

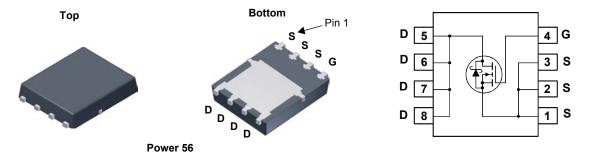
September 2009

FDMS7660AS

N-Channel PowerTrench[®] SyncFETTM 30 V, 42 A, 2.4 m Ω

Features

- Max $r_{DS(on)}$ = 2.4 m Ω at V_{GS} = 10 V, I_D = 25 A
- Max $r_{DS(on)}$ = 2.6 m Ω at V_{GS} = 7 V, I_D = 23 A
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- SyncFET Schottky Body Diode
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant



General Description

The FDMS7660AS has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{\text{DS}(\text{on})}$ while maintaining excellent switching performance. This device has the added benefit of an efficient monolithic Schottky body diode.

Applications

- Synchronous Rectifier for DC/DC Converters
- Notebook Vcore/ GPU low side switch
- Networking Point of Load low side switch
- Telecom secondary side rectification

MOSFET Maximum Ratings $T_C = 25$ °C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V
	Drain Current -Continuous (Package limited)	T _C = 25 °C		42	
	-Continuous (Silicon limited)	T _C = 25 °C		152	^
^I D	-Continuous	T _A = 25 °C	(Note 1a)	26	A
	-Pulsed			150	
dv/dt	MOSFET dv/dt			1.7	V/ns
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	128	mJ
D	Power Dissipation	T _C = 25 °C		83	W
P_{D}	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	VV
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	1.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a	50	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7660AS	FDMS7660AS	Power 56	13 "	12 mm	3000 units

Electrical Characteristics $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV_{DSS}	Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I _D = 10 mA, referenced to 25 °C		14		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			500	μА
I _{GSS}	Gate to Source Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA

On Characteristics (Note 2)

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	1.2	1.9	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 10 mA, referenced to 25 °C		-5		mV/°C
	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 25 A		1.9	2.4	- mΩ
r		$V_{GS} = 7 \text{ V}, I_{D} = 23 \text{ A}$		2.0	2.6	
r _{DS(on)}		$V_{GS} = 4.5 \text{ V}, I_D = 21 \text{ A}$		2.5	3.0	
		V_{GS} = 10 V, I_{D} = 25 A, T_{J} = 125 °C		2.4	3.1	
g _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 25 \text{ A}$		455		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V - 45 V V - 0 V	4600	6120	pF
Coss	Output Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	1550	2065	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 1011 12	125	190	pF
R_a	Gate Resistance		8.0	1.7	Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		19	34	ns
t _r	Rise Time	V _{DD} = 15 V, I _D = 25 A,	8	15	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	40	65	ns
t _f	Fall Time		5	10	ns
Q_{g}	Total Gate Charge	V _{GS} = 0 V to 10 V	64	90	nC
Q_{g}	Total Gate Charge	$V_{GS} = 0 \text{ V to } 4.5 \text{ V} V_{DD} = 15 \text{ V},$	29	42	nC
Q _{gs}	Gate to Source Gate Charge	I _D = 25 A	14.4		nC
Q_{gd}	Gate to Drain "Miller" Charge		5.9		nC

Drain-Source Diode Characteristics

V	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 2 \text{ A}$ (Note 2)	2)	0.41	0.7	V
V_{SD}	Source to Drain Diode 1 diward voltage	$V_{GS} = 0 \text{ V}, I_{S} = 25 \text{ A}$ (Note 2)	2)	0.76	1.2	
t _{rr}	Reverse Recovery Time	-I _E = 25 A, di/dt = 300 A/μs		39	62	ns
Q _{rr}	Reverse Recovery Charge	- 1 _F - 23 A, αι/αι - 300 Α/μs		55	88	nC

^{1.} $R_{\theta,JA}$ is determined with the device mounted on a 1in^2 pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.

a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. E_{AS} of 128 mJ is based on starting T_J = 25 °C, L = 1 mH, I_{AS} = 16 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.3 mH, I_{AS} = 25 A.
- 4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

Typical Characteristics T_J = 25 °C unless otherwise noted

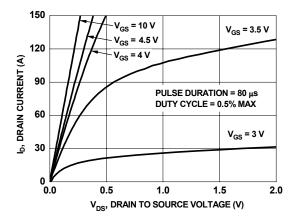


Figure 1. On-Region Characteristics

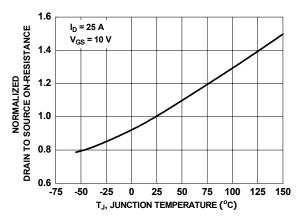


Figure 3. Normalized On-Resistance vs Junction Temperature

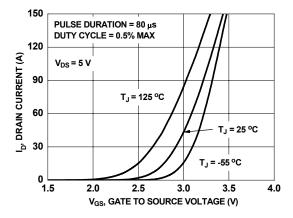


Figure 5. Transfer Characteristics

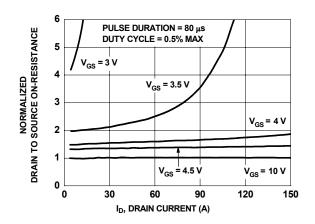


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

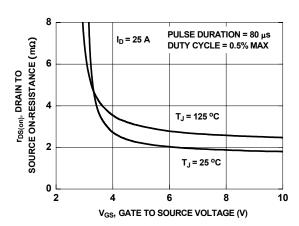


Figure 4. On-Resistance vs Gate to Source Voltage

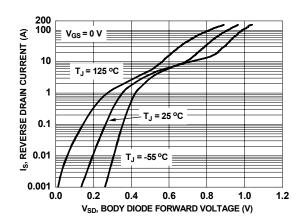


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics T_J = 25 $^{\circ}$ C unless otherwise noted

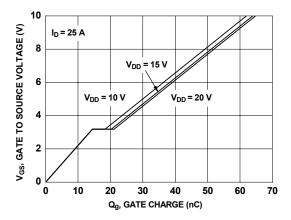


Figure 7. Gate Charge Characteristics

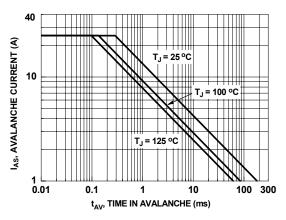


Figure 9. Unclamped Inductive Switching Capability

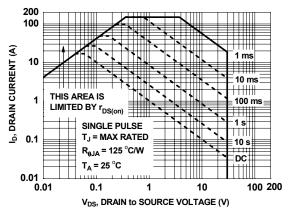


Figure 11. Forward Bias Safe Operating Area

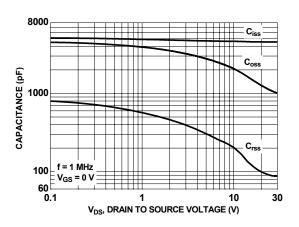


Figure 8. Capacitance vs Drain to Source Voltage

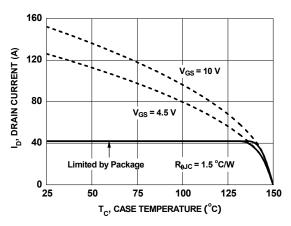


Figure 10. Maximum Continuous Drain Current vs Case Temperature

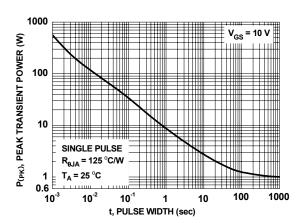


Figure 12. Single Pulse Maximum Power Dissipation

Typical Characteristics T_J = 25 °C unless otherwise noted

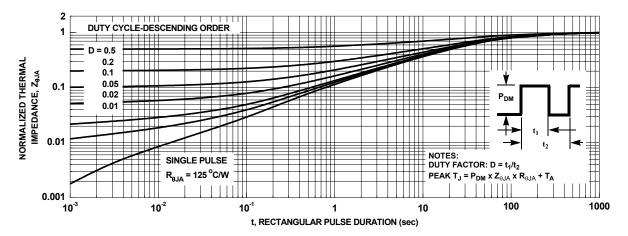


Figure 13. Junction-to-Ambient Transient Thermal Response Curve

Typical Characteristics (continued)

SyncFET Schottky body diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MoSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 14 shows the reverses recovery characteristic of the FDMS7660AS.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

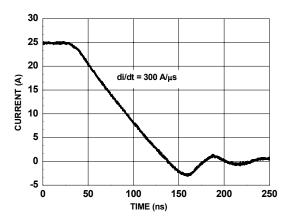


Figure 14. FDMS7660AS SyncFET body diode reverse recovery characteristic

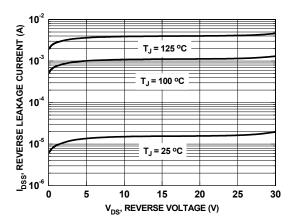
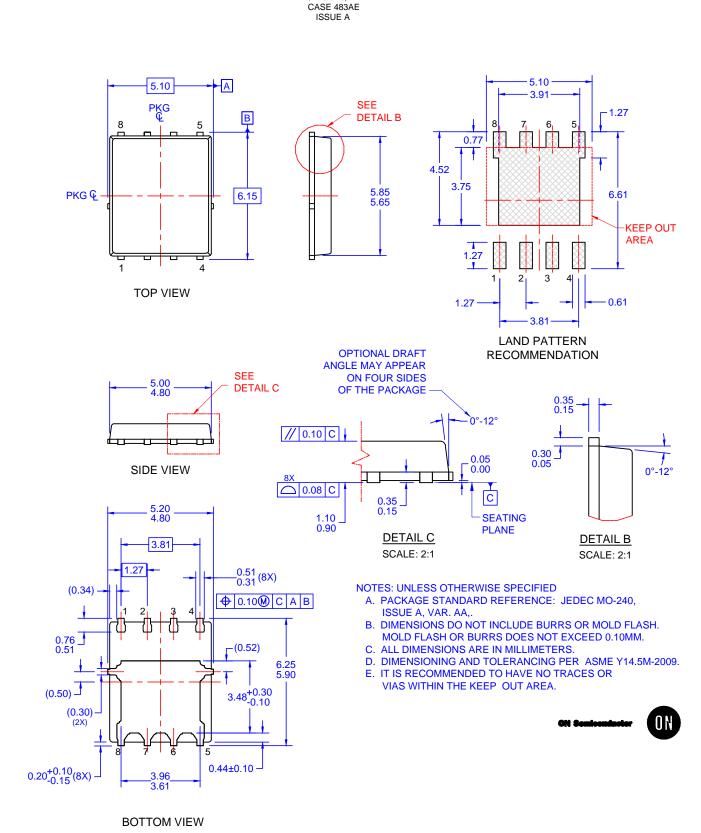



Figure 15. SyncFET body diode reverses leakage versus drain-source voltage

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative