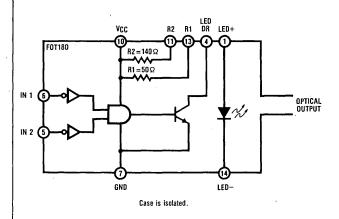
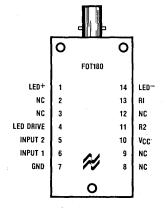

FOT180B Fiber-Optic Transmitter

General Description

The FOT180B is a high-speed general-purpose electro-optical transmitter. It is designed for digital data transmission via optical fibers with data rates up to 20 MBits/s NRZ. The package includes the driver circuitry, optical light source, and connector. The bayonet-type connector on the package simplifies and ensures reliable optical coupling with minimal source to fiber alignment losses. The low-profile metal package is ideal for direct PC board mounting with 0.5" board-to-board spacing. When used with the FOR100B fiber-optic receiver, the pair provides a complete optical data link with TTL compatible interfacing. Connectors are available from AmphenolTM.


Features


- Single +5V supply
- DC to 20 Mbits/s NRZ data rate
- Pin selectable optical output power
- LED built-in
- CMOS/TTL compatibility
- Data and enable inputs
- Quickly demountable bayonet-type Amphenol optical connector
- 14-pin low profile package (0.3") for direct PC board mounting
- Open collector output driver

Applications

- Data communication networks
- Secure communications
- Peripheral control/communication
- Industrial machine control
- T1 and T2 telecom digital links
- Optical modems
- Video transmission

Schematic and Connection Diagram

TOP VIEW
(The 3 mounting holes are tapped for 4-40 screws)

Order Number FOT180B See NS Package FO14A

Amphenol is a trademark of Amphenol Division, Bunker Ramo Corp. See Page 13.25 for part number.

Absolute Maximum Ratings

V_{CC} Supply Voltage

7V

V_{IN} Input Voltage

5.5V -30 mA to +5 mA

I_{IN} Input Current I_F LED Forward Current, DC

100 mA

T_A Operating Temperature

-25°C to +85°C

T_{STG} Storage Temperature

-25°C to +85°C

Lead Temperature (Soldering, 10 seconds)

300°C

Electrical Characteristics $T_A = +25$ °C.

Driver Specifications

Parameter		Conditions		Min.	Тур.	Max.	Units		
V _{OL}	Output Low Voltage	V _{CC} = 4.5V		$I_{OL} = 40 \text{mA}$			0.5		
		V _{IN} = 0.8V (see Figure 1)		I _{OL} = 70 mA	- 		0.7		
		(See Figure 1)		I _{OL} = 100 mA			0.8	V	
V _{IH}	Input High Voltage	V _{CC} = 4.5V	Guaranteed high for all	input logic inputs	2				
V _{IL}	Input Low Voltage	VCC = 4.0 V	Guaranteed low for all	input logic		1	0.8		
	Innut High Current		. 0.71	Input 1			30		
I _{IH}	Input High Current		$V_{IN} = 2.7V$	Input 2			20	μΑ	
	Innut Law Current	V _{CC} = 5.5V	V -0.4V	Input 1			-0.54	^	
I _{IL}	Input Low Current		$V_{IN} = 0.4V$	Input 2			-0.36	mA	
lcc	Supply Current			Input 2 = 0V			80		
R ₁	Resistance				47.5	50 .	52.5	0	
R ₂	Resistance				133	140	147	Ω	

DC LED Specifications

	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _F	Forward Voltage	I _F = 50 mA		1.3		V
BV _R	Reverse Breakdown Voltage	$I_R = 100 \mu\text{A}$		5] *
λ _{PK}	Peak Emission Wavelength	I _F = 50 mA		820		nmi

Electrical Characteristics (Continued)

Transmitter Specifications Conditions: $V_{CC} = 5V$, $T_A = 25$ °C.

