May 2001 # FQT5N20 ## 200V N-Channel MOSFET ## **General Description** These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supply, DC-AC converters for uninterrupted power supply, motor control. #### **Features** - 1.0A, 200V, $R_{DS(on)}$ = 1.2 Ω @V_{GS} = 10 V Low gate charge (typical 6.0 nC) - Low Crss (typical 6.0 pF) - Fast switching - · Improved dv/dt capability # Absolute Maximum Ratings T_C = 25°C unless otherwise noted | Symbol | Parameter | | FQT5N20 | Units | |-----------------------------------|---|----------|-------------|-------| | V _{DSS} | Drain-Source Voltage | | 200 | V | | I _D | Drain Current - Continuous ($T_C = 25^{\circ}C$) | | 1.0 | А | | | - Continuous (T _C = 70° | °C) | 0.8 | А | | I _{DM} | Drain Current - Pulsed | (Note 1) | 4.0 | Α | | V _{GSS} | Gate-Source Voltage | | ± 30 | V | | E _{AS} | Single Pulsed Avalanche Energy | (Note 2) | 60 | mJ | | I _{AR} | Avalanche Current | (Note 1) | 1.0 | Α | | E _{AR} | Repetitive Avalanche Energy | (Note 1) | 0.25 | mJ | | dv/dt | Peak Diode Recovery dv/dt | (Note 3) | 5.5 | V/ns | | P_D | Power Dissipation (T _C = 25°C) - Derate above 25°C | | 2.5 | W | | | | | 0.02 | W/°C | | T _J , T _{STG} | Operating and Storage Temperature Range | | -55 to +150 | °C | | TL | Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds | | 300 | °C | | _ | | | | _ | ## **Thermal Characteristics** | Symbol | Parameter | Тур | Max | Units | |-----------------|---|-----|-----|-------| | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient * | | 50 | °C/W | ^{*} When mounted on the minimum pad size recommended (PCB Mount) | 200

 | 0.2 | | V | |-----------------|--------------------------------------|---------------------------------------|--| | | 0.2 | | V | | | | | | | | | | V/°C | | | | 1 | μА | | | | 10 | μΑ | | | | 100 | nA | | | | -100 | nA | | | | | | | 3.0 | | 5.0 | V | | | 0.96 | 1.2 | Ω | | | 1.4 | | S | | | 40
6 | 50
8 | pF
pF | | | 6 | 8 | pF | | | | | | | | 7 | 25 | ns | | | 55 | 120 | ns | | | 9 | 30 | ns | |) | 25 | 60 | ns | | | 6.0 | 7.5 | nC | | | 1.5 | | nC | | , | 2.2 | | nC | | | 1 | 1.0 | Α. | | | | | A | | | | | V | | | 95 | 1.5 | - | | | | | ns | | |

 | 0.96 1.4 210 40 6 55 9 25 6.0 1.5 2.2 | 0.96 1.2 1.4 210 270 40 50 6 8 7 25 55 120 9 30 25 60 6.0 7.5 1.5 2.2 1.0 4.0 | - **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 90mH, I_{AS} = 1.0A, V_{DD} = 50V, R_G = 25 Ω, Starting T_J = 25°C 3. I_{SD} ≤ 4.5A, di/dt ≤ 300A/μs, V_{DD} ≤ BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width ≤ 300μs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature # **Typical Characteristics** Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics ©2001 Fairchild Semiconductor Corporation Rev. A, May 2001 # Typical Characteristics (Continued) Figure 7. Breakdown Voltage Variation vs. Temperature Figure 8. On-Resistance Variation vs. Temperature Figure 9. Maximum Safe Operating Area Figure 10. Maximum Drain Current vs. Case Temperature Figure 11. Transient Thermal Response Curve ©2001 Fairchild Semiconductor Corporation Rev. A, May 2001 | (Note 4) | |-------------| | (Note 4, 5) | | (Note 4, 5) | | (Note 4) | | | | | | | ## **Gate Charge Test Circuit & Waveform** ## **Resistive Switching Test Circuit & Waveforms** ## **Unclamped Inductive Switching Test Circuit & Waveforms** ### Peak Diode Recovery dv/dt Test Circuit & Waveforms Body Diode Reverse Current # **Package Dimensions** # SOT-223 #### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. | ACEx™ | FAST [®] | OPTOPLANAR™ | SuperSOT™-3 | |----------------------|---------------------|--------------------------|-----------------------| | Bottomless™ | FASTr™ | PACMAN™ | SuperSOT™-6 | | CoolFET™ | FRFET™ | POP™ | SuperSOT™-8 | | CROSSVOLT™ | GlobalOptoisolator™ | PowerTrench [®] | SyncFET™ | | DenseTrench™ | GTO™ | QFET™ | TinyLogic™ | | DOME™ | HiSeC™ | QS TM | UHC™ | | EcoSPARK™ | ISOPLANAR™ | QT Optoelectronics™ | UltraFET [®] | | E ² CMOS™ | LittleFET™ | Quiet Series™ | VCX™ | | EnSigna™ | MicroFET™ | SLIENT SWITCHER® | | | FACT™ | MICROWIRE™ | SMART START™ | | | FACT Quiet Series™ | OPTOLOGIC™ | Stealth™ | | #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or In
Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. | ©2001 Fairchild Semiconductor Corporation Rev. H2