

Over Current Protection IC With Shunt Regulator

Rev. 0.9

General Description

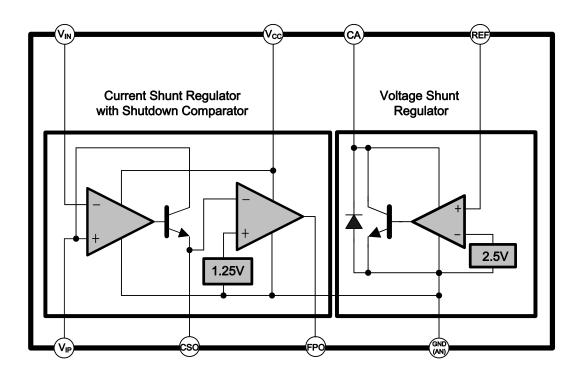
FP133 is a main rail current detection and over current protection IC. It includes a current shunt comparator and shutdown comparator with a precision shunt regulator like FP431.

The rail current detection gain can be adjusted with three external resistors. The regulator output CSO pin is connected to a shutdown comparator for driving a protection circuit like a photo-coupler to shutdown the primary side PWM IC when over current occurs.

The voltage shunt regulator has a 2.5V reference for switching power supply secondary output voltage feedback.

FP133 can be used for OCP and output voltage feedback function with few external parts. It is suitable for application in secondary main rail power supply of SPS or isolated fly-back DC-DC converter.

Features


- > Independent Power Supply Voltage: 2.7 to 28V
- ➤ Wide Operating Temperature Range: -20°C~ +105°C
- Independent Shunt and Supply Voltage
- > Low Input Offset Voltage
- > Sense Gain Adjustable
- > Built-in 1.25V Comparator for O.C.P
- > Shunt Regulator Voltage: 2.5V (1.0%)
- Output Sink Current Capability up 50mA
- > Package: SOP-8L

Typical Application Circuit

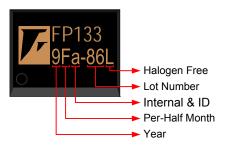
- > SPS
- AC Adaptor
- Isolated Fly-back DC-DC Converter



Function Block Diagram

Pin Descriptions

SOP-8L


Name	No.	1/0	Description	
V_{IP}	1	I	Positive Input of Current Shunt OPA	
cso	2	0/1	Output of Current Shunt OPA to Inverting Input of Shutdown Comparator	
REF	3	I	2.5V Reference	
CA	4	I	Voltage Shunt Cathode Input	
GND	5	Р	IC Ground	
FPO	6	0	Shutdown Comparator Output (O.C.)	
V _{CC}	7	Р	IC Power Supply	
V_{IN}	8	I	Inverting Input of Current Shunt OPA	

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

IC Date Code Identification

SOP-8L

Halogen Free: Halogen free product indicator **Lot Number**: Wafer lot number's last two digits

Internal ID: Internal Identification Code

For Example: 132386TB → 86

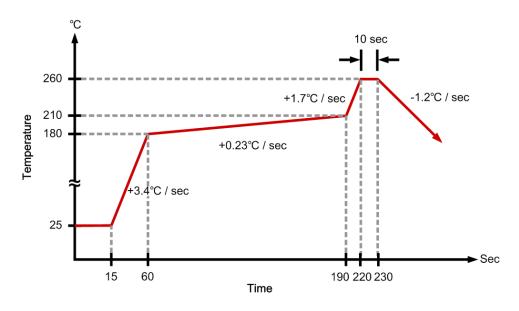
Per-Half Month: Production period indicated in half month time unit

For Example: January \rightarrow A (Front Half Month), B (Last Half Month)

February → C(Front Half Month), D (Last Half Month)

Year: Production year's last digit

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.