Parameter		Conditions		Fiber Core Diameter	Min.	Тур.	Max.	Unit	
			Current limiting	200μm, 0.4 NA		22			
	Ontinal Daws Outnut	(Notes 1 & 2) 100% Duty Cycle	resistor = R1	400 μm, 0.5 NA		110		μW	
Po	Optical Power Output		Current limiting resistor = R2	200 μm, 0.4 NA		9			
				400 μm, 0.5 NA		45			
	1500	Current limiting resistor = R1 (see Figure 2)				70			
. I _F	LED Current	Current limiting	resistor = R2 (see I	Figure 3)		26		mA	
	Data Rate (NRZ)					20		Mb/s	
	Optical Port (Fiber Core Diameter)					500		μm	
NA	Exit Numerical Aperture					0.5			
t _r	Optical Rise Time	See Figure 2				15			
t _f	Optical Fall Time	See Figure 2				15			
t _{pd}	Propagation Delay: Electrical Input to Optical Output	See Figure 2				10		ns	

Note 1: Optical power output (DC) is measured at the end of a one-meter long fiber using an EG & G Model 550 photometer that has been calibrated at 820 nm.

Note 2: The 200 µm fiber used is DuPont S120 Type 30; the 400 µm fiber used is DuPont PIFAX PIR140.

Applications Information

The FOT180B is a hybrid fiber-optic transmitter circuit. It includes the driver circuitry, LED, and two current-limiting resistors. The circuit layout allows the user to have access to the LED drive output pin, the two scaling resistors, and the LED. Access to both the anode and the cathode of the LED allows the user to implement various drive configurations to optimize system performance. Figure 4 shows the FOT180B set up in a series drive scheme using the internal 50Ω resistor. The drive current can be calculated using the following equation:

$$I_D = \frac{V_{CC} - V_F - V_{OL}}{R}$$

where: ID = LED drive current

V_{CC} = Supply voltage

V_F = ON-voltage of the LED

V_{OL} = LO-voltage of the open collector output

R = Current-limiting resistor

When input 2 is at logic "0", the LED ON/OFF condition is entirely controlled by input 1 at pin 6. This configuration allows the driver to control the LED and at

the same time provide the necessary logic signal levels to interface with other TTL circuits. Also, series drive configurations tend to lower the power consumption in the LED driver. A characteristic of this method is a large current supply step when the LED turns ON and OFF (20 mA to 60 mA depending on the value of the current-limiting resistor). Figures 2 and 3 show the FOT180B set up in a different configuration. The LED is shunted across the drive output transistor instead of in series with it. In this shunt-driven mode the LED drive current is:

$$I_D = \frac{V_{CC} - V_F}{D}$$

where: ID = LED drive current

V_F = ON-voltage of the LED

R = Current-limiting resistor

The step in supply current due to output switching is much smaller with this method, so the shunt drive configuration has a relatively constant supply current drain and less power supply line modulation.

DC Test Circuit

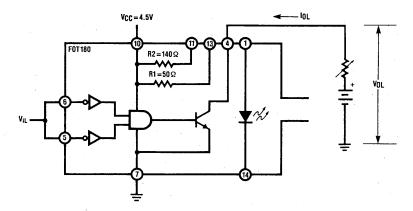
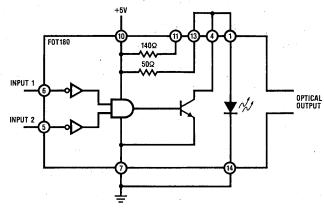



Figure 1. V_{IL} , V_{OL}

Typical Applications

Input 1	Input 2	Optical
. 0	0	OFF
0	1	ON
1	0 .	OFF
1	1	OFF

Figure 2. High Current, Shunt Drive

Typical Applications continued

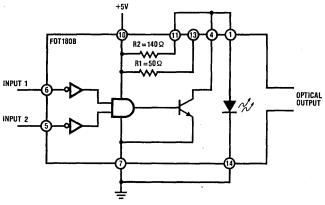
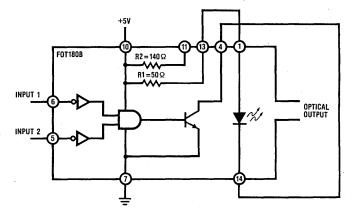



Figure 3. Low Current, Shunt Drive

Input 1	Input 2	Optical
0	0	ON
0	1	OFF
1	0	OFF
1	1	OFF

Figure 4. High Current, Series Drive

Ordering Information

Bayonet Connector	Part No.	Fiber Diameter	
	905-143-5001	125 microns	
	905-143-5002	140 microns	
	905-143-5003	200 microns	
•	905-143-5004	230 microns	
	905-143-5005	400 microns	
Order from Amphenol Division, Bunker	905-143-5006	600 microns	
Ramo Corp., Denbury, Connecticut	905-143-5007	1 millimeter	