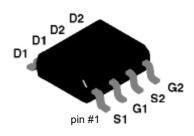
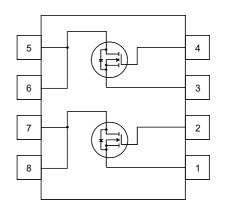


FQS4901

400V Dual N-Channel MOSFET


General Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply, electronic lamp ballast based on half bridge.

Features

- 0.45A, 400V, $R_{DS(on)}$ = 4.2 Ω @V_{GS} = 10 V Low gate charge (typical 5.8 nC)
- Low Crss (typical 5.0 pF)
- · Fast switching
- · Improved dv/dt capability

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		FQS4901	Units
V _{DSS}	Drain-Source Voltage		400	V
I _D	Drain Current - Continuous (T _A = 25°C)		0.45	Α
	- Continuous (T _A = 70°C)		0.285	Α
I _{DM}	Drain Curent - Pulsed	(Note 1)	1.8	Α
V _{GSS}	Gate-Source Voltage		± 25	V
dv/dt	Peak Diode Recovery dv/dt	(Note 2)	4.5	V/ns
P _D	Power Dissipation (T _A = 25°C)		2.0	W
	(T _A = 70°C)		1.3	W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	400			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.42	-	V/°C
I _{DSS}	Zara Cata Valtaria Basin Communi	V _{DS} = 400 V, V _{GS} = 0 V			1	μА
	Zero Gate Voltage Drain Current	V _{DS} = 320 V, T _C = 125°C			10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 25 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -25 V, V _{DS} = 0 V			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 0.225 A		3.2	4.2	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 35 V, I _D = 0.225 A (Note 3)		0.283		S
	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		160	210	pF
C _{iss}	Input Capacitance Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		160 30	210 40	pF pF
	· · · · ·					-
C _{oss}	Output Capacitance			30	40	pF
C _{oss}	Output Capacitance Reverse Transfer Capacitance	f = 1.0 MHz		30	40	pF
C_{oss} C_{rss} Switchit $t_{d(on)}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics	f = 1.0 MHz V _{DD} = 200 V, I _D = 0.45 A,		30 5	40 6.5	pF pF
C_{oss} C_{rss} Switchit $t_{d(on)}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time	f = 1.0 MHz $V_{DD} = 200 \text{ V}, I_{D} = 0.45 \text{ A},$ $R_{G} = 25 \Omega$		30 5	40 6.5	pF pF
$\frac{C_{oss}}{C_{rss}}$ Switchi $\frac{t_{d(on)}}{t_r}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time	f = 1.0 MHz V _{DD} = 200 V, I _D = 0.45 A,		30 5 5 20	40 6.5 20 50	pF pF ns
$\begin{aligned} & c_{oss} \\ & c_{rss} \end{aligned}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	f = 1.0 MHz $V_{DD} = 200 \text{ V}, I_{D} = 0.45 \text{ A},$ $R_{G} = 25 \Omega$	 	30 5 5 20 20	40 6.5 20 50	pF pF ns ns
$\begin{aligned} & c_{oss} \\ & c_{rss} \end{aligned}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$f = 1.0 \text{ MHz}$ $V_{DD} = 200 \text{ V}, \text{ I}_{D} = 0.45 \text{ A},$ $R_{G} = 25 \Omega$ (Note 3,4)	 	30 5 5 20 20 35	40 6.5 20 50 50 80	pF pF ns ns
$\begin{aligned} & C_{oss} \\ & C_{rss} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 200 \text{ V}, \text{ I}_{D} = 0.45 \text{ A},$ $R_{G} = 25 \Omega \qquad \qquad \text{(Note 3,4)}$ $V_{DS} = 320 \text{ V}, \text{ I}_{D} = 0.45 \text{ A},$	 	30 5 5 20 20 35 5.8	40 6.5 20 50 50 80 7.5	pF pF ns ns ns ns
$\begin{array}{c} C_{oss} \\ C_{rss} \\ \hline \\ \textbf{Switch} \\ \hline \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \hline \\ \textbf{Q}_{g} \\ \hline \\ \textbf{Q}_{gs} \\ \hline \\ \textbf{Q}_{gd} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 200 \text{ V}, I_D = 0.45 \text{ A},$ $R_G = 25 \Omega$ $(\text{Note } 3,4)$ $V_{DS} = 320 \text{ V}, I_D = 0.45 \text{ A},$ $V_{GS} = 10 \text{ V}$ $(\text{Note } 3,4)$		30 5 20 20 35 5.8 0.53	40 6.5 20 50 50 80 7.5	pF pF ns ns ns ns nc nC
$\begin{array}{c} \textbf{C}_{rss} \\ \textbf{Switch} \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \\ \textbf{Q}_{gs} \\ \textbf{Q}_{gd} \\ \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 200 \text{ V}, \text{ I}_{D} = 0.45 \text{ A},$ $R_{G} = 25 \Omega$ $(\text{Note } 3.4)$ $V_{DS} = 320 \text{ V}, \text{ I}_{D} = 0.45 \text{ A},$ $V_{GS} = 10 \text{ V}$ $(\text{Note } 3.4)$ and Maximum Ratings		30 5 20 20 35 5.8 0.53	40 6.5 20 50 50 80 7.5	pF pF ns ns ns ns nc nC
$\begin{array}{c} C_{oss} \\ C_{rss} \\ \hline \\ \textbf{Switchi} \\ \hline \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \hline \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \hline \\ \textbf{Q}_{g} \\ \hline \\ \textbf{Q}_{gs} \\ \hline \\ \textbf{Q}_{gd} \\ \hline \\ \textbf{Drain-S} \\ \hline \\ \textbf{I}_{S} \\ \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 200 \text{ V}, \text{ I}_{D} = 0.45 \text{ A},$ $R_{G} = 25 \Omega$ (Note 3,4) $V_{DS} = 320 \text{ V}, \text{ I}_{D} = 0.45 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 3,4) and Maximum Ratings are Forward Current	 	30 5 20 20 35 5.8 0.53 3.22	40 6.5 20 50 50 80 7.5 	pF pF ns ns ns nc nC
$\begin{array}{c} C_{oss} \\ C_{rss} \\ \\ \hline \\ Switchi \\ t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \\ \\ \hline \\ Drain-S \\ I_{SM} \\ \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics as Maximum Continuous Drain-Source Diode	$f = 1.0 \text{ MHz}$ $V_{DD} = 200 \text{ V}, \text{ I}_{D} = 0.45 \text{ A},$ $R_{G} = 25 \Omega$ (Note 3,4) $V_{DS} = 320 \text{ V}, \text{ I}_{D} = 0.45 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 3,4) $\text{Ad Maximum Ratings}$ $\text{ade Forward Current}$ Forward Current	 	30 5 20 20 35 5.8 0.53 3.22	40 6.5 20 50 50 80 7.5 	pF pF ns ns ns nc nC
$\begin{array}{c} C_{oss} \\ C_{rss} \\ \hline \\ \textbf{Switchi} \\ \hline \\ t_{d(on)} \\ t_{r} \\ \hline \\ t_{d(off)} \\ t_{f} \\ \hline \\ Q_{g} \\ Q_{gs} \\ \hline \\ Q_{gd} \\ \hline \\ \textbf{Drain-S} \\ \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode Fall Maximum Pulsed Drain-Source Diode Fall Characteristics and	$f = 1.0 \text{ MHz}$ $V_{DD} = 200 \text{ V}, \text{ I}_{D} = 0.45 \text{ A},$ $R_{G} = 25 \Omega$ (Note 3,4) $V_{DS} = 320 \text{ V}, \text{ I}_{D} = 0.45 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 3,4) and Maximum Ratings are Forward Current	 	30 5 20 20 35 5.8 0.53 3.22	40 6.5 20 50 50 80 7.5 	pF pF ns ns ns nc nC

- Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. $I_{SD} \leq 0.45A$, di/dt $\leq 200A/\mu s$, $V_{DD} \leq BV_{DSS}$, Starting T_J = 25°C 3. Pulse Test : Pulse width $\leq 300\mu s$, Duty cycle $\leq 2\%$ 4. Essentially independent of operating temperature

Typical Characteristics

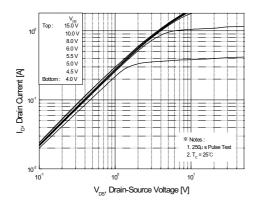


Figure 1. On-Region Characteristics

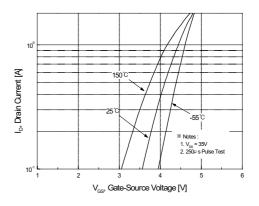


Figure 2. Transfer Characteristics

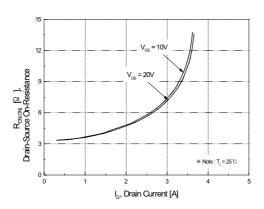


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

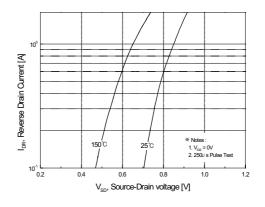


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

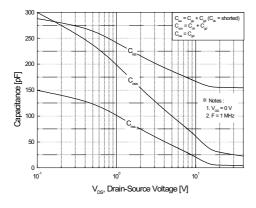


Figure 5. Capacitance Characteristics

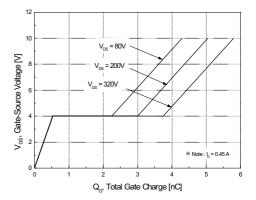
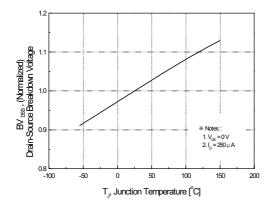



Figure 6. Gate Charge Characteristics

©2000 Fairchild Semiconductor International Rev. A, May 2000

Typical Characteristics (Continued)

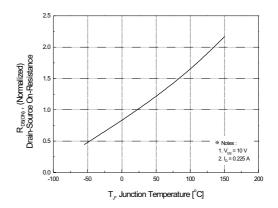
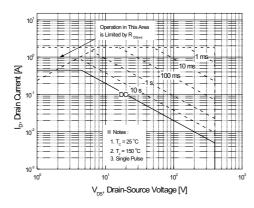



Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

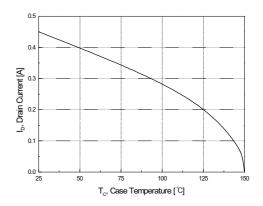
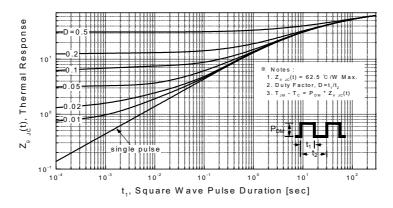
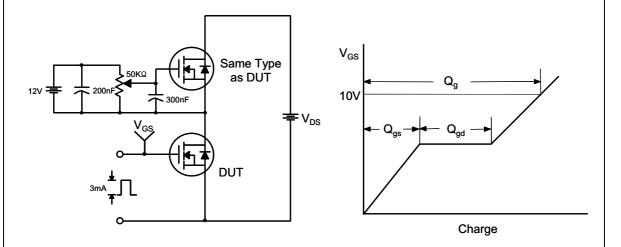
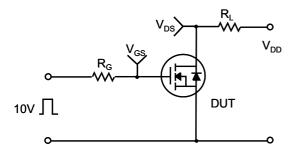
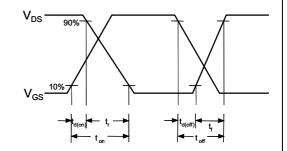


Figure 9. Maximum Safe Operating Area

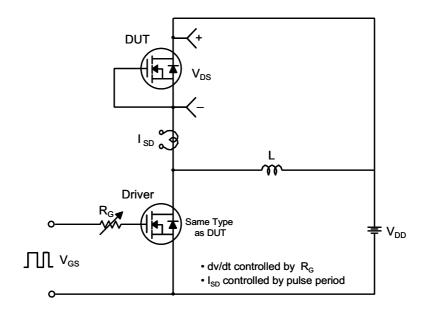
Figure 10. Maximum Drain Current vs. Case Temperature

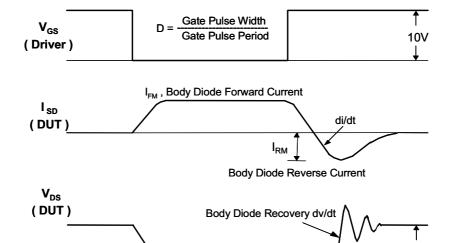



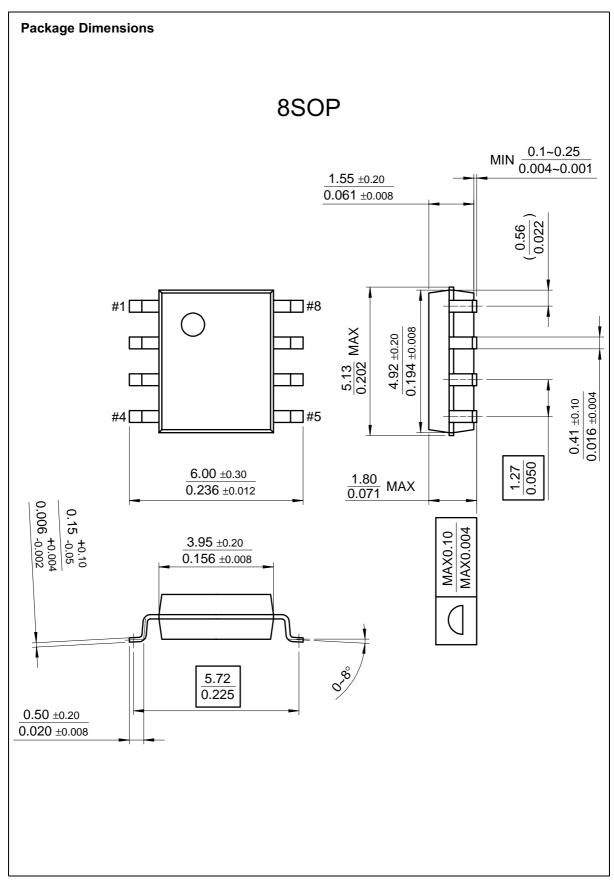

Figure 11. Transient Thermal Response Curve


©2000 Fairchild Semiconductor International Rev. A, May 2000

Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms



Peak Diode Recovery dv/dt Test Circuit & Waveforms

Body Diode Forward Voltage Drop

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT™ QFET™ FACT Quiet Series™ QS™

FAST[®] Quiet Series™ FASTr™ SuperSOT™-3 GTO™ SuperSOT™-6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2000 Fairchild Semiconductor International Rev. A, January 2000