Osptek Display

MICRO-OLED SPECIFICATION

Model No:

FM03131A

目录

1. 概述	4
2. 产品特点	4
3. 结构参数	5
5. 模块接口	6
6. 极限操作范围	7
7. 光电特性	8
8. 电源及复位	8
8.1上/下电时序	8
8.2 复位时序	
8.3 I ² C 时序	. 10
8.3.1 数据传输格式	. 11
8.3.2 显示器地址设置	
8.4 信号接口及规范	. 12
9. 寄存器描述	
10. 可靠性	. 17

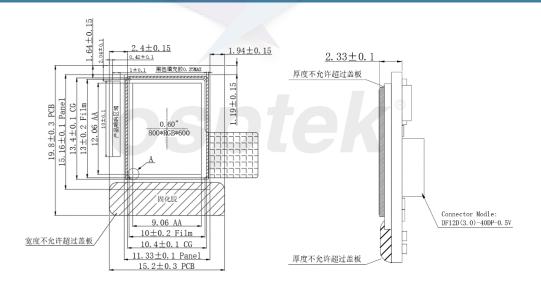
修订记录

版本	修订说明	修订日期	备注
Y01	初始版本	2022-09-15	
		_	
	0001	®	

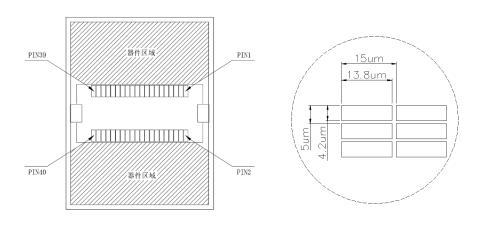
1. 概述

FM03131A 是一款具有 800*600 点阵的 0.60 英寸全彩色硅基显示模块。该显示模块的特点是高亮度、高对比度、窄边框、宽视角、宽温域和低功耗,用于头戴式显示器、AR 眼镜等。

2.产品特点


- 显示颜色:全彩
- 最高分辨率 800*600
- 数字视频接口
- 兼容 ITU-R BT. 656 标准
- 支持8/16/24 位数字视频
- 支持MONO/YCbCr/RGB 编码
- 支持 PAL/NTSC/SMPTE 等格式
- 支持逐行/隔行扫描
- ●支持双目 3D 应用
- ●灰度级别:8 位输入/9 位输出数字
- 刷新率: 60Hz
- 可在-40° $^{\sim}65$ °C工作(为保证芯片正常工作,需配置散热模块,建议工作温度<60°C)

3.结构参数


序号	项目	规格	单位
1	分辨率	800×600	-
2	亚像素尺寸	13.8×4.2	μ m²
3	像素尺寸	15×15	μ m²
4	显示区域面积	12.06×9.06	mm ²
5	屏体尺寸	15. 19×14. 36	mm ²
6	模组尺寸	$19.8 \times 15.2 \times 4.23$	mm ³
7	A/A 区对角线尺寸	0.6	inch
8	模组重量	1.5	gram

4.结构图纸

主视图

侧视图

5.模块接口

Pin 序	Pin 定义	类型	描述		
1	VDD+1.8V	电源	1.8V 电源,数字内核工作电源		
2	VAN+5V	电源	5.0V 电源,OLED 驱动电源		
3	VDD+1.8V	电源	1.8V 电源,数字内核工作电源		
4	VAN+5V	电源	5.0V 电源,OLED 驱动电源		
5	GND	电源	电源地		
6	GND	电源	电源地		
7	I ² C SCL	I	串口时钟		
8	RESET	I	主复位,低电平有效,不能悬空		
9	M3D	I	3D 模式选择		
10	I ² C	I	串行端口地址选择		
10	ADDR0	1			
11	HS	I	水平同步信号输入		
12	I²C SDA	I/O	串行数据传输端口		
13	R6	I	Cr[6],Red[6]视频信号输入		
14	VS	I	垂直同步信号输入		
15	R4	I	Cr[4],Red[4]视频数据输入		
16	R7	I	Cr[7],Red[7]视频数据输入(MSB)		
17	R2	I	Cr[2],Red[2]视频数据输入		
18	R5	I	Cr[5], Red[5]视频数据输入		
19	R0	I	Cr[0], Red[0]视频数据输入		
20	R3	I	Cr[3],Red[3]视频数据输入		

21	DE	I	数字视频数据使能信号输入
22	R1	I	Cr[1],Red[1]视频数据输入
23	GND	电源	电源地
24	PCLK	I	时钟信号输入
25	G6	I	YCbCr[6], Y[6], Green[6]视频信号输入
26	G7	I	YCbCr[7], Y[7], Green[7]视频数据输入(MSB)
27	G4	I	YCbCr[4], Y[4], Green[4] 视频数据输入
28	G5	I	YCbCr[5], Y[5], Green[5] 视频数据输入
29	G2	I	YCbCr[2], Y[2], Green[2] 视频数据输入
30	G3	I	YCbCr[3], Y[3], Green[3] 视频数据输入
31	G0	I	YCbCr[0], Y[0], Green[0] 视频数据输入(LSB)
32	G1	I	YCbCr[1],Y[1],Green[1] 视频数据输入
33	В6	I	CbCr[6],Cb[6],Blue[6]视频数据输入
34	В7	I	CbCr[7], Cb[7], Blue[7] 视频数据输入(MSB)
35	B4	I	CbCr[4],Cb[4],Blue[4]视频数据输入
36	В5	I	CbCr[5],Cb[5],Blue[5]视频数据输入
37	B2	I	CbCr[2], Cb[2], Blue[2]视频数据输入
38	В3	I	CbCr[3], Cb[3], Blue[3]视频数据输入
39	В0	I	CbCr[0], Cb[0], Blue[0] 视频数据输入(LSB)
40	B1	I	CbCr[1], Cb[1], Blue[1]视频数据输入

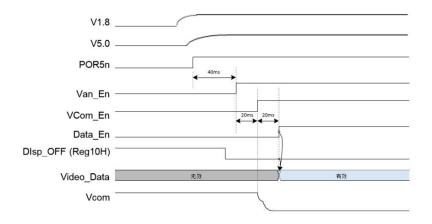
6. 极限操作范围

名称	功能描述	最小值	典型值	最大值①	单位
VDD+1.8V	1.8V 电源,数字内核工作电源	1.65	1.8	1.95	V
VAN+5V	5.0V 电源, OLED 驱动 电源	4.5	5	5.5	V
I/O	数字信号逻辑电平②	1	1.8	3.3	V
Tstg	储存温度	-55	25	80	°C
Top	工作温度	-40	25	65	°C

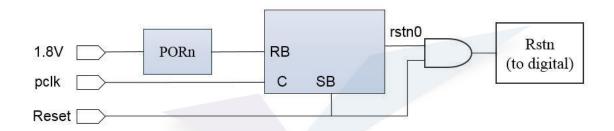
注①: 绝对最大额定值(VI/0 除外),为瞬间不得超过的极限值。使用或超过这些额定值的条件可能影响产品的寿命和可靠性。在允许可靠性、寿命等其它特性降低的前提条件下,产品可以在短时间内工作在该条件下,但产品也有可能损坏。建议在产品典型操作条件下工作。

注②: 所有数字逻辑引脚电平, 支持 1.8V 逻辑电平标准。

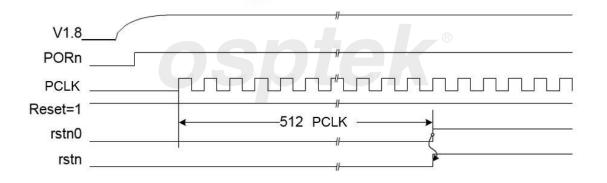
7. 光电特性

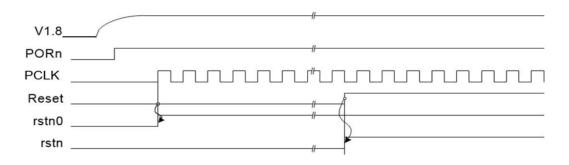

项目	符号	测试条件	最小值	典型值	最大值	单位
正常模式亮度	Lbr	全像素点亮	-	200	-	$\mathrm{cd/m}^2$
正常模式功耗	Pt	全像素点亮	-	80	-	mW
C I E(White)	(x)		0.28	0.31	0.34	-
C.I.E(White)	(y)		0.30	0.33	0.36	-
CLE(D 1)	(x)		0.57	0.60	0.63	-
C.I.E(Red)	(y)	ww(CIE1021)	0.30	0.33	0.36	-
C.I.E(Green)	(x)	x,y(CIE1931)	0.20	0.23	0.26	-
C.I.E(Gleen)	(y)		0.60	0.63	0.66	-
C LE(Plus)	(x)		0.11	0.14	0.17	-
C.I.E(Blue)	(y)		0.04	0.07	0.10	-
对比度	CR	-	≥10,000:1	-	-	-
响应时间	-	-		10	-	μs
视角	-		TBD	-	-	Degree

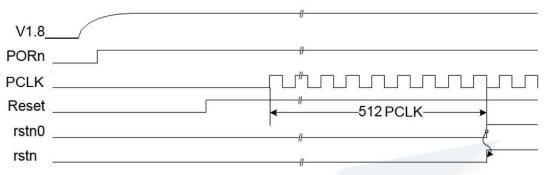
8.电源及复位


FM03131A显示器需要外部提供 1.8V 和 5V 两路直流稳压电源,其中 1.8V 电源用于显示器内部的数字内核,包括视频解码、视频信号增强、伽玛矫正、通讯等; 5V 电源用于 OLED 像素驱动和 D/A 转换等。为保证显示图像品质,请注意 5V 电源的纹波和干扰抑制。

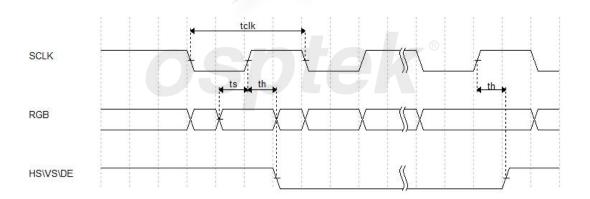
8.1上/下电时序


本系统上电机制依赖于时钟信号(PCLK),因此电源输入和时钟输入顺序尤为重要。上电顺序首先为时钟信号 PCLK,之后为 1.8V,最后为 5V。


8.2 复位时序


复位机制原理图

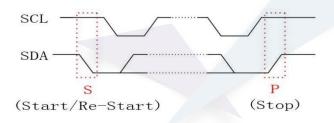
复位时序 1 (Reset 引脚固定)



复位时序 2 (Reset 引脚变化依赖于 PCLK)

复位时序 3 (Reset 引脚变化与 PCLK 无关)

8.3 I²C 时序


参数	标识	最小值	典型值	最大值	单位
视频信号	tS	1	1	-	ns
恍拠信号 	tH	0.5	-	-	ns
时钟周期	tCLK	17.8	-	-	ns
时钟占空比	q	40	50	60	%

8.3.1 数据传输格式

两线串行接口兼容 $I^{2}C$ 标准。通过对显示器内部寄存器的控制可以实现视频输入模式选择、视频信号增强、伽玛矫正、Vcom 调整等功能。SDA 和 SCL 必须通过外部控制器经电阻上拉至 1.8V 电源。

显示器只能作为从机使用,所有读/写操作必须由主机来实现。主要特性及通讯标记如下:

- 通讯速率 (SCL) 支持 100K~1MHz;
- 采用 7 位从机地址+1 位读/写标志构成 8 位的从机地址 (Slave Address);
- 起始标志(Start/Re-Start): 当 SCL 为高电平时, SDA 由高电平变至低电平;
- 停止标志(Stop): 当 SCL 为高电平时, SDA 由低电平变为高电平;
- 有效应答标志 (ACK): 当 SDA 为低电平表示有效应答;
- 无效应答标志 (NAK): 当 SDA 为高电平表示无效应答;
- 每次通讯传递 8 位数据+1 位应答位,共需要 9 个 SCL 周期;
- 除 Start/Stop 标志外:
 - 每一位的数据 (SDA) 变化需在 SCL 为低电平期间完成;
 - 在 SCL 为高的周期内, SDA 应维持状态稳定;

主机向从机写数据格式体步骤为:

- 主机发送起始标志(S)
- 主机发送 7 位从机地址(Slave Addr)和 1 位低电平写(¯w¯)标志
- 从机发送 1 位低电平有效应答标志(A)
- 主机发送 8 位寄存器地址 (Register)
- 从机发送 1 位低电平有效应答标志(A)
- 主机发送 8 位数据 (Data)
- 从机发送 1 位有效应答标志(A)
- 主机发送停止标志(P)

S	Slave Addr	$\bar{\mathbf{w}}$	A	Register	A	Data	A	P
---	------------	--------------------	---	----------	---	------	---	---

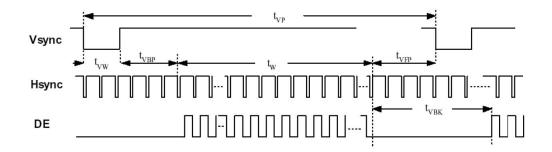
主机向从机读数据格式具体步骤为:

● 主机发送起始标志(S)

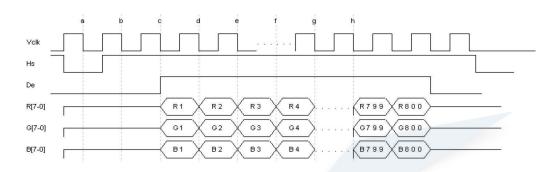
- 主机发送 7 位从机地址 (Slave Addr) 和 1 位低电平写 (W) 标志
- 从机发送 1 位低电平有效应答标志 (A)
- 主机发送 8 位寄存器地址(Register)
- 从机发送 1 位低电平有效应答标志(A)
- 主机发送重复起始标志 (Sr)
- 主机发送 7 位从机地址和 1 位高电平读(R)标志
- 从机发送 1 位有效应答标志(A)
- 从机发送 8 位数据 (Data)
- 主机发送 1 位高电平无效应答位(A)
- 主机发送停止标志 (P)

S Slave Addr $ \overline{W} $ A Register A Sr Slave Addr R A Date

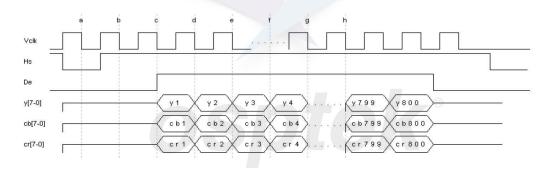
8.3.2 显示器地址设置

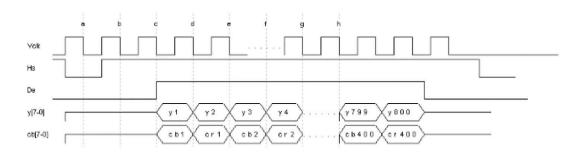

显示器(从机)地址(Slave Addr)可以通过 SelAdr0 引脚进行选择。双目应用时,请将其中一个显示器 SelAdr0 接地。

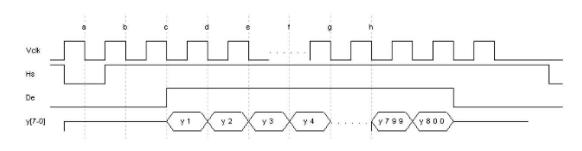
A7 (MSB)	A6	A5	A4	A3	A2	A1 (SelAdr0)	AO (R/W)	SlaveAddress (R/W)
0	0	0	1	1	1	0	1/0	1DH/1CH
0	0	0	1	1	1	1 (默认)	1/0	1FH/1EH

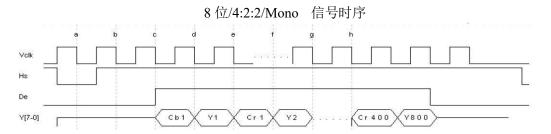

8.4 信号接口及规范

输入视频信号标准及连接:


视频信号标准	色彩编码	引脚			
7%分外1百 5 757年	已必無吗	R[7:0]	G[7:0]	B[7:0]	
8-bit,4:2:2	YCbCr	1	YCbCr[7:0]	_	
8-bit, Mono	Y	1	Y[7:0]		
16-bit, 4:2:2	YCbCr	1	Y[7:0]	CbCr[7:0]	
24-bit, 4:4:4	YCbCr	Cr[7:0]	Y[7:0]	Cb[7:0]	
24-bit,4:4:4	RGB	R[7:0]	G[7:0]	B[7:0]	


数字视频同步信号时序 (所有格式)


24 位/4:4:4/RGB 信号时序



24 位/4:4:4/YCbCr 信号时序

16 位/4:2:2/YCbCr 信号时序

8位/4:2:2/YCbCr 信号时序表

9.寄存器描述

1) 输入信号类型设置

寄存器地址	7	6	5	4	3	2	1	0
01Н	未用		信号模式		同步信号		扫描模式	
默认	ı	0	1	1	0	1	0	0

● 信号模式:选择输入信号格式

信号模式	输入信号格式
0	16-bit 422, YCbCr
1	24-bit 444, YCbCr
10	8-bit 单 色
11	24-bit 444, RGB
100	8-bit 422, YCbCr

● 同步信号:选择同步信号模式

同步信号	同步信号模式
0	嵌入同步信号
1	外同步+DE
10	不使用 (状态不定)
11	外同步(DE 无效)

● 扫描模式:选择扫描模式

隔行扫描	隔行扫描模式
0	逐行扫描
1	隔行扫描
10	未用 (状态不定)
11	伪隔行扫描(适用于场序隔行 3D 信号模式,第 2 行复制于第 1 行信号)

2) 水平/垂直同步信号极性和 3D 功能设置

寄存器地址	7	6	5	4	3	2	1	0
02Н	未用		3D 使能	未用		3D 刷新	Vs 极性	Hs 极性
默认	0	0	0	0	0	0	0	0

3D 功能控制: 适用于双目帧/场序 3D 视频模式 Vs/Hs 同步信号极性设置

Vs/Hs	极性选择
0	高电平有效
1	低电平有效

3D 使能	3D 刷新	3D 引脚	工作模式	显示
0	X	X	2D 模式	正常刷新
		0		刷新
	0	1		维持上次
		1	3D 模式	显示
1		0	3D 侯八	维持上次
1	1	U		显示
		1		刷新

3) 起始有效视频信号偏移量(SAV Offset)设置

寄存器地址	7	6	5	4	3	2	1	0
05Н	N. A.						SAV C	ffset
默认	-					0	1	

● SAV Offset: 调整起始显示位置

SAV Offset	起始有效视频信息
0	起始于 SAV 前 1 个像素
1	与 SAV 同步
10	起始于 SAV 后 1 个像素
11	起始于 SAV 后 1 个像素

4) 视频信号亮度调整

寄存器地址	7	6	5	4	3	2	1	0	
08Н		Video Brightness							
默认	1	0	0	0	0	0	0	0	

Vout= Vin + Reg(08H) -128 (只保留 8 位有效数据)

Video Brightness	视频信号亮度调整效果
00H	亮度最小
80H	亮度最大

5) 视频信号对比度(增益)调整

寄存器地址	7	6	5	4	3	2	1	0	
09Н		Video Contrast							
默认	1	0	0	0	0	0	0	0	

Vout= Vin x Reg(09H) ÷128 (只保留 8 位有效数据)

Video Contrast	视频信号对比度调整效果					
00H	增益=0 (黑屏)					
80H	增益=1 (正常)					

6) 显示器开关 & 扫描方向控制

寄存器地址	7	6	5	4	3	2	1	0
10H			N. A.			DispOff	VSCAN	HSCAN
默认			-			1	0	0

DispOff	显示开关
0	开(正常工作)
1	关(黑屏)

VSCAN	垂直扫描方向
0	上→ 下
1	下→ 上

HSCAN	水平扫描方向
0	左 🗲 右
1	右 → 左

7) Sleep 模式控制

寄存器地址	7	6	5	4	3	2	1	0
OFH	PDOWN	未	用	BSGENPD	RDACPD	RAMPPD	VCOMPD	TSENPD
默认	0	-	_	0	0	0	0	0

- PDOWN: 所有系统电源关闭
- BSGENPD: 放电电流发生器模块电源关闭
- RDACPD: DAC 模块电源关闭
- RAMPPD: DAC 缓冲器模块电源关闭
- VCOMPD: VCOM 驱动信号发生器模块电源关闭

● TSENPD: 温度传感器模块电源关闭

10.可靠性

序号	测试项目	测试条件	样本量	判断标准	备注
1	高温存储	产品非工作状况,试验条件:85℃,时间24H。 试验完成后产品取出后恢复到室温,确认情况。	2pcs	外观 OK,显示功能 OK,色坐标 在我司管控范围内	
2	高温工作	产品工作状态,试验条件: 65℃,时间24H。 试验完成后,产品不取出,在该条件下确认产品 光电参数。 取出恢复室温后检查产品显示功能和 外观情况。	'/noc	外观OK,显示功能OK,色坐标在我 司管控范围内	
3	111111111111111111111111111111111111111	产品非工作状况,试验条件: -55℃,时间 24H。 试验完成后产品取出后恢复到室温,确认情况。	2pcs	外观OK,显示功能OK,色坐标在我 司管控范围内	
4	低温工作	产品工作状态,试验条件:-40℃,时间 24H。 试验完成后,产品不取出,在该条件下确认产品 光电参数。 取出恢复室温后检查产品显示功能 和外观情况。	2pcs	外观OK,显示功能OK,色坐标在我 司管控范围内	
5	冷热冲击	试验条件::-55/85℃高低温各保持30min为一个cycles,高低温转换时间<5min,共进行10cycles。 试验完成后产品取出后恢复到室温,确认情况。	2pcs	外观OK,显示功能OK,色坐标在我 司管控范围内	
6	高温高湿循环	按以下方式为一个Cycle (24H) 进行试验, 共进行10个cycle。 1、实验箱初始置于30℃/90%RH. 2、湿度不变,2H时间温度匀速升到60℃。 3、60℃/90%RH,保持6H. 4、湿度不变,8H时间温度匀速降到30℃。 5、30℃/90%RH,保持8H. 过程中在第5个循环的30℃/90%RH阶段的最后4个小时内进行内进一次性能检查,试验完成后产品 取出后恢复到室温,再次确认情况。	2pcs	外观OK,显示功能OK,色坐标在我 司管控范围内	