		2 (2000)	SLPM (SCCM)
F_{NG}		FS2012-1100-NG	0.015		10 (10000)	SLPM (SCCM)
F	Flow Accounts	FS2012-1020-NG; 0.2 to 2 SLPM, at 25°C			±5	% Reading
Eng	Flow Accuracy	FS2012-1100-NG; 1 to 10 SLPM, at 25°C		±2		
V _{OUT_ANG}	Analog Voltage Output	Min to Max of Flow Range	0	-	5	V
OFFzero_ng	Analog Zero Offset		0.03	0.045	0.05	V
tsample_g	Gas Sample Rate	Per measurement		0.4096		Sec
Liquid Flow [a], [b], [c], [d], [d]					
F	Limit Flore	FS2012-1001-LQ	0.025		0.5 (500)	SLPM (SCCM)
F _{LQ}	Liquid Flow	FS2012-1002-LQ	0.025		1.0 (1000)	SLPM (SCCM)
F	Flow Accuracy	FS2012-1001-LQ; 25 to 500 SCCM, at 25°C		_	±6	
E _{LQ}		FS2012-1002-LQ; 50 to 1000 SCCM, at 25°C		±2		% Reading
V _{OUT_ALQ}	Analog Voltage Output	Min to Max of Flow Range	0	_	5	V
OFFzero_lq	Zero Offset		0.03	0.045	0.05	V
tsample_l	Liquid Sample Rate	Per measurement		0.7168		Sec

[[]a] Direction of flow is from P1 In to P2 Out.

[[]b] Board circuitry is not protected from liquids.

[[]c] SLPM: Standard liter per minute.

[[]d] SCCM: Standard cubic centimeter per minute.

[[]e] Standard Flow Controller Reference: 25°C, 1atm.

6. Functional Description

The FS2012 digital flow sensor accurately measures the mass flow rate of a liquid or gaseous medium across the sensor using the calorimetric principle.

The MEMS flow sensor comprises a resistive heater and two clusters of thermocouples (thermopiles), each positioned symmetrically upstream and downstream of the heater. The thermopile output changes according to the rate of flow, and it is proportional to the amount of heat sensed from the heater.

7. I2C Sensor Interface

The FS2012 operates as a slave device via the digital I2C compatible communication protocol bus with support for 100kHz and 400kHz bit rates. To accommodate multiple devices, the protocol uses two bi-directional open-drain lines: a Serial Data Line (SDA) and a Serial Clock Line (SCL). Pull-up resistors to VDD are required. Several slave devices can share the bus, and multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration. Note that it is not necessary to specify one device as the master in a system; any device that transmits a START bit and a slave address becomes the master for the duration of that transfer.

7.1 Sensor Slave Address

The FS2012 default I2C address is 07_{HEX}. The device will respond only to this address.

7.2 Data Read

The FS2012 is programmed to continuously output data to the I2C bus.

- Number of bytes to read out: 2
- First returned byte: MSB
- Second returned byte: LSB

8. Calculating Flow Sensor Output

The entire output of the FS2012 is 2 bytes. The flow rate for gas and liquid parts is calculated as follows:

Output Data

- Number of bytes to read out: 2
- First returned byte: MSB
- Second returned byte: LSB

Gas Part Configurations (-NG ending for part code number)

- Conversion to SLPM
- Flow in SLPM = [(MSB << 8) + LSB] / 1000</p>

Liquid Part Configurations (-LQ ending for part code number)

- Conversion to SCCM
- Flow in SCCM = [(MSB << 8) + LSB] / 10</p>

Example:

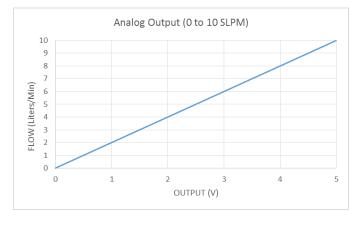
Output data = 1F 2A (hex) Then = (1F + 2A) = 1F2A = 7978 (decimal) Flow (Liquid) = 7978/10 = 797.80 SCCM

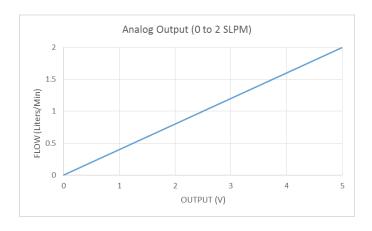
9. Analog Output

The voltage output is ratiometric to the full scale span. Use the following conversion for the range examples.

Gas (SLPM)

Typical OFF_{ZERO_NG} = 0.045V


- 0 to 2 SLPM: Flow = 0.4 × [Output (V) OFF_{ZERO_NG}]
- 0 to 10 SLPM: Flow = $2 \times [\text{Output (V)} \text{OFF}_{\text{ZERO}_NG}]$


Liquid (SCCM)

Typical OFF_{ZERO_LQ} = 0.045V

- 0 to 500 SCCM: Flow = 100 × [Output (V) OFF_{ZERO_LQ}]
- 0 to 1000 SCCM: Flow = 200 × [Output (V) OFF_{ZERO_LQ}]

Figure 2. Analog Output Example

10. Package Drawings and Land Pattern

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.

https://www.idt.com/document/psc/fs2012-package-outline-drawing-5280-x-3317-mm-body-254-mm-pitch-mod0

11. Ordering Information

Note: The part code depends on the application. In the part code, NG refers to "non-corrosive gas" and LQ refers to "liquid."

- For NG parts, the calibration gas is nitrogen. Other calibration gases are available on request.
- For LQ parts, the calibration fluid is DI water.

Orderable Part Number	Description and Package	Carrier Type	Temperature
FS2012-1020-NG	0 to 2 SLPM calibrated gas flow sensor mounted on a circuit board with a flow housing; digital I2C and analog output	Вох	0°C to +85°C
FS2012-1100-NG	0 to 10 SLPM calibrated gas flow sensor mounted on a circuit board with a flow housing; digital I2C and analog output	Вох	0°C to +85°C
FS2012-1001-LQ	0 to 0.5 SLPM (500 SCCM) calibrated liquid flow sensor mounted on a circuit board with a flow housing; digital I2C and analog output	Вох	0°C to +85°C
FS2012-1002-LQ	0 to 1.0 SLPM (1000 SCCM) calibrated liquid flow sensor mounted on a circuit board with a flow housing; digital I2C and analog output	Вох	0°C to +85°C

12. Revision History

Revision Date	Description of Change
August 24, 2018	■ Update for Table 4.
	Update for module drawing.
	Add flow calculation example.
	Minor edits .
September 11, 2017	■ Update for module width on page 1.
	Update for module dimensions drawing.
	■ Update for Table 4.
July 19, 2017	Initial release of the preliminary datasheet.

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, CA 95138 www.IDT.com

Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales

Tech Support

www.IDT.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated Device Technology, Inc. All rights reserved.