Ordering Information

Part Number	Operating Temperature	Package	MOQ	Description		
FP133D-LF	-20°C ~ +105°C	SOP-8L	100EA	Tube		
FP133DR-LF	-20°C ~ +105°C	SOP-8L	2500EA	Tape & Reel		

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _{CC}				30	V
Current Shunt Regulator Common Mode Inputs Voltage			-0.3		30	٧
Current Shunt Regulator Differential Inputs Voltage		$(V_{IP}-V_{IN})$	-15		1.5	٧
CSO Voltage			-0.3		V _{CC}	V
FPO Sink Current					25	mA
FPO Off Voltage					30	V
Cathode Voltage					30	V
Cathode Continuous Current			-50		50	mA
Reference Input Current			-0.05		1	mA
Maximum Junction Temperature	TJ				+150	°C
Storage Temperature Range	Ts		-55		+150	°C
Power Dissipation		T _A =25°C			570	mW
Lead Temperature		(soldering, 10 sec)			+260	°C

IR Re-flow Soldering Curve

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	V _{cc}		2.7		28	٧
Operating Temperature			-20		+105	°C

DC Electrical Characteristics

(V_{CC}=5V, T_A= -20°C~+105°C, V_{IP}=12V, R_{OUT}=125k Ω unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Current Shunt Comparator Section							
Full Scale Sense Voltage	V _{SENSE}	V _{SENSE} =V _{IP} - V _{IN}		100	500	mV	
Common-Mode Input Voltage	V_{CM}		2.7		28	V	
Common-Mode Rejection	CMRR	V _{IP} =2.7V to 28V, V _{SENSE} =50mV	100	120		dB	
Input Offset Voltage vs Temp	V _{OFFSET}	T _{MIN} to T _{MAX}		4		μV / °C	
Input Offset Voltage vs V _{CC}	V _{OFFSET}	V _{IN} =2.7V to 28V, V _{SENSE} =50mV		2.5	10	μV / V	
Input Bias Current	I _{BIAS}	V_{IP}, V_{IN}		2		μΑ	
Non-linearity Error	NLE	V _{SENSE} =10mV to 150mV			±1	%	
Total Output Error	TOE	V _{SENSE} =100mV			±2	%	
Output Impedance	Rout			1 5		GΩ pF	
Voltage Swing to V _{CC}	V _{SCC}			V _{CC} -0.8		V	
Voltage Swing to V _{CM}	V_{SCM}			V _{CM} -0.5		V	
Bandwidth	BW	R _{OUT} =125KΩ		32		kHz	
Settling Time	Ts	5V Step, R _{OUT} =125KΩ		30		μS	
Total Output-Current Noise	I _{NOISE}	BW=100KHz		3		nA	
Shutdown Comparator Sect	tion						
Input Offset Voltage	V _{OFFSET} 2			1.0	5.0	mV	
Common-Mode Voltage (IN-)	V _{CM}		-0.3	-	V _{CC} -1.5	V	
Voltage Gain	A _V		50	200		V/mV	
Large Signal Response Time				300		nS	
Response Time				1.3		μS	
Output Sink Current	Isink	V _{CSO} >1.3V V _{FPO} = 1.0V		16		mA	
Saturation Voltage	V _{SAT}	V_{CSO} >1.3V I_{FPO} =10mA			1	V	
Output Leakage Current		V _{CSO} <1.0V V _{FPO} = 28V		0.1	1	μΑ	
Reference Voltage (2%)	20/)	T _A =25°C	1.238	1.25	1.263	V	
Therefore voltage (2%)	V_{REF}	T _A =-25°C~105°C	1.225	1.25	1.275	V	
Line Regulation		3V≦V _{CC} ≦28V		2	15	mV	

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

FP133

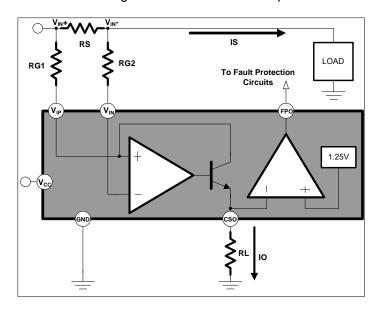
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Voltage Shunt Regulator Section							
Reference Voltage	V_{REF}	V _{KA} =V _{REF} , I _{KA} =10mA	2.475	2.5	2.525	V	
V Reference vs. Temperature	V_{REF}	V _{KA} =V _{REF} , I _{KA} =10mA			30	mV	
	ΔV _{REF} /	I _{KA} =10mA, V _{KA} =10V~ V _{REF}		-1.4	-2.0	mV / V	
Line Regulation	ΔVκΑ	I _{KA} =10mA, V _{KA} =10V~ 28V		-1.0	-2.0		
Reference Current	I _{REF}	R1=10KΩ, R2=∞, I _{KA} =10mA		0.5	4	μΑ	
I Reference vs. Temperature	ΔI_{REF}	R1=10KΩ, R2= ∞ , I _{KA} =10mA, T _A =Full rang		0.4	1.2	μΑ	
Minimum Cathode Current for Regulation	I _{KA (MIN)}	V _{KA} =V _{REF}		0.1	0.5	mA	
Dynamic Impedance	Z _{KA}	V _{KA} =V _{REF,} ΔI _{KA} =0.1mA~15mA Frequency < 1KHz		0.2	0.5	Ω	
Total Device Section	•		•	-	•		
Output Off IC Current	Icc	V _{CC} =28V		0.8		mA	

Function Description

Current Shunt Regulator

The figure below shows the FP133 current shunt block, load current (I_S) flowing from power supply and a dropout voltage (V_{IN}^+ - V_{IN}^-) at the sense resistor (R_S).

Assume internal NPN transistor collector current is same as emitter current (I_O) and V_{IP} is very close to V_{IN} , the FP133 transfer function is:


$$I_{O} = \frac{V_{IN}^{+} - V_{IN}^{-}}{RG1}$$
 ---- (1)

In this figure, the $(V_{IN}^+-V_{IN}^-)$, is equal to $I_S \times R_S$ and the current shunt output voltage (CSO) is equal to $I_O \times R_L$. The final transfer function for rail current measurement in this application is:

$$V_{CSO} = G \times I_S \times R_S$$
 ---- (2)

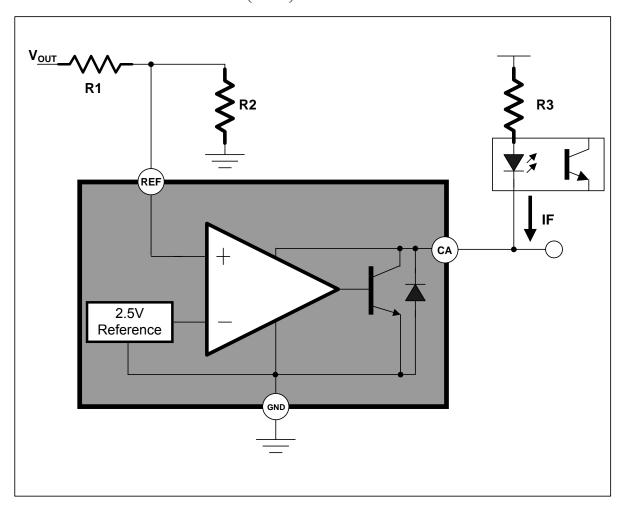
$$G = R_1 / RG1$$
 ---- (3)

In FP133 internal circuits, the CSO output is connected to the shutdown comparator inverting input. When the voltage of CSO is higher than the internal reference voltage (1.25V), the FPO pin is switching from high to low state. This signal can be used for OCP protection control.

Note:

- 1. The minimum operating voltages of V_{CC} , V_{IP} and V_{IN} are 2.7V. If these supply voltages are lower than 2.7V, the transfer function at current shunt output (CSO) is no correct.
- 2. Do not force a V_{IN} voltage that is 15V higher than V_{IP} . This condition would generate a leakage current and an incorrect voltage at FP133 output.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

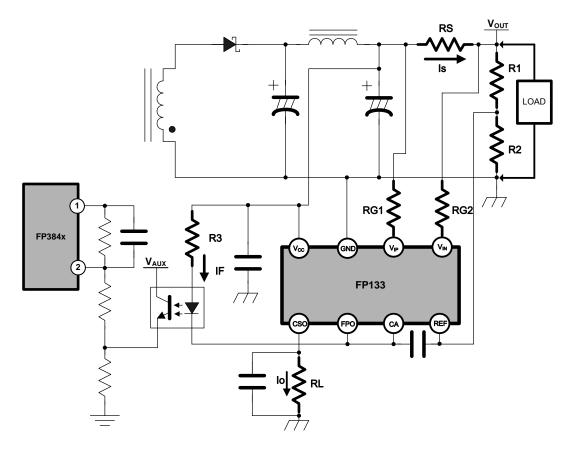


Voltage Shunt Regulator

The figure below shows the FP133 voltage shunt regulator. It includes an internal 2.5V voltage reference connecting to the comparator inverting input. The comparator's high cathode current sink ability is designed for photo-coupler driving.

The V_{OUT} equation is:

$$V_{OUT} = \left(1 + \frac{R1}{R2}\right) \times 2.5V$$
 ---- (4)



Note

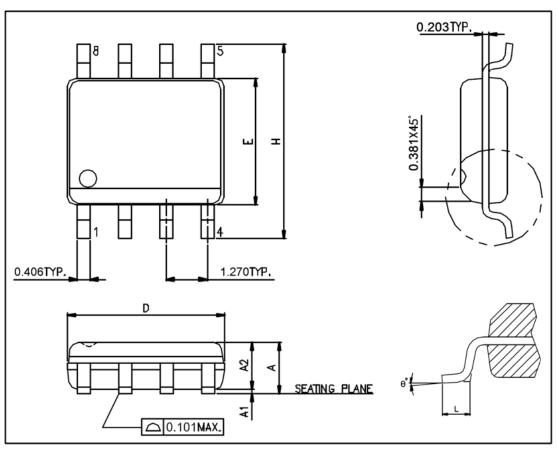
- Connect a compensation network between CA and REF pins to reduce high output voltage ringing during light loading or transient.
- 2. R3 is selectable for dynamic loading feedback.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Adaptor secondary Voltage Feedback / Over Loading Protection circuit

The above circuit is a simple application for AC / DC adaptor over loading protection (OCP) function with output voltage feedback.

For example, when load current (I_S) increases, the FP133 CSO voltage would increase according to equation (2). Once the internal shutdown comparator's inverting input, which is connected to CSO pin, is higher than 1.25V reference, a sink current (I_{OUT}) will flow through the photo-coupler. The FP384x PWM IC will change the NMOS drive terminal to a minimum duty cycle current limitation for secondary side over current protection. The primary side auxiliary voltage can no longer maintain the FP384x power supply. The FP384x will be shutdown until AC line start-up voltage restart the PWM IC.


The FP133 voltage shunt regulator responses the output voltage change with R1 and R2. The feedback current will flow from photo-coupler to FP133 CA pin (pin4) and generates the feedback voltage signal to PWM IC FP384x.

Website: http://www.feeling-tech.com.tw

Package Outline

SOP-8L

UNIT: mm

Symbols	Min. (mm)	Max. (mm)		
Α	1.346	1.752		
A1	0.101	0.254		
A2	1.092	1.498		
D	4.800	4.978		
E	3.810	3.987		
Н	5.791	6.197		
L	0.406	1.270		
θ°	0°	8°		

Note:

- 1. Package dimensions are in compliance with JEDEC Outline: MS-012 AA.
- 2. Dimension "D" does not include molding flash, protrusions or gate burrs.
- 3. Dimension "E" does not include inter-lead flash, or protrusions.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.