June 2015 # FGH40T65SH 650 V, 40 A Field Stop Trench IGBT ### **Features** - Maximum Junction Temperature : $T_J = 175^{\circ}C$ - · Positive Temperature Co-efficient for Easy Parallel Operating - · High Current Capability - Low Saturation Voltage: $V_{CE(sat)}$ = 1.6 V(Typ.) @ I_C = 40 A - 100% of the Parts Tested for I_{LM}(1) - · High Input Impedance - · Fast Switching - · Tighten Parameter Distribution - · RoHS Compliant ### **General Description** Using novel field stop IGBT technology, Fairchild's new series of field stop 3rd generation IGBTs offer the optimum performance for solar inverter, UPS, welder, telecom, ESS and PFC applications where low conduction and switching losses are essential. ## **Applications** · Solar Inverter, UPS, Welder, Telecom, ESS, PFC ### Absolute Maximum Ratings T_C = 25°C unless otherwise noted | Symbol | Description | | FGH40T65SH | Unit | | |---------------------|---|--------------------------|-------------|------|--| | V _{CES} | Collector to Emitter Voltage | | 650 | V | | | V_{GES} | Gate to Emitter Voltage | | ± 20 | V | | | V GES | Transient Gate to Emitter Voltage | | ± 30 | V | | | I _C | Collector Current | @ T _C = 25°C | 80 | Α | | | | Collector Current | @ T _C = 100°C | 40 | А | | | I _{LM (1)} | Pulsed Collector Current | @ T _C = 25°C | 120 | Α | | | I _{CM (2)} | Pulsed Collector Current | | 120 | Α | | | P_{D} | Maximum Power Dissipation | @ T _C = 25°C | 268 | W | | | | Maximum Power Dissipation | @ T _C = 100°C | 134 | W | | | TJ | Operating Junction Temperature | | -55 to +175 | °C | | | T _{stg} | Storage Temperature Range | | -55 to +175 | °C | | | T _L | Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds | | 300 | °C | | #### Notes: - 1. V_{CC} = 400 V, V_{GE} = 15 V, I_{C} =120 A, R_{G} = 41.6 Ω , Inductive Load - 2. Repetitive rating: Pulse width limited by max. junction temperature ## **Thermal Characteristics** | Symbol | Parameter | FGH40T65SH | Unit | | |-----------------|---|------------|------|--| | $R_{\theta JC}$ | Thermal Resistance, Junction to Case, Max. | 0.56 | °C/W | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient, Max. | 40 | °C/W | | ## **Package Marking and Ordering Information** | Part Number | Top Mark | Package | Packing Method | Reel Size | Tape Width | Quantity | |-----------------|------------|------------|----------------|-----------|------------|----------| | FGH40T65SH_F155 | FGH40T65SH | TO-247 G03 | Tube | - | - | 30 | # Electrical Characteristics of the IGBT $T_C = 25^{\circ}C$ unless otherwise noted | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |--------------------------------------|--|---|------|------|------|------| | Off Charac | teristics | | | | | | | BV _{CES} | Collector to Emitter Breakdown Voltage | V_{GE} = 0V, I_C = 1 mA | 650 | - | - | V | | ΔBV _{CES} / ΔΤ _J | Temperature Coefficient of Breakdown Voltage | I _C = 1 mA, Reference to 25°C | - | 0.6 | - | V/°C | | I _{CES} | Collector Cut-Off Current | V _{CE} = V _{CES} , V _{GE} = 0 V | - | - | 250 | μА | | I _{GES} | G-E Leakage Current | $V_{GE} = V_{GES}, V_{CE} = 0 V$ | - | - | ±400 | nA | | On Charac | teristics | | | | | | | V _{GE(th)} | G-E Threshold Voltage | I_C = 40 mA, V_{CE} = V_{GE} | 4.0 | 5.5 | 7.5 | V | | | | I _C = 40 A, V _{GE} = 15 V | - | 1.6 | 2.1 | V | | V _{CE(sat)} | V _{CE(sat)} Collector to Emitter Saturation Voltage | I _C = 40 A, V _{GE} = 15 V,
T _C = 175°C | - | 2.14 | - | V | | Dynamic C | haracteristics | , | 1 | | | | | C _{ies} | Input Capacitance | | - | 1995 | - | pF | | C _{oes} | Output Capacitance | V _{CE} = 30 V _, V _{GE} = 0 V,
f = 1MHz | - | 70 | - | pF | | C _{res} | Reverse Transfer Capacitance | T = TIMMZ | - | 23 | - | pF | | | Characteristics | | | | | | | t _{d(on)} | Turn-On Delay Time | | - | 19.2 | - | ns | | t _r | Rise Time | | - | 34.4 | - | ns | | t _{d(off)} | Turn-Off Delay Time | $V_{CC} = 400 \text{ V}, I_{C} = 40 \text{ A},$ | - | 65.6 | - | ns | | t _f | Fall Time | $R_G = 6 \Omega$, $V_{GE} = 15 V$, | - | 9.6 | - | ns | | E _{on} | Turn-On Switching Loss | Inductive Load, T _C = 25°C | - | 1010 | - | uJ | | E _{off} | Turn-Off Switching Loss | | - | 297 | - // | uJ | | E _{ts} | Total Switching Loss | | - | 1307 | - | uJ | | t _{d(on)} | Turn-On Delay Time | V_{CC} = 400 V, I_{C} = 40 A,
R_{G} = 6 Ω , V_{GE} = 15 V,
Inductive Load, T_{C} = 175°C | - | 18.4 | - \ | ns | | t _r | Rise Time | | - | 32.8 | - | ns | | t _{d(off)} | Turn-Off Delay Time | | - | 71.2 | - | ns | | t _f | Fall Time | | - | 14.4 | - | ns | | E _{on} | Turn-On Switching Loss | | - | 1390 | - | uJ | | E _{off} | Turn-Off Switching Loss | | - | 541 | - | uJ | | E _{ts} | Total Switching Loss | | - | 1931 | - | uJ | # **Electrical Characteristics of the IGBT** (Continued) | Symbol | Parameter | Test Conditions | Min. | Тур. | Max | Unit | |-----------------|--------------------------|---|------|------|-----|------| | Qg | Total Gate Charge | V _{CE} = 400 V, I _C = 40 A,
V _{GE} = 15 V | - | 72.2 | - | nC | | Q _{ge} | Gate to Emitter Charge | | - | 13.5 | - | nC | | Q _{gc} | Gate to Collector Charge | | - | 28.5 | - | nC | ## **Typical Performance Characteristics** **Figure 1. Typical Output Characteristics** Figure 3. Typical Saturation Voltage Characteristics Figure 5. Saturation Voltage vs. V_{GE} **Figure 2. Typical Output Characteristics** Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level Figure 6. Saturation Voltage vs. V_{GE} ## **Typical Performance Characteristics** Figure 7. Capacitance Characteristics Figure 9. Turn-on Characteristics vs. Gate Resistance Figure 11. Switching Loss vs. Gate Resistance Figure 8. Gate charge Characteristics Figure 10. Turn-off Characteristics vs. Gate Resistance Figure 12. Turn-on Characteristics vs. Collector Current ## **Typical Performance Characteristics** Figure 13. Turn-off Characteristics vs. Collector Current Figure 14. Switching Loss vs. Collector Current Figure 15. Load Current Vs. Frequency Figure 16. SOA Characteristics Figure 17. Transient Thermal Impedance of IGBT ### NOTES: UNLESS OTHERWISE SPECIFIED. - A. PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004. - B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. - C. ALL DIMENSIONS ARE IN MILLIMETERS. - D. DRAWING CONFORMS TO ASME Y14.5 1994 ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